Integrated Management of Chive Gnats (Bradysia odoriphaga Yang & Zhang) in Chives Using Entomopathogenic Nematodes and Low-Toxicity Insecticides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nematodes
2.2. Insects
2.3. Laboratory Bioassay
2.3.1. Insecticides
2.3.2. Effect of Insecticides on EPN Survival
2.3.3. Effect of Insecticides on EPN Infectivity
2.3.4. Virulence of EPN–Insecticide Combinations against B. odoriphaga
2.3.5. Effect of Temperature on the Virulence of EPN–Imidacloprid Combinations against B. odoriphaga
2.4. Field Experiment
2.5. Cost Estimation of EPN–Imidacloprid Applications
2.6. Statistical Analysis
3. Results
3.1. Effect of Insecticides on EPN Survival
3.2. Effect of Insecticides on EPN Infectivity
3.3. Virulence of EPN–Insecticide Combinations against B. odoriphaga
3.4. Effect of Temperature on the Virulence of EPN–Imidacloprid Combinations against B. odoriphaga
3.5. Effects of EPN–Imidacloprid Applications on a B. odoriphaga Larval Population in the Field
3.6. Effects of EPN–Imidacloprid Applications on Chive Yields
3.7. Cost Estimation of the Integrated Management Strategy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, P.; Liu, F.; Mu, W.; Wang, Q.; Li, H.; Chen, C. Life table study of the effects of sublethal concentrations of thiamethoxam on Bradysia odoriphaga Yang and Zhang. Pestic. Biochem. Phys. 2014, 111, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhao, Y.H.; Wang, Q.H.; Mu, W.; Liu, F. Lethal and sublethal effects of the chitin synthesis inhibitor chlorfluazuron on Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae). Pestic. Biochem. Phys. 2017, 136, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, S.; Moens, M.; Han, R.; De Clercq, P. Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the chive gnat, Bradysia odoriphaga. J. Pest Sci. 2013, 86, 551–561. [Google Scholar] [CrossRef]
- Mei, Z.X.; Wu, Q.J.; Zhang, Y.J.; Hua, L. Life tables of the laboratory population of Bradysia odoriphaga Yang et Zhang (Diptera: Mycetophilidae) at different temperatures. Acta Entomol. Sin. 2004, 47, 219–222. [Google Scholar]
- Zhao, Y.; Wang, Q.; Ding, J.; Wang, Y.; Zhang, Z.; Liu, F.; Mu, W. Sublethal effects of chlorfenapyr on the life table parameters, nutritional physiology and enzymatic properties of Bradysia odoriphaga (Diptera: Sciaridae). Pestic. Biochem. Phys. 2018, 148, 93–102. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Zhai, Y.; Chen, C.; Wang, Q.; Han, J.; Liu, F.; Mu, W. Sublethal concentration of benzothiazole adversely affect development, reproduction and longevity of Bradysia odoriphaga (Diptera: Sciaridae). Phytoparasitica 2016, 44, 115–124. [Google Scholar] [CrossRef]
- Chen, C.; Shi, X.; Desneux, N.; Han, P.; Gao, X. Detection of insecticide resistance in Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae) in China. Ecotoxicology 2017, 26, 868–875. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Wang, Y.; Zhang, Z.; Wei, Y.; Liu, F. Chlorfenapyr, a potent alternative insecticide of phoxim to control Bradysia odoriphaga (Diptera: Sciaridae). J. Agric. Food Chem. 2017, 65, 5908–5915. [Google Scholar] [CrossRef]
- Yan, X.; Han, R.; Moens, M.; Chen, S.; De Clercq, P. Field evaluation of entomopathogenic nematodes for biological control of striped flea beetle, Phyllotreta striolata (Coleoptera: Chrysomelidae). BioControl 2013, 58, 247–256. [Google Scholar] [CrossRef]
