Ecological and Societal Services of Aquatic Diptera
Abstract
:1. Introduction
2. Life Cycle of Aquatic Diptera
3. Bionomics of Aquatic Diptera
4. Ecological Services
4.1. Ecosystem Engineers and Keystone Species
4.2. Food Resources for Other Organisms
4.3. Symbioses
5. Societal Services
5.1. Bioassessment
5.2. Paleoecology and Climate Change
5.3. Biological Control
5.4. Bioproducts
5.5. Bioinspiration and Biotechnology
5.6. Forensic Sciences
6. Service Tradeoffs
7. Sustainability or Extinction
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferrington, L.C., Jr.; Berg, M.B.; Coffman, W.P. Chironomidae. In An Introduction to the Aquatic Insects of North America, 4th ed.; Merritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2008; pp. 847–989. [Google Scholar]
- Allegrucci, G.; Carchini, G.; Todisco, V.; Convey, P.; Sbordoni, V. A molecular phylogeny of Antarctic Chironomidae and its implications for biogeographical history. Polar Biol. 2006, 29, 320–326. [Google Scholar] [CrossRef]
- Pinder, L.C.V. The habitats of chironomid larvae. In The Chironomidae: Biology and Ecology of Non-Biting Midges; Armitage, P.D., Cranston, P.S., Pinder, L.C.V., Eds.; Springer (Chapman & Hall): Dordrecht, The Netherlands, 1995; pp. 107–135. [Google Scholar]
- Byers, G.W.; Gelhaus, J.K. Tipulidae. In An Introduction to the Aquatic Insects of North America, 4th ed.; Merritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2008; pp. 773–800. [Google Scholar]
- De Jong, H.; Oosterbroek, P.; Gelhaus, J.; Reusch, H.; Young, C. Global diversity of craneflies (Insecta, Diptera: Tipulidea or Tipulidae sensu lato) in freshwater. Hydrobiologia 2008, 595, 457–467. [Google Scholar] [CrossRef]
- Courtney, G.W. Aquatic Diptera. In An Introduction to the Aquatic Insects of North America, 5th ed.; Merritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall/Hunt Publishing Co.: Dubuque, IA, USA, 2019; in press. [Google Scholar]
- Courtney, G.W.; Cranston, P.S. Order Diptera. In Thorp and Covich’s Freshwater Invertebrates, 4th ed.; Thorp, J.H., Rogers, D.C., Eds.; Academic Press: London, UK, 2015; Volume 1, pp. 1043–1058. [Google Scholar]
- Courtney, G.W.; Pape, T.; Skevington, J.H.; Sinclair, B.J. Biodiversity of Diptera. In Insect Biodiversity: Science and Society, 2nd ed.; Foottit, R.G., Adler, P.H., Eds.; John Wiley & Sons: Chichester, UK, 2017; Volume I, pp. 229–278. [Google Scholar]
- Morse, J.C. Biodiversity of aquatic insects. In Insect Biodiversity: Science and Society, 2nd ed.; Foottit, R.G., Adler, P.H., Eds.; John Wiley & Sons: Chichester, UK, 2017; Volume I, pp. 205–227. [Google Scholar]
- Adler, P.H.; Crosskey, R.W. World Blackflies (Diptera: Simuliidae): A Comprehensive Revision of the Taxonomic and Geographical Inventory. 2018. Available online: http://www.clemson.edu/cafls/biomia/pdfs/blackflyinventory.pdf (accessed on 24 January 2019).
- Wagner, R.; Bartak, M.; Borkent, A.; Courtney, G.; Goddeeris, B.; Haenni, J.P.; Knutson, L.; Pont, A.; Rotheray, G.E.; Rozkosny, R.; et al. Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae). Hydrobiologia 2008, 595, 489–519. [Google Scholar] [CrossRef]
- Gelhaus, J.; (The Academy of Natural Sciences of Drexel University, USA). Personal communication, 2019.
- World Health Organization. Mosquito Control: Can It Stop Zika at Source? 2018. Available online: https://www.who.int/emergencies/zika-virus/articles/mosquito-control/en/ (accessed on 28 December 2018).
