Efficacy of Spinosad Granules and Lambda-Cyhalothrin Contrasts with Reduced Performance of Temephos for Control of Aedes spp. in Vehicle Tires in Veracruz, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Tires and Insecticides
2.2. Experimental Design and Sampling
2.3. Laboratory Processing of Samples
2.4. Studies on Larvicidal Activity of Temephos in Veracruz State
2.5. Statistical Analyses
3. Results
3.1. Efficacy of Larvicides
3.2. Effect of Larvicide Treatments on Oviposition
3.3. Influence of Larvicide Treatments on Toxorhynchites spp.
3.4. Studies on Larvicidal Activity of Temephos in Veracruz State
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yee, D.A. Tires as habitats for mosquitoes: A review of studies within the eastern United States. J. Med. Entomol. 2008, 45, 581–593. [Google Scholar] [PubMed]
- Kling, L.J.; Juliano, S.A.; Yee, D.A. Larval mosquito communities in discarded vehicle tires in a forested and unforested site: Detritus type, amount and water nutrient differences. J. Vect. Ecol. 2007, 32, 207–217. [Google Scholar] [CrossRef]
- Yee, D.A.; Kneitel, J.M.; Juliano, S.A. Environmental correlates of abundances of mosquito species and stages in discarded vehicle tires. J. Med. Entomol. 2010, 47, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Haramis, L.D. Aedes triseriatus, a comparison of density in tree holes vs. discarded tires. Mosq. News 1984, 44, 485–489. [Google Scholar]
- Pumpuni, C.B.; Walker, E.D. Population size and survivorship of adult Aedes triseriatus in a scrap tireyard in northern Indiana. J. Am. Mosq. Control Assoc. 1989, 5, 166–172. [Google Scholar] [PubMed]
- Paulson, S.L.; Hawley, W.A. Effect of body size on the vector competence of field and laboratory populations of Aedes triseriatus for La Crosse virus. J. Am. Mosq. Control. Assoc. 1991, 7, 170–175. [Google Scholar]
- Hawley, W.A.; Reiter, P.; Copeland, R.S.; Pumpuni, C.B.; Craig, G.B. Aedes albopictus in North America: Probable introduction in used tires from Northern Asia. Science 1987, 236, 1114–1116. [Google Scholar] [CrossRef] [PubMed]
- Reiter, P.; Sprenger, D. The used tire trade: A mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control. Assoc. 1987, 3, 494–501. [Google Scholar] [PubMed]
- Equihua, M.; Ibáñez-Bernal, S.; Benítez, G.; Estrada-Contreras, I.; Sandoval-Ruiz, C.A.; Mendoza-Palmero, F.S. Establishment of Aedes aegypti (L.) in mountainous regions in Mexico: Increasing number of population at risk of mosquito-borne disease and future climate conditions. Acta Trop. 2017, 166, 316–327. [Google Scholar] [CrossRef]
- Guerbois, M.; Fernandez-Salas, I.; Azar, S.R.; Danis-Lozano, R.; Alpuche-Aranda, C.M.; Leal, G.; Garcia-Malo, I.R.; Diaz-Gonzalez, E.E.; Casas-Martinez, M.; Rossi, S.L.; et al. Outbreak of Zika virus infection, Chiapas state, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J. Infect. Dis. 2016, 214, 1349–1356. [Google Scholar] [CrossRef]
- Kautz, T.F.; Díaz-González, E.E.; Erasmus, J.H.; Malo-García, I.R.; Langsjoen, R.M.; Patterson, E.I.; Auguste, D.I.; Forrester, N.L.; Sanchez-Casas, R.M.; Hernández-Ávila, M.; et al. Chikungunya virus as cause of febrile illness outbreak, Chiapas, Mexico, 2014. Emerg. Infect. Dis. 2015, 21, 2070. [Google Scholar] [CrossRef] [PubMed]
- Vega-Rúa, A.; Zouache, K.; Girod, R.; Failloux, A.B.; Lourenço-de-Oliveira, R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J. Virol. 2014, 88, 6294–6306. [Google Scholar] [CrossRef] [PubMed]
- Chouin-Carneiro, T.; Vega-Rua, A.; Vazeille, M.; Yebakima, A.; Girod, R.; Goindin, D.; Dupont-Rouzeyrol, M.; Lourenço-de-Oliveira, R.; Failloux, A.B. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl. Trop. Dis. 2016, 10, e0004543. [Google Scholar] [CrossRef] [PubMed]
- CDC. Centers for Disease Control. West Nile virus. Available online: https://www.cdc.gov/westnile/index.html (accessed on 4 June 2019).