- Yan, X.; Guo, W.X.; Zhao, G.Y.; Han, R. Research advances in subterranean pest control by entomopathogenic nematodes. J. Environ. Entomol. 2014, 36, 1018–1024. [Google Scholar]
- Yan, X.; Wang, X.; Han, R.; Qiu, X. Utilisation of entomopathogenic nematodes, Heterorhabditis spp. and Steinernema spp., for the control of Agrotis ipsilon (Lepidoptera, Noctuidae) in China. Nematology 2014, 16, 31–40. [Google Scholar] [CrossRef]
- Labaude, S.; Griffin, C.T. Transmission success of entomopathogenic nematodes used in pest control. Insects 2018, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G. Study on Entomopathogenic Nematodes for the Control of Chive Midge (Diptera: Sciaridae). Master’s Thesis, Shandong Agricultural University, Taian, China, 2013. [Google Scholar]
- Grewal, P.S.; Wang, X.; Taylor, R.A. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: Is there a relationship? Int. J. Parasitol. 2002, 32, 717–725. [Google Scholar] [CrossRef]
- Guo, W.; Yan, X.; Zhao, G.; Han, R. Increased efficacy of entomopathogenic nematode-insecticide combinations against Holotrichia oblita (Coleoptera: Scarabaeidae). J. Econ. Entomol. 2017, 110, 41–51. [Google Scholar] [PubMed]
- Head, J.; Walters, K.F.A.; Langton, S. The compatibility of the entomopathogenic nematode, Steinernema feltiae and chemical insecticides for the control of the South American leafminer Liriomyza huidobrensis. Biocontrol 2000, 45, 345–353. [Google Scholar] [CrossRef]
- Cuthbertson, A.; Head, J.; Walters, K.; Murray, A. The integrated use of chemical insecticides and the entomopathogenic nematode, Steinernema feltiae, for the control of sweetpotato whitefly, Bemisia tabaci. Nematology 2003, 5, 713–720. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Grewal, P.S. Compatibility and interactions of EPN with other control agents. In Nematodes as Biocontrol Agents; Grewal, P.S., Ehlers, R.U., Shapiro-Ilan, D.I., Eds.; CABI: Wallingford, UK, 2005; pp. 363–381. [Google Scholar]
- Cuthbertson, A.G.S.; Mathers, J.J.; Northing, P.; Prickett, A.J.; Walters, K.F.A. The integrated use of chemical insecticides and the entomopathogenic nematode, Steinernema carpocapsae (Nematoda: Steinernematidae), for the control of sweetpotato whitefly, Bemisia tobaci (Hemiptera: Aleyrodidae). Insect Sci. 2008, 15, 447–453. [Google Scholar] [CrossRef]
- Rovesti, L.; Deseo, K.V. Compatibility of chemical pesticides with the entomopathogenic nematodes, Steinernema carpocapsae Weiser and S. feltiae Filipjev (Nematoda: Steinernematidae). Nematologica 1990, 36, 237–245. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Cowles, R.S.; Cowles, E.A.; Fuzy, E.M.; Baumgartner, L. Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biol. Control 2002, 24, 90–97. [Google Scholar] [CrossRef]
- Krishnayya, P.V.; Grewal, P.S. Effect of neem and selected fungicides on viability and virulence of the entomopathogenic nematode Steinernema feltiae. Biocontrol Sci. Technol. 2002, 12, 259–266. [Google Scholar] [CrossRef]
- Cuthbertson, A.G.S.; Mathers, J.J.; Northing, P.; Luo, W.; Walters, K.F.A. Establishing effect of commonly used insecticides for aphid control on the infectivity of the entomopathogenic nematode Steinernema feltiae using a streamlined screening method. J. Environ. Res. Dev. 2007, 2, 1–5. [Google Scholar]