- Frank, J.H.; Curtis, G.A. On the bionomics of bromeliad-inhabiting mosquitoes. VI. A review of the bromeliad-inhabiting species. J. Fla. Anti-Mosq. Assoc. 1981, 52, 4–23. [Google Scholar]
- Borkent, A. The frog-biting midges of the world (Corethrellidae: Diptera). Zootaxa 2008, 1804, 1–456. [Google Scholar]
- Merritt, R.W.; Wallace, J.R. Aquatic habitats. In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Eds.; Academic Press: Amsterdam, The Netherlands, 2009; pp. 38–48. [Google Scholar]
- Vaillant, F. Recherches sur la faune madicole (hygropétrique) de France, de Corse et d’Afrique du Nord. Mémoires Du Muséum Natl. d’histoire Nat. Paris (Zool.) 1955, 11, 1–258 + 5 plates. [Google Scholar]
- Sinclair, B.J.; Marshall, S.A. The madicolous fauna in southern Ontario. Proc. Entomol. Soc. Ont. 1986, 117, 9–14. [Google Scholar]
- Dudley, T.; Anderson, N.H. A survey of invertebrates associated with wood debris in aquatic habitats. Melanderia 1982, 39, 1–21. [Google Scholar]
- Wihlm, M.W.; Courtney, G.W. The distribution and life history of Axymyia furcata McAtee (Diptera: Axymyiidae), a wood inhabiting, semi-aquatic fly. Proc. Entomol. Soc. Wash. 2011, 113, 385–398. [Google Scholar] [CrossRef]
- Foote, B.A. Biology of shore flies. Annu. Rev. Entomol. 1995, 40, 417–442. [Google Scholar] [CrossRef]
- Culver, D.C.; Pipan, T. Insects in caves. In Insect Biodiversity: Science and Societ; Foottit, R.G., Adler, P.H., Eds.; John Wiley & Sons: Chichester, UK, 2018; Volume II, pp. 123–152. [Google Scholar]
- Omesová, M.; Horsák, M.; Helešic, J. Nested patterns in hyporheic meta-communities: The role of body morphology and penetrability of sediment. Naturwissenschaften 2008, 95, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Courtney, G.W. Discovery of the immature stages of Parasimulium crosskeyi Peterson (Diptera: Simuliidae), with a discussion of a unique black fly habitat. Proc. Entomol. Soc. Wash. 1986, 88, 280–286. [Google Scholar]
- Tomberlin, J.K.; (Texas A & M University, College Station, TX, USA). Personal communication, 2019.
- Frisbie, M.P.; Lee, R.E., Jr. Inoculative freezing and the problem of winter survival for freshwater macroinvertebrates. J. N. Am. Benthol. Soc. 1997, 16, 635–650. [Google Scholar] [CrossRef]
- Cranston, P.S.; Cooper, P.D.; Hardwick, R.A.; Humphrey, C.L.; Dostine, P.L. Tropical acid streams—The chironomid (Diptera) response in northern Australia. Freshw. Biol. 1997, 37, 473–483. [Google Scholar] [CrossRef]
- Takagi, S.; Kikuchi, E.; Doi, H.; Shikano, S. Swimming behaviour of Chironomus acerbiphilus larvae in Lake Katanuma. Hydrobiologia 2005, 548, 153–165. [Google Scholar] [CrossRef]
- Cheng, L. Marine insects. In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Eds.; Academic Press: Amsterdam, The Netherlands, 2009; pp. 600–604. [Google Scholar]
- Tokunaga, M. Morphological and biological studies on a new marine chironomid fly, Pontomyia pacifica from Japan. Mem. Coll. Agric. Kyoto Imp. Univ. 1932, 19, 1–55. [Google Scholar]
- Huang, D.; Cheng, L. The flightless marine midge Pontomyia (Diptera: Chironomidae): Ecology, distribution, and molecular phylogeny. Zool. J. Linn. Soc. 2011, 162, 443–456. [Google Scholar] [CrossRef]
- Huang, D.; Cranston, P.S.; Cheng, L. A complete species phylogeny of the marine midge Pontomyia (Diptera: Chironomidae) reveals a cosmopolitan species and a new synonym. Invertebr. Syst. 2014, 28, 277–286. [Google Scholar] [CrossRef]
- Schärer, M.T.; Epler, J.H. Long-range dispersal possibilities via sea turtle—A case for Clunio and Pontomyia (Diptera: Chironomidae) in Puerto Rico. Entomol. News 2007, 118, 273–277. [Google Scholar] [CrossRef]
- Qi, X.; Lin, X.-L.; Ekrem, T.; Beutel, R.G.; Song, C.; Orlov, I.; Chen, C.-T.; Wang, X.-H. A new surface gliding species of Chironomidae: An independent invasion of marine environments and its evolutionary implications. Zool. Scr. 2019, 48, 81–92. [Google Scholar] [CrossRef]
- Collins, N. Population ecology of Ephydra cinerea Jones (Diptera: Ephydridae), the only benthic metazoan of the Great Salt Lake, U.S.A. Hydrobiologia 1980, 68, 99–112. [Google Scholar] [CrossRef]
- Wotton, R.S. Very high secondary production at a lake outlet. Freshw. Biol. 1988, 20, 341–346. [Google Scholar] [CrossRef]
- Wotton, R.S.; Malmqvist, B.; Muotka, T.; Larsson, K. Fecal pellets from a dense aggregation of suspension-feeders in a stream: An example of ecosystem engineering. Limnol. Oceanogr. 1998, 43, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Amrine, J.W. The New River connection to the black fly problem in southern West Virginia. West Va. Univ. Agric. For. Exp. Stn. Bull. 1982, 678, 1–30. [Google Scholar]