- Nauen, R. Insecticide resistance in disease vectors of public health importance. Pest Manag. Sci. 2007, 63, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Chino-Cantor, A.; Sánchez-Arroyo, H.; Ortega-Arenas, L.D.; Castro-Hernández, E. Insecticide susceptibility of Aedes aegypti L. (Diptera: Culicidae) in Guerrero, Mexico. Southwest. Entomol. 2014, 39, 601–612. [Google Scholar] [CrossRef]
- World Health Organization. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. WHO/HTM/NTD/DEN/2009.1, Geneva, Switzerland. Available online: http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf (accessed on 4 June 2019).
- García, G.P.; Flores, A.E.; Fernández-Salas, I.; Saavedra-Rodríguez, K.; Reyes-Solis, G.; Lozano-Fuentes, S.; Bond, J.G.; Casas-Martínez, M.; Ramsey, J.M.; García-Rejón, J.; et al. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in Mexico. PLoS Negl. Trop. Dis. 2009, 3, e531. [Google Scholar] [CrossRef]
- Flores, A.E.; Ponce, G.; Silva, B.G.; Gutierrez, S.M.; Bobadilla, C.; Lopez, B.; Mercado, R.; Black, W.C., IV. Wide spread cross resistance to pyrethroids in Aedes aegypti (Diptera: Culicidae) from Veracruz state Mexico. J. Econ. Entomol. 2013, 106, 959–969. [Google Scholar] [CrossRef]
- Smith, L.B.; Kasai, S.; Scott, J.G. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pestic. Biochem. Physiol. 2016, 133. [Google Scholar] [CrossRef]
- Marina, C.F.; Bond, J.G.; Muñoz, J.; Valle, J.; Quiroz-Martínez, H.; Torres-Monzón, J.A.; Williams, T. Efficacy of larvicides for control of dengue, Zika and chikungunya vectors in an urban cemetery in Southern Mexico. Parasitol. Res. 2018, 117, 1941–1952. [Google Scholar] [CrossRef]
- Narahashi, T. Neuronal ion channels as the target sites of insecticides. Pharmacol. Toxicol. 1996, 79. [Google Scholar] [CrossRef]
- Geng, C.; Watson, G.B.; Sparks, T.C. Nicotinic acetylcholine receptors as spinosyn targets for insect pest management. Adv. Insect Physiol. 2013, 44, 101–210. [Google Scholar]
- Oetken, M.; Bachmann, J.; Schulte-Oehlmann, U.; Oehlmann, J. Evidence for endocrine disruption in invertebrates. In International Review of Cytology: A Survey of Cell Biology; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Marina, C.F.; Bond, J.G.; Casas, M.; Muñoz, J.; Orozco, A.; Valle, J.; Williams, T. Spinosad as an effective larvicide for control of Aedes albopictus and Aedes aegypti, vectors of dengue in southern Mexico. Pest Manag. Sci. 2011, 67, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Marina, C.F.; Bond, J.G.; Muñoz, J.; Valle, J.; Chirino, N.; Williams, T. Spinosad: A biorational mosquito larvicide for use in car tires in southern Mexico. Parasit. Vect. 2012, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Marina, C.F.; Bond, J.G.; Muñoz, J.; Valle, J.; Novelo-Gutiérrez, R.; Williams, T. Efficacy and non-target impact of spinosad, Bti and temephos larvicides for control of Anopheles spp. in an endemic malaria region of Southern Mexico. Parasit. Vect. 2014, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Hertlein, M.B.; Mavrotas, C.; Jousseaume, C.; Lysandrou, M.; Thompson, G.D.; Jany, W.; Ritchie, S.A. A review of spinosad as a natural mosquito product for larval mosquito control. J. Am. Mosq. Contr. Assoc. 2010, 26, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Antonios, M.; Dimitrios, P.P.; Christos, R.I.; Giovanni, B.; Christos, A.G. Larvicidal activity of spinosad and its impact on oviposition preferences of the West Nile vector Culex pipiens biotype molestus—A comparison with a chitin synthesis inhibitor. Parasitol. Int. 2019. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Silva, S.L.; Chacón-Hernández, S.S.; Moreno-Palacios, E.; Pereyra-Molina, J.A. Clinical and differential diagnosis: Dengue, chikungunya and Zika. Rev. Med. Hosp. Gen. Mex. 2016, 81, 146–153. [Google Scholar] [CrossRef]
- Díaz-Quiñonez, J.A.; López-Martínez, I.; Torres-Longoria, B.; Vázquez-Pichardo, M.; Cruz-Ramírez, E.; Ramírez-González, J.E.; Ruiz-Matus, C.; Kuri-Morales, P. Evidence of the presence of the Zika virus in Mexico since early 2015. Virus Genes. 2016, 52, 855–857. [Google Scholar] [CrossRef] [PubMed]
- Centro Nacional de Programas Preventivos y Control de Enfermedades. Lista de Productos Recomendados Para el Combate de Insectos Vectores de Enfermedades a Partir de 2018. Subsecretaría de Prevención y Promoción de la Salud. Secretaría de Salud. Mexico City, Mexico. Available online: https://www.gob.mx/cms/uploads/attachment/file/313976/ListaActualizadaAbril2018.pdf (accessed on 4 June 2019).