- Koppenhöfer, A.M.; Fuzy, E.M. Effect of the anthranilic diamide insecticide, chlorantraniliprole, on Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) efficacy against white grubs (Coleoptera: Scarabaeidae). Biol. Control 2008, 45, 93–102. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Fuzy, E.M. Early timing and new combinations to increase the efficacy of neonicotinoid-entomopathogenic nematode (Rhabditida: Heterorhabditidae) combinations against white grubs (Coleoptera: Scarabaeidae). Pest Manag. Sci. 2008, 64, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Moens, M.; Han, R.; Chen, S.; De Clercq, P. Effects of selected insecticides on osmotically treated entomopathogenic nematodes. J. Plant Dis. Prot. 2012, 119, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Kamali, S.; Karimi, J.; Koppenhöfer, A.M. New insight into the management of the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae) with entomopathogenic nematodes. J. Econ. Entomol. 2018, 111, 112–119. [Google Scholar] [CrossRef]
- Wu, H.; Gong, Q.; Fan, K.; Sun, R.; Xu, Y.; Zhang, K. Synergistic effect of entomopathogenic nematodes and thiamethoxam in controlling Bradysia odoriphage Yang and Zhang (Diptera: Sciaridae). Biol. Control 2017, 111, 53–60. [Google Scholar] [CrossRef]
- Zhou, X.H.; Zhang, S.C.; Zhuang, Q.Y.; Zhang, A.S.; Li, L.L.; Men, X.Y.; Zhai, Y.F.; Yu, Y. Screening and evaluation of the artificial diets of Bradysia odoriphaga Yang et Zhang (Diptera: Sciaridae). Acta Entomol. Sin. 2015, 58, 1245–1252. [Google Scholar]
- Chai, P.C.; Zhang, R.J. Effects of rearing density on growth and development of larvae of Tenebrio molitor. Entomol. Knowl. 2001, 38, 452–455. [Google Scholar]
- Liu, S.; Li, K.; Liu, C.; Wang, Q.; Yin, J.; Cao, Y. Identification of a strain of Heterorhabditis (Nematoda: Heterorhabditidae) from Hebei and its virulence to white grubs. Acta Entomol. Sin. 2009, 52, 959–966. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Am. Mosquito Control 1987, 3, 302. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Kaya, H.K. Synergism of imidacloprid and an entomopathogenic nematode: A novel approach to white grub (Coleoptera: Scarabaeidae) control in turfgrass. J. Econ. Entom. 1998, 91, 618–623. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Brown, I.M.; Gaugler, R.; Grewal, P.S.; Kaya, H.K.; Klein, M.G. Synergism of entomopathogenic nematodes and imidacloprid against white grubs: Greenhouse and field evaluation. Biol. Control 2000, 19, 245–251. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Grewal, P.S.; Kaya, H.K. Synergism of imidacloprid and entomopathogenic nematodes against white grubs: The mechanism. Entomol. Exp. Appl. 2000, 94, 283–293. [Google Scholar] [CrossRef]
- Jiao, L. Effects of Temperature on Ecological Features of Bradysia odoriphaga and Biological Activity of Osthol to the Pest. Master’s Thesis, Shandong Agricultural University, Taian, China, 2017. [Google Scholar]
- Hatab, M.A.A.; Gaugler, R. Lipids of in vivo and in vitro cultured Heterorhabditis bacteriophora. Biol. Control 1999, 15, 113–118. [Google Scholar] [CrossRef]
- Caamano, E.X.; Cloyd, R.A.; Solter, L.F.; Fallo, D.J. Quality assessment of two commercially available species of entomopathogenic nematodes: Steinernema feltiae and Heterorhabditis indica. HortTechnology 2008, 18, 84–89. [Google Scholar] [CrossRef]