- Marshall, S.A. Insects: Their Natural History and Diversity; Firefly Books: Richmond Hill, ON, Canada, 2017. [Google Scholar]
- Wood, D.M. Biting flies attacking man and livestock in Canada. Agric. Can. Publ. 1985, 1781/E, 1–38. [Google Scholar]
- Courtney, G.W. Biosystematics of the Nymphomyiidae (Insecta: Diptera): Life history, morphology, and phylogenetic relationships. Smithson. Contrib. Zool. 1994, 550, 1–41. [Google Scholar] [CrossRef]
- Saigusa, T.; Nakamura, T.; Sato, S. Insect mist-swarming of Nymphomyia species in Japan. Fly Times 2009, 43, 2–7. [Google Scholar]
- Broza, M.; Halpern, M.; Gahanma, L.; Inbar, M. Nuisance chironomids in waste water stabilization ponds: Monitoring and action threshold assessment based on public complaints. J. Vector Ecol. 2003, 28, 31–36. [Google Scholar]
- Aldrich, J.M. The biology of some western species of the dipterous genus Ephydra. J. N. Y. Entomol. Soc. 1912, 20, 77–99. [Google Scholar]
- Wotton, R.S. Evidence that blackfly larvae can feed on particles of colloidal size. Nature 1976, 261, 697. [Google Scholar] [CrossRef]
- Ciborowski, J.J.H.; Craig, D.A.; Fry, K.M. Dissolved organic matter as food for black fly larvae (Diptera: Simuliidae). J. N. Am. Benthol. Soc. 1997, 16, 771–780. [Google Scholar]
- Lancaster, J.; Downes, B.J. Aquatic Entomology; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Adler, P.H.; Currie, D.C.; Wood, D.M. The Black Flies (Simuliidae) of North America; Cornell University Press: Ithaca, NY, USA, 2004; xv + 941 pp. + 24 color plates. [Google Scholar]
- Zwick, P. Australian Blephariceridae (Diptera). Aust. J. Zool. Suppl. Ser. 1977, 46, 1–121. [Google Scholar] [CrossRef]
- De Visser, S.; Thébault, E.; de Ruiter, P.C. Ecosystem engineers, keystone species. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer Science + Business Media: Berlin, Germany, 2012; pp. 3299–3306. [Google Scholar] [CrossRef]
- Wotton, R.S.; Malmqvist, B. Feces in aquatic ecosystems. Bioscience 2001, 51, 537–544. [Google Scholar] [CrossRef]
- Malmqvist, B.; Wotton, R.S.; Zhang, Y. Suspension feeders transform massive amounts of seston in large northern rivers. Oikos 2001, 92, 35–41. [Google Scholar] [CrossRef]
- Malmqvist, B.; Adler, P.H.; Kuusela, K.; Merritt, R.W.; Wotton, R.S. Black flies in the boreal biome, key organisms in both terrestrial and aquatic environments: A review. Écoscience 2004, 11, 187–200. [Google Scholar] [CrossRef]
- Kepčija, R.M.; Habdija, I.; Primc-Habdija, B.; Miliša, M. Simuliid silk pads enhance tufa deposition. Archiv. Hydrobiol. 2006, 166, 387–409. [Google Scholar] [CrossRef]
- Matisoff, G.; Fisher, J.B.; Matis, S. Effects of benthic macroinvertebrates on the exchange of solutes between sediments and freshwater. Hydrobiologia 1985, 122, 19–33. [Google Scholar] [CrossRef]
- De Haas, E.M.; Kraak, M.H.S.; Koelmans, A.A.; Admiraal, W. The impact of sediment reworking by opportunistic chironomids on specialised mayflies. Freshw. Biol. 2005, 50, 770–780. [Google Scholar] [CrossRef]
- Wilke, C. An invasive midge could wreak havoc on Antarctica. The Scientist, 19 December 2018. [Google Scholar]
- Courtney, G.W. Biology of Blephariceridae. 2001. Available online: https://www.ent.iastate.edu/dept/research/systematics/bleph/biology.html (accessed on 28 January 2019).
- Cummins, K.W.; Wilzbach, M.A.; Gates, D.M.; Perry, J.B.; Taliaferro, W.B. Shredders and riparian vegetation. BioScience 1989, 39, 24–30. [Google Scholar] [CrossRef]
- Yan, N.D.; Keller, W.; MacIsaac, H.J.; McEachern, L.J. Regulation of zooplankton community structure of an acidified lake by Chaoborus. Ecol. Appl. 1991, 1, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.H.; Malmqvist, B. Predation on black flies (Diptera: Simuliidae) by the carnivorous plant Pinguicula vulgaris (Lentibulariaceae) in northern Sweden. Entomol. Fenn. 2004, 15, 124–128. [Google Scholar]
- Keiper, J.B.; Walton, W.E.; Foote, B.A. Biology and ecology of higher Diptera from freshwater wetlands. Annu. Rev. Entomol. 2002, 47, 207–232. [Google Scholar] [CrossRef]
- Einarsson, A.; Gardarsson, A.; Gíslason, G.M.; Gudbergsson, G. Populations of ducks and trout of the River Laxá, Iceland, in relation to variation in food resources. Hydrobiologia 2006, 567, 183–194. [Google Scholar] [CrossRef]
- Giles, N. Effects of increasing larval chironomid densities on the underwater feeding success of downy tufted ducklings Aythya fuligula. Wildfowl 1990, 41, 99–106. [Google Scholar]
- Marziali, L.; Gozzini, M.; Rossaro, B.; Lencioni, V. Drift patterns of Chironomidae (Insecta, Diptera) in an arctic stream (Svalbard Islands): An experimental approach. Studi 2009, 84, 87–96. [Google Scholar]