- Centro Nacional de Vigilancia Epidemiológica y Control de Enfermedades. Dirección de Enfermedades Transmitidas por Vector, Métodos de Control de Aedes Aegypti Mosquito Vector del Virus del Dengue en México. Secretaría de Salud; CENAVECE: Mexico City, Mexico, 2008; pp. 1–9. [Google Scholar]
- CENAPRECE. Centro Nacional de Programas Preventivos y Control de Enfermedades. Lista de productos recomendados para el combate de insectos vectores de enfermedades a partir de 2015. Subsecretaría de Prevención y Promoción de la Salud. Secretaría de Salud. Mexico City, Mexico. Available online: https://www.gob.mx/cms/uploads/attachment/file/17698/ListaActualizadaInsumosRecomendadosCENAPRECE2015.pdf (accessed on 4 June 2019).
- Bond, J.G.; Ramírez-Osorio, A.; Marina, C.F.; Fernández-Salas, I.; Liedo, P.; Dor, A.; Williams, T. Efficiency of two larval diets for mass-rearing of the mosquito Aedes aegypti. PLoS ONE 2018, 12, e0187420. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.J.; LaCasse, W.J. Mosquitoes of North America; University of California Press: Berkeley, CA, USA, 1955; p. 360. [Google Scholar]
- Walter Reed Biosystematics Unit (WRBU). Keys to the Medically Important Mosquito Species. Available online: http://www.wrbu.org/mqID/keysMQAlpha.html (accessed on 26 June 2019).
- Su, T.; Cheng, M.L.; Thieme, J. Laboratory and field evaluation of spinosad formulation Natular T30 against immature Culex mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Alsobhi, A.S.; Al-Ghamdi, K.; Mahyoub, J.A.; Khatter, N.A.; Saggu, S.; Rehman, H.; Panneerselvam, C.; Murugan, K.; Higuchi, A.; Nicoletti, M.; et al. Slow release formulations of Bacillus thuringiensis israelensis (AM 65-52) and spinosyns: Effectiveness against the West Nile vector Culex pipiens in Saudi Arabia. Asian Pac. J. Trop. Dis. 2016, 6, 533–538. [Google Scholar] [CrossRef]
- Che-Mendoza, A.; Guillermo-May, G.; Herrera-Bojórquez, J.; Barrera-Pérez, M.; Dzul-Manzanilla, F.; Gutierrez-Castro, C.; Arredondo-Jiménez, J.I.; Sánchez-Tejeda, G.; Vazquez-Prokopec, G.; Ranson, H.; et al. Long-lasting insecticide-treated house screens and targeted treatment of productive breeding-sites for dengue vector control in Acapulco, Mexico. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Bond, J.G.; Marina, C.F.; Williams, T. The naturally-derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Med. Vet. Entomol. 2004, 18, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Müller, G.C.; Junnila, A.; Schlein, Y. Effective control of adult Culex pipiens by spraying an attractive toxic sugar bait solution in the vegetation near larval habitats. J. Med. Entomol. 2010, 47, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Britch, S.C.; Linthicum, K.J.; Aldridge, R.L.; Golden, F.V.; Pongsiri, A.; Khongtak, P.; Ponlawat, A. Ultra-low volume application of spinosad (Natular 2EC) larvicide as a residual in a tropical environment against Aedes and Anopheles species. J. Am. Mosq. Contr. Assoc. 2018, 34, 58–62. [Google Scholar] [CrossRef]
- Antonio, G.E.; Sanchez, D.; Williams, T.; Marina, C.F. Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Pest Manag. Sci. 2009, 65, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, K.M.; Tomé, H.V.V.; Miranda, F.R.; Gonçalves, W.G.; Pascini, T.V.; Serrão, J.E.; Martins, G.F. Aedes aegypti larvae treated with spinosad produce adults with damaged midgut and reduced fecundity. Chemosphere 2019, 221, 464–470. [Google Scholar] [CrossRef]
- Su, T.; Cheng, M.L. Laboratory selection of resistance to spinosad in Culex quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 421–427. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Akram, W.; Shehzad, K.; Shaalan, E.A. First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasites Vectors 2011, 4, 146. [Google Scholar] [CrossRef]
- Dennett, J.A.; Bernhardt, J.L.; Meisch, M.V. Effects of fipronil and lambda-cyhalothrin against larval Anopheles quadrimaculatus and nontarget aquatic mosquito predators in Arkansas small rice plots. J. Am. Mosq. Contr. Assoc. 2003, 19, 172–174. [Google Scholar]
- Lawler, S.P.; Dritz, D.A.; Christiansen, J.A.; Cornel, A.J. Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects. Pest Manag. Sci. 2007, 63, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, S.; Pawanchee, Z.A.; Wahab, A.; Jamal, J.; Sohadi, A.R. Field efficacy of fipronil 3G, lambda-cyhalothrin