- Hang, T.D.; Choo, H.Y.; Lee, D.W.; Lee, S.M.; Kaya, H.K.; Park, C.G. Temperature effects on Korean entomopathogenic nematodes, Steinernema glaseri and S. longicaudum, and their symbiotic bacteria. J. Microbiol. Biotechnol. 2007, 17, 420–427. [Google Scholar] [PubMed]
- Koppenhöfer, A.M.; Ebssa, L.; Fuzy, E.M. Storage temperature and duration affect Steinernema scarabaei dispersal and attraction, virulence, and infectivity to a white grub host. J. Invertebr. Pathol. 2013, 112, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, B.; Li, Y.; Chen, X.; Wu, J.; Yu, H. Study on occurrence of Bradysia odoriphaga. Tianjin Agric. Sci. Technol. 1995, 133, 12–13. [Google Scholar]
- Xu, C.; De Clercq, P.; Moens, M.; Chen, S.; Han, R. Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the striped flea beetle, Phyllotreta striolata. BioControl 2010, 55, 789–797. [Google Scholar] [CrossRef]
- Yan, X.; Lin, Y.; Huang, Z.; Han, R. Characterisation of biological and biocontrol traits of entomopathogenic nematodes promising for control of striped flea beetle (Phyllotreta striolata). Nematology 2018, 20, 503–518. [Google Scholar] [CrossRef]
Insecticide 1 | Main Component | Manufacturer | Recommended Field Rate |
---|---|---|---|
Chemical insecticide | |||
Chlorantraniliprole SC 20% | chlorantraniliprole | DuPont USA | 150 mL·ha−1 |
Chlorfenapyr SC 10% | chlorfenapyr | BASF | 750 mL·ha−1 |
Imidacloprid WG 70% | imidacloprid | Bayer | 45 g·ha−1 |
Myclobutanil EC 12.5% | myclobutanil | Kaifeng Tianwei Biochemical Co., Ltd. | 450 mL·ha−1 |
Triadimefon GR 15% | triadimefon | Sichuan Guoguang Agriculture and Chemistry Co., Ltd. | 900 g·ha−1 |
Botanical insecticide | |||
Azadirachtin SC 0.3% | azadirachtin | Chengdu Green the High-Tech Co., Ltd. | 2250 mL·ha−1 |
Matrine SC 0.5% | matrine | Beijing Green Agricultural Science and Technology Group Co., Ltd. | 1350 mL·ha−1 |
Osthole EC 1.0% | cnidium lactone | Suke Agro-chemical of Jiangsu Province Co., Ltd. | 3000 g·ha−1 |
Pyrethrin SC 1.5% | pyrethrin | Beijing Kingbo Biotech Co., Ltd. | 2400 mL·ha−1 |
Rotenone SC 7.5% | rotenone | Beijing Kingbo Biotech Co., Ltd. | 975 mL·ha−1 |
Insect growth regulator | |||
Chlorbenzuron SC 25% | chlorbenzuron | HONOR-BIO | 150 mg·kg−1 |
Diflubenzuron SC 20% | diflubenzuron | Anlin Biochemical Co., Ltd. | 133 mg·L−1 |
Flufenoxuron SC 2.5% | flufenoxuron | BASF | 750 mL·ha−1 |
Hexanumuron SC 5% | hexanumuron | Jiukang Biological Science and Technology Development Co., Ltd. | 120 g·ha−1 |
Insecticide | Corrected Mortality Rate (Mean ± SE %) 1 | |||||
---|---|---|---|---|---|---|
Steinernema feltiae SN | Heterorhabditis indica LN2 | |||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
Chlorantraniliprole | 66.67 ± 3.33 bc | 73.33 ± 3.33 b | 96.67 ± 3.33 | 46.67 ± 3.33 bc | 73.33 ± 3.33 b | 93.33 ± 3.33 |
Chlorfenapyr | 66.67 ± 3.33 bc | 76.67 ± 3.33 ab | 86.67 ± 3.33 | 53.33 ± 8.82 abc | 66.67 ± 12.02 b | 83.33 ± 3.33 |
Imidacloprid | 93.33 ± 3.33 a | 96.67 ± 3.33 a | 100.00 ± 0.00 | 76.67 ± 8.82 a | 90.00 ± 5.77 a | 100.00 ± 0.00 |
Myclobutanil | 76.67 ± 6.67 abc | 83.33 ± 3.33 ab | 93.33 ± 3.33 | 50.00 ± 5.77 abc | 80.00 ± 5.77 ab | 93.33 ± 3.33 |