- Davies, D.M. Predators upon blackflies. In Blackflies: The Future for Biological Methods in Integrated Control; Laird, M., Ed.; Academic Press: New York, NY, USA, 1981; pp. 139–158. [Google Scholar]
- Anderson, N.H. Influence of disturbance on insect communities in Pacific Northwest streams. Hydrobiologia 1992, 248, 79–82. [Google Scholar] [CrossRef]
- Courtney, G.W.; Duffield, R.M. Net-winged midges (Diptera: Blephariceridae): A food resource for Brook Trout in montane streams. Pan-Pac. Entomol. 2000, 76, 87–94. [Google Scholar]
- Knutson, L.; Vala, J.-C. Biology of Snail-killing Sciomyzidae; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Murphy, W.L.; Knutson, L.V.; Chapman, E.G.; McDonnell, R.J.; Williams, C.D.; Foote, B.A.; Vala, J.-C. Key aspects of the biology of snail-killing Sciomyzidae flies. Annu. Rev. Entomol. 2012, 57, 425–447. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.F.; Anderson, J.R.; Knudsen, M.F. The habits and life history of Oedoparena glauca (Diptera: Dryomyzidae), a predator of barnacles. Proc. Entomol. Soc. Wash. 1980, 82, 360–377. [Google Scholar]
- Cranston, P.S. The identity of Dactylocladius commensalis (Diptera: Chironomidae) revealed. Aquat. Insects 2007, 29, 103–114. [Google Scholar] [CrossRef]
- Mangan, B.P.; Bilger, M.D. First record of phoresy between chironomid larvae and crayfish. Am. Midl. Nat. 2012, 167, 410–415. [Google Scholar] [CrossRef]
- Gordon, M.J.; Swan, B.K.; Paterson, C.G. Baeoctenus bicolor (Diptera: Chironomidae) parasitic in unionid bivalve molluscs, and notes on other chironomid–bivalve associations. J. Fish. Res. Board Can. 2011, 35, 154–157. [Google Scholar] [CrossRef]
- Brock, E.M. Mutualism between the midge Cricotopus and the alga Nostoc. Ecology 1960, 41, 474–483. [Google Scholar] [CrossRef]
- Bennett, A.M.R. Aquatic Hymenoptera. In An Introduction to the Aquatic Insects of North America, 4th ed.; Merritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2008; pp. 674–686. [Google Scholar]
- Wirth, W.W. A review of the pathogens and parasites of the biting midges (Diptera: Ceratopogonidae). J. Wash. Acad. Sci. 1977, 67, 60–75. [Google Scholar]
- McCreadie, J.W.; Adler, P.H.; Beard, C.E. Ecology of symbiotes of larval black flies (Diptera: Simuliidae): Distribution, diversity, and scale. Environ. Entomol. 2011, 40, 289–302. [Google Scholar] [CrossRef]
- Andreadis, T.G. Microsporidian parasites of mosquitoes. J. Am. Mosq. Control Assoc. 2007, 23, 3–29. [Google Scholar] [CrossRef]
- Tang, X.; Adler, P.H.; Vogel, H.; Ping, L. Gender-specific bacterial composition of black flies (Diptera: Simuliidae). FEMS Microbiol. Ecol. 2012, 80, 659–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenat, D.R. A biotic index for the southeastern United States: Derivation and list of tolerance values, with criteria for assigning water-quality ratings. J. N. Am. Benthol. Soc. 1993, 12, 279–290. [Google Scholar] [CrossRef]
- Morse, J.C.; Bae, Y.J.; Munkhjargal, G.; Sangpradub, N.; Tanida, K.; Vshivkova, T.S.; Wang, B.; Yang, L.; Yule, C.M. Freshwater biomonitoring with macroinvertebrates in East Asia. Front. Ecol. Environ. 2007, 5, 33–42. [Google Scholar] [CrossRef]
- Barbour, M.T.; Gerritsen, J.; Snyder, B.D.; Stribling, J.B. Benthic macroinvertebrate protocols. In Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed.; EPA 841-B-99-002; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 1999; Chapter 7; pp. 1–34. [Google Scholar]
- Weltje, L.; Rufli, H.; Heimbach, F.; Wheeler, J.; Vervliet-Scheebaum, M.; Hame, M. The chironomid acute toxicity test: Development of a new test system. Integr. Environ. Assess. Manag. 2009, 6, 301–307. [Google Scholar] [CrossRef]
- Fowler, J.A.; Withers, I.D.; Dewhurst, F. Meniscus midges (Diptera: Dixidae) as indicators of surfactant pollutants. Entomologiste 1997, 116, 24–27. [Google Scholar]
- Lenat, D.R.; Resh, V.H. Taxonomy and stream ecology—The benefits of genus- and species-level identifications. J. N. Am. Benthol. Soc. 2001, 20, 287–298. [Google Scholar] [CrossRef]
- Adler, P.H. Biodiversity of biting flies: Implications for humanity. In Insect Biodiversity: Science and Society, 2nd ed.; Foottit, R.G., Adler, P.H., Eds.; John Wiley & Sons: Chichester, UK, 2017; Volume I, pp. 713–745. [Google Scholar]
- Ronderos, M.M.; Díaz, F.; Marino, P.I.; Ferreira-Keppler, R.L. Family Ceratopogonidae. In Thorp & Covich’s Freshwater Invertebrates, 4th ed.; Hamada, N., Thorp, J.H., Rogers, D.C., Eds.; Academic Press: London, UK, 2018; Volume III, pp. 625–659. [Google Scholar]
- Hilsenhoff, W.L. An improved biotic index of organic stream pollution. Great Lakes Entomol. 1987, 20, 31–39. [Google Scholar]
- Martin, J. Chromosomes as tools in taxonomy and phylogeny of Chironomidae (Diptera). Entomol. Scand. Suppl. 1979, 10, 67–74. [Google Scholar]
- Coluzzi, M.; Sabatini, A.; della Torre, A.; Di Deco, M.A.; Petrarca, V. A polytene chromosome analysis of the Anopheles gambiae complex. Science 2002, 298, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.H.; Crosskey, R.W. Cytotaxonomy of the Simuliidae (Diptera): A systematic and bibliographic conspectus. Zootaxa 2105, 3975, 1–139. [Google Scholar] [CrossRef] [PubMed]
- Di Veroli, A.; Santoro, F.; Pallottini, M.; Selvaggi, R.; Scardazza, F.; Cappelletti, D.; Goretti, E. Deformities of chironomid larvae and heavy metal pollution: From laboratory to field studies. Chemosphere 2014, 112, 9–17. [Google Scholar] [CrossRef]
- Michailova, P.; Petrova, N. Comparative effect of heavy metals on the polytene chromosomes of Chironomidae, Diptera. In Proceedings of the Balkan Scientific Conference of Biology; Gruev, B., Nikolova, M., Donev, A., Eds.; Plovdiv University: Plovdiv, Bulgaria, 2005; pp. 539–552. [Google Scholar]
- Michailova, P.; Petrova, N.; Ilkova, J.; Bovero, S.; Brunetti, S.; White, K.; Sella, G. Genotoxic effect of copper on salivary gland polytene chromosomes of Chironomus riparius Meigen 1804 (Diptera, Chironomidae). Environ. Pollut. 2006, 144, 647–654. [Google Scholar] [CrossRef]
- Pfrender, M.E.; Hawkins, C.P.; Bagley, M.; Courtney, G.; Creutzburg, B.R.; Epler, J.H.; Fend, S.; Ferrington, L.C.; Hartzell, P.L.; Jackson, S.; et al. Assessing macroinvertebrate biodiversity in freshwater ecosystems: Advances and challenges in DNA-based approaches. Q. Rev. Biol. 2010, 85, 319–340. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Shokralla, S.; Zhou, X.; Singer, G.A.C.; Baird, D.J. Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE 2011, 6, e17497. [Google Scholar] [CrossRef]
- Courtney, G.W. Archaic black flies and ancient forests: Conservation of Parasimulium habitats in the Pacific Northwest. Aquat. Conserv. Mar. Freshw. Ecosyst. 1993, 3, 361–373. [Google Scholar] [CrossRef]
- Walker, I.R. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 1987, 6, 29–40. [Google Scholar] [CrossRef]
- Palmer, S.; Walker, I.; Heinrichs, M.; Hebda, R.; Scudder, G. Postglacial midge community change and Holocene palaeotemperature reconstructions near treeline, southern British Columbia (Canada). J. Paleolimnol. 2002, 28, 469–490. [Google Scholar] [CrossRef]
- Louto, T.P. Intra-lake patterns of aquatic insect and mite remains. J. Paleolimnol. 2012, 47, 141–157. [Google Scholar] [CrossRef]
- Rees, A.B.H.; Cwynar, L.C.; Cranston, P.S. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: A training set from Tasmania, Australia. J. Paleolimnol. 2008, 40, 1159–1178. [Google Scholar] [CrossRef]
- Walker, I.R.; Mathewes, R.W. Chironomidae (Diptera) and postglacial climate at Marion Lake, British Columbia, Canada. Quat. Res. 1987, 27, 89–102. [Google Scholar] [CrossRef]
- Walker, I.R.; Mathewes, R.W. Early postglacial chironomid succession in southwestern British Columbia, Canada, and its palaeoenvironmental significance. J. Paleolimnol. 1989, 2, 1–14. [Google Scholar] [CrossRef]
- Walker, I.R.; Mathewes, R.W. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: Analysis of the fauna across an altitudinal gradient. J. Paleolimnol. 1989, 2, 61–80. [Google Scholar] [CrossRef]
- Walker, I.R.; Smol, J.P.; Engstrom, D.R.; Birks, H.J.B. An assessment of Chironomidae as quantitative indicators of past climate change. Can. J. Fish. Aquat. Sci. 1991, 48, 975–987. [Google Scholar] [CrossRef]
- Larocque, I.; Hall, R.I.; Grahn, E. Chironomids as indicators of climate change: A 100-lake training set from a subarctic region of northern Sweden (Lapland). J. Paleolimnol. 2001, 26, 307–322. [Google Scholar] [CrossRef]
- Porinchu, D.F.; Potito, A.P.; MacDonald, G.M.; Bloom, A.M. Subfossil chironomids as indicators of recent climate change in Sierra Nevada, California, lakes. Arct. Antarct. Alp. Res. 2007, 39, 286–296. [Google Scholar] [CrossRef]
- Finn, D.; Adler, P.H. Population genetic structure of a rare high-elevation black fly, Metacnephia coloradensis, occupying Colorado lake outlet streams. Freshw. Biol. 2006, 51, 2240–2251. [Google Scholar] [CrossRef]
- Currie, D.C.; Walker, I.R. Recognition and palaeohydrologic significance of fossil black fly larvae, with a key to the Nearctic genera (Diptera: Simuliidae). J. Paleolimnol. 1992, 7, 37–54. [Google Scholar] [CrossRef]
- Dickson, T.R.; Walker, I.R. Midge (Diptera: Chironomidae and Ceratopogonidae) emergence responses to temperature: Experiments to assess midges’ capacity as paleotemperature indicators. J. Paleolimnol. 2015, 53, 165–176. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F. Sciaridae in lake sediments: Indicators of catchment and stream contribution to fossil insect assemblages. J. Paleolimnol. 2007, 38, 183–189. [Google Scholar] [CrossRef]