Triadimefon | 70.00 ± 5.77 bc | 76.67 ± 3.33 ab | 90.00 ± 5.77 | 53.33 ± 3.33 abc | 76.67 ± 6.67 ab | 86.67 ± 6.67 |
Azadirachtin | 63.33 ± 3.33 bc | 70.00 ± 0.00 b | 93.33 ± 3.33 | 40.00 ± 5.77 c | 63.33 ± 3.33 b | 86.67 ± 8.82 |
Matrine | 70.00 ± 5.77 bc | 80.00 ± 5.77 ab | 80.00 ± 5.77 | 50.00 ± 5.77 abc | 76.67 ± 3.33 ab | 83.33 ± 3.33 |
Osthole | 93.33 ± 3.33 a | 93.33 ± 3.33 ab | 93.33 ± 3.33 | 56.67 ± 3.33 abc | 80.00 ± 5.77 ab | 93.33 ± 3.33 |
Pyrethrin | 76.67 ± 3.33 abc | 93.33 ± 3.33 ab | 93.33 ± 3.33 | 66.67 ± 8.82 abc | 80.00 ± 5.77 ab | 83.33 ± 3.33 |
Rotenone | 76.67 ± 3.33 abc | 90.00 ± 5.77 ab | 96.67 ± 3.33 | 40.00 ± 0.00 c | 60.00 ± 5.77 b | 86.67 ± 3.33 |
Chlorbenzuron | 86.67 ± 3.33 ab | 86.67 ± 3.33 ab | 93.33 ± 3.33 | 40.00 ± 5.77 c | 60.00 ± 5.77 b | 93.33 ± 3.33 |
Diflubenzuron | 76.67 ± 6.67 abc | 90.00 ± 5.77 ab | 96.67 ± 3.33 | 56.67 ± 8.82 abc | 73.33 ± 3.33 b | 86.67 ± 3.33 |
Flufenoxuron | 73.33 ± 3.33 abc | 83.33 ± 3.33 ab | 90.00 ± 0.00 | 76.67 ± 3.33 ab | 76.67 ± 3.33 ab | 93.33 ± 3.33 |
Hexanumuron | 90.00 ± 0.00 ab | 90.00 ± 0.00 ab | 93.33 ± 3.33 | 56.67 ± 3.33 abc | 76.67 ± 8.82 ab | 90.00 ± 5.77 |
EPN control | 50.00 ± 5.77 c | 86.67 ± 3.33 ab | 93.33 ± 3.33 | 50.00 ± 5.77 abc | 70.00 ± 5.77 b | 90.00 ± 0.00 |
Treatment 1 | EPN Rate (×109 IJ·ha−1) | Imidacloprid Rate | Cost 2 (CNY·ha−1) | Chive Yield (kg·ha−1) | Chive Price (CNY·kg−1) | Income (CNY·ha−1) | Profit (CNY·ha−1) |
---|---|---|---|---|---|---|---|
Experiment conducted in Zhangqiu city | |||||||
LN2-imidacloprid | 9 | 3 × 1/10 RC | 5409 | 28,814 | 12 | 345,773 | 340,364 |
SN-imidacloprid | 9 | 3 × 1/10 RC | 9009 | 40,420 | 12 | 485,042 | 476,033 |
LN2 + SN + imidacloprid | 4.5 + 4.5 | 3 × 1/10 RC | 7209 | 39,920 | 12 | 479,039 | 471,830 |
chlorbenzuron | 0 | 4 × 1 RC | 2520 | 35,518 | 5.6 | 198,900 | 196,379 |
Control | 0 | 0 | 0 | 26,813 | 12 | 321,761 | 321,761 |
Experiment conducted in Weifang city | |||||||
LN2-imidacloprid | 6 | 2 × 1/10 RC | 3606 | 44,022 | 3.8 | 167,284 | 163,678 |
SN-imidacloprid | 6 | 2 × 1/10 RC | 6006 | 45,623 | 3.8 | 173,367 | 167,361 |
LN2 + SN + imidacloprid | 3 + 3 | 2 × 1/10 RC | 4806 | 43,922 | 3.8 | 166,903 | 162,097 |
Phoxim | 0 | 4 × 1 RC | 1920 | 42,621 | 3.8 | 161,961 | 160,041 |
Control | 0 | 0 | 0 | 24,412 | 3.8 | 92,766 | 92,766 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zhao, G.; Han, R. Integrated Management of Chive Gnats (Bradysia odoriphaga Yang & Zhang) in Chives Using Entomopathogenic Nematodes and Low-Toxicity Insecticides. Insects 2019, 10, 161. https://doi.org/10.3390/insects10060161
Yan X, Zhao G, Han R. Integrated Management of Chive Gnats (Bradysia odoriphaga Yang & Zhang) in Chives Using Entomopathogenic Nematodes and Low-Toxicity Insecticides. Insects. 2019; 10(6):161. https://doi.org/10.3390/insects10060161
Chicago/Turabian StyleYan, Xun, GuoYu Zhao, and RiChou Han. 2019. "Integrated Management of Chive Gnats (Bradysia odoriphaga Yang & Zhang) in Chives Using Entomopathogenic Nematodes and Low-Toxicity Insecticides" Insects 10, no. 6: 161. https://doi.org/10.3390/insects10060161
APA StyleYan, X., Zhao, G., & Han, R. (2019). Integrated Management of Chive Gnats (Bradysia odoriphaga Yang & Zhang) in Chives Using Entomopathogenic Nematodes and Low-Toxicity Insecticides. Insects, 10(6), 161. https://doi.org/10.3390/insects10060161