- Sweetman, J.N.; Smol, J.P. Reconstructing fish populations using Chaoborus (Diptera: Chaoboridae) remains—A review. Quat. Sci. Rev. 2006, 25, 2013–2023. [Google Scholar] [CrossRef]
- Collins, L.E.; Blackwell, A. The biology of Toxorhynchites mosquitoes and their potential as biocontrol agents. Biocontrol News Inf. 2000, 21, 105N–116N. [Google Scholar]
- Werner, D.; Pont, A.C. Dipteran predators of simuliid blackflies: A worldwide review. Med. Vet. Entomol. 2003, 17, 115–132. [Google Scholar] [CrossRef]
- Grodowitz, M.J.; Smart, M.; Doyle, R.D.; Owens, C.S.; Bare, R.; Snell, C.; Freedman, J.; Jones, H. Hydrellia pakistanae and H. balciunasi, insect biological control agents of hydrilla: Boon or bust? In Proceedings of the IX International Symposium on Biological Control of Weeds; Moran, V.C., Hoffmann, J.H., Eds.; University of Cape Town: Rondebosch, South Africa, 1996; pp. 529–538. [Google Scholar]
- Doyle, R.D.; Grodowitz, M.J.; Smart, R.M.; Owens, C. Impact of herbivory by Hydrellia pakistanae (Diptera: Ephydridae) on growth and photosynthetic potential of Hydrilla verticillata. Biol. Control 2002, 24, 221–229. [Google Scholar] [CrossRef]
- Ali, A. Perspectives on management of pestiferous Chironomidae (Diptera), an emerging global problem. J. Am. Mosq. Control Assoc. 1991, 7, 260–281. [Google Scholar]
- Losey, J.E.; Vaughan, M. The economic value of ecological services provided by insects. BioScience 2006, 56, 311–323. [Google Scholar] [CrossRef]
- Ingram, B.A. Population dynamics of chironomid larvae (Diptera: Chironomidae) in earthen fish ponds in South-eastern Australia. Asian Fish. Sci. 2011, 24, 31–48. [Google Scholar]
- Williams, D.D.; Williams, S.S. Aquatic insects and their potential to contribute to the diet of the globally expanding human population. Insects 2017, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Shelley, A.J.; Luna Dias, A.P.A. First report of man eating blackflies (Dipt., Simuliidae). Entomol. Mon. Mag. 1989, 125, 44. [Google Scholar]
- Leksawasdi, P. Compendium of research on selected edible insects in northern Thailand. In Forest insects as food: Humans bite back. In Proceedings of a Workshop on Asia-Pacific Resources and Their Potential for Development, Chiang Mai, Thailand, 19–21 February 2008; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand, 2010; pp. 183–188. [Google Scholar]
- Hutchinson, G.E. Thoughts on aquatic insects. BioScience 1981, 31, 495–500. [Google Scholar] [CrossRef]
- Dettner, K. Chemical ecology and biochemistry of Dytiscidae. In Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae); Yee, D.A., Ed.; Springer: London, UK, 2014; pp. 235–306. [Google Scholar]
- Gosselin, A.; Hare, L. Burrowing behavior of Chaoborus flavicans larvae and its ecological significance. J. N. Am. Benthol. Soc. 2003, 22, 575–581. [Google Scholar] [CrossRef]
- Brackenbury, J. Locomotory modes in the larva and pupa of Chironomus plumosus (Diptera, Chironomidae). J. Insect Physiol. 2000, 46, 1517–1527. [Google Scholar] [CrossRef]
- Frutiger, A. Walking on suckers—New insights into the locomotory behavior of larval net-winged midges (Diptera: Blephariceridae). J. N. Am. Benthol. Soc. 1998, 17, 104–120. [Google Scholar] [CrossRef]
- Case, S.T.; Wieslander, L. Secretory proteins of Chironomus salivary glands: Structural motifs and assembly characteristics of a novel biopolymer. In Structure, Cellular Synthesis and Assembly of Biopolymers; Case, S.T., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 187–226. [Google Scholar]
- Papanicolaou, A.; Woo, A.; Brei, B.; Ma, D.; Masedunskas, A.; Gray, E.; Xiao, G.; Cho, S.; Brockhouse, C. Novel aquatic silk genes from Simulium (Psilozia) vittatum (Zett) Diptera: Simuliidae. Insect Biochem. Mol. Biol. 2013, 43, 1181–1188. [Google Scholar] [CrossRef]
- Kiel, E. Durability of simuliid silk pads (Simuliidae, Diptera). Aquat. Insects 1997, 19, 15–22. [Google Scholar] [CrossRef]
- Pinder, L.C.V. Biology of freshwater Chironomidae. Annu. Rev. Entomol. 1986, 31, 1–23. [Google Scholar] [CrossRef]
- Danks, H.V. Seasonal adaptations in arctic insects. Integr. Comp. Biol. 2004, 44, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, R.W., Jr.; Carrillo, M.A.; Kells, S.A.; Ferrington, L.C., Jr. Freeze tolerance in larvae of the winter-active Diamesa mendotae Muttkowski (Diptera: Chironomidae): A contrast to adult strategy for survival at low temperatures. Hydrobiologia 2006, 568, 403–416. [Google Scholar] [CrossRef]
- Kadavy, D.R.; Plantz, B.; Shaw, C.A.; Myatt, J.; Kokjohn, T.A.; Nickerson, K.W. Microbiology of the oil fly, Helaeomyia petrolei. Appl. Environ. Microbiol. 1999, 65, 1477–1482. [Google Scholar]
- Watanabe, M. Anhydrobiosis in invertebrates. Appl. Entomol. Zool. 2006, 41, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Gusev, O.; Nakahara, Y.; Vanyagina, V.; Malutina, L.; Cornette, R.; Sakashita, T.; Hamada, N.; Kikawada, T.; Kobayashi, Y.; Okuda, T. Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: Linkage with radioresistance. PLoS ONE 2010, 5, e14008. [Google Scholar] [CrossRef]
- Cornette, R.; Gusev, O.; Nakahara, Y.; Shimura, S.; Kikawada, T.; Okuda, T. Chironomid midges (Diptera, Chironomidae) show extremely small genome sizes. Zool. Sci. 2015, 32, 248–254. [Google Scholar] [CrossRef]
- Merritt, R.W.; Wallace, J.R. The role of aquatic insects in forensic investigations. In Forensic Entomology: The Utility of Arthropods in Legal Investigations; Byrd, J.H., Castner, J.L., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 177–222. [Google Scholar]
- Brereton, C.; House, W.A.; Armitage, P.D.; Wotton, R.S. Sorption of pesticides to novel materials: Snail pedal mucus and blackfly silk. Environ. Pollut. 1999, 105, 55–65. [Google Scholar] [CrossRef]
- Desrosiers, M.; Gagnon, C.; Masson, S.; Martel, L.; Babut, M.P. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: Bioacummulation by chironomids and implications for ecological risk assessment. Sci. Total Environ. 2008, 389, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Boyd, E.S.; Tomberlin, J.K.; McDermott, T.R.; Geesey, G.G. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming. Environ. Microbiol. 2009, 11, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Hesler, L.S. Bibliography on Hydrellia griseola Fallen (Diptera: Ephydridae) and review of its biology and pest status. Insecta Mundi 1995, 9, 25–35. [Google Scholar]
- Venkataraman, L.V.; Sindhu Kanya, T.C. Insect contamination (Ephydra californica) in the mass outdoor cultures of blue green alga, Spirulina platensis. Proc. Indian Acad. Sci. 1981, 90, 665–672. [Google Scholar]
- Failla, A.J.; Vasquez, A.A.; Fujimoto, M.; Ram, J.L. The ecological, economic and public health impacts of nuisance chironomids and their potential as aquatic invaders. Aquat. Invasions 2015, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The invasive mosquito species Aedes albopictus: Current knowledge and future perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Ali, A. A concise review of chironomid midges (Diptera: Chironomidae) as pests and their management. J. Vector Ecol. 1995, 21, 105–121. [Google Scholar]
- Williams, N.V.; Taylor, H.M. The effect of Psychoda alternata (Say.), (Diptera) and Lumbricillus rivalis (Levinsen) (Enchytraeidae) on the efficiency of sewage treatment in percolating filters. Water Res. 1968, 2, 139–150. [Google Scholar] [CrossRef]
- Gold, B.L.; Mathews, K.P.; Burge, H.A. Occupational asthma caused by sewer flies. Am. Rev. Respir. Dis. 1985, 131, 949–952. [Google Scholar] [PubMed]
- Adler, P.H.; Barzen, J.; Gray, E.; Lacy, A.; Urbanek, R.P.; Converse, S.J. The dilemma of pest suppression in the conservation of endangered species. Conserv. Biol. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, J.A. Locust: The Devastating Rise and Mysterious Disappearance of the Insect that Shaped the American Frontier; Basic Books: New York, NY, USA, 2004. [Google Scholar]
- Fredeen, F.J.H. Black flies (Diptera: Simuliidae) of the agricultural areas of Manitoba, Saskatchewan, and Alberta. In Proceedings of the 10th International Congress of Entomology, Montreal, QC, Canada, 1958, 3, 819–823., 17–25 August 1956; CAB International: Wallingford, UK, 1958; Volume 3, pp. 819–823. [Google Scholar]
- Ciurea, T.; Dinulescu, G. Ravages causés par la mouche de Golubatz en Roumaine; ses attaques contre les animaux et contre l’homme. Ann. Trop. Med. Parasitol. 1924, 18, 323–342. [Google Scholar]
- Adler, P.H.; Kúdelová, T.; Kúdela, M.; Seitz, G.; Ignjatović-Ćupina, A. Cryptic biodiversity and the origins of pest status revealed in the macrogenome of Simulium colombaschense (Diptera: Simuliidae), history’s most destructive black fly. PLoS ONE 2016, 11, e0147673. [Google Scholar] [CrossRef]
- Falk, S.J.; Chandler, P.J. A Review of the Scarce and Threatened Flies of Great Britain. Part 2: Nematocera and Aschiza not Dealt with by Falk (1991); Species Status 2: 1–189. Version 1.0; Joint Nature Conservation Committee: Peterborough, UK, 2005. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2018-2. 2019. Available online: http://www.iucnredlist.org (accessed on 28 December 2018).
- Cheke, R.A.; Fiasorgbor, G.K.; Walsh, J.F.; Yameogo, L. Elimination of the Djodji form of the blackfly Simulium sanctipauli sensu stricto as a result of larviciding by the WHO Onchocerciasis Control Programme in West Africa. Med. Vet. Entomol. 2008, 22, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Traoré, S.; Wilson, M.D.; Sima, A.; Barro, T.; Diallo, A.; Aké, A.; Coulibaly, S.; Cheke, R.A.; Meyer, R.R.F.; Mas, J.; et al. The elimination of the onchocerciasis vector from the island of Bioko as a result of larviciding by the WHO African Programme for Onchocerciasis Control. Acta Trop. 2009, 111, 211–218. [Google Scholar] [CrossRef] [PubMed]
Family or Superfamily | Total Species 1 | Aquatic Species 2 | Predominant Trophic Group; Habitat |
---|---|---|---|
Ceratopogonidae | 5902 | 5182 | collectors and predators; diverse lentic and lotic |
Chaoboridae | 89 | 89 | predators; lentic |
Chironomidae | 7290 | 7090 | all trophic groups; all aquatic habitats |
Corethrellidae | 111 | 111 | predators; lentic (phytotelmata) and lotic (hyporheic) |
Culicidae | 3725 | 3725 | collectors and some predators; lentic |
Dixidae | 197 | 197 | collectors; lentic and lotic surfaces |
Simuliidae | 2335 | 2335 | collectors; lotic |
Thaumaleidae | 183 | 183 | scrapers; madicolous |
Ptychopteridae | 80 | 80 | collectors; springs (mud) |
Tanyderidae | 40 | 40 | collectors; lotic (gravels, saturated wood) |
Blephariceridae | 330 | 330 | scrapers; lotic (rocks) |
Deuterophebiidae | 14 | 14 | scrapers; lotic (rocks) |
Nymphomyiidae | 8 | 8 | collectors/scrapers; lotic (mosses) |
Axymyiidae | 9 | 9 | shredders; lotic margins (saturated wood) |
Bibionidae | 1102 | 1 | collectors? |
Scatopsidae | 407 | 5 | collectors; tree holes |
Psychodidae | 3026 | 1988 | collectors and scrapers; lentic and lotic |
Tipuloidea | 15,803 | 11,062 | all trophic groups; lentic and lotic |
Cylindrotomidae | 71 | — | — |
Limoniidae | 10,813 | — | — |
Pediciidae | 506 | — | — |
Tipulidae | 4413 | — | — |
Stratiomyidae | 2690 | 928 | collectors; lentic, madicolous, thermal springs |
Athericidae | 133 | 133 | predators; lotic |
Oreoleptidae | 1 | 1 | predators; lotic |
Pelecorhynchidae | 49 | 49 | predators; streams and swamps |
Tabanidae | 4434 | 4434 | predators; lentic and lotic |
Dolichopodidae | 7358 | 3182 | predators; lentic and lotic |
Empididae | 3142 | 671 | predators; lotic |
Lonchopteridae | 65 | 2 | collectors; freshwater shores |
Phoridae | 4202 | 17 | collectors; lentic |
Syrphidae | 6107 | 1341 | collectors; lentic and lotic margins (saturated wood) |
Coelopidae | 35 | 35 | collectors and shredders; marine intertidal (seaweed) |
Dryomyzidae | 30 | 3 | predators; marine intertidal |
Helcomyzidae | 12 | 12 | collectors and shredders; marine intertidal (seaweed) |
Heterocheilidae | 2 | 2 | collectors and shredders; marine intertidal (seaweed) |
Sciomyzidae | 618 | 194 | predators; wetlands |
Canacidae | 323 | 323 | scrapers; marine intertidal (seaweed) and lotic |
Ephydridae | 1994 | 1251 | collectors and shredders; lentic, lotic (margins) and marine intertidal |
Muscidae | 5218 | 701 | predators; lentic and lotic |
Scathophagidae | 419 | 150 | shredders and predators; lentic |
Sarcophagidae | 3094 | 87 | collectors and shredders; lentic (incl. phytotelmata) |
Totals | 80,549 | 45,965 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adler, P.H.; Courtney, G.W. Ecological and Societal Services of Aquatic Diptera. Insects 2019, 10, 70. https://doi.org/10.3390/insects10030070
Adler PH, Courtney GW. Ecological and Societal Services of Aquatic Diptera. Insects. 2019; 10(3):70. https://doi.org/10.3390/insects10030070
Chicago/Turabian StyleAdler, Peter H., and Gregory W. Courtney. 2019. "Ecological and Societal Services of Aquatic Diptera" Insects 10, no. 3: 70. https://doi.org/10.3390/insects10030070
APA StyleAdler, P. H., & Courtney, G. W. (2019). Ecological and Societal Services of Aquatic Diptera. Insects, 10(3), 70. https://doi.org/10.3390/insects10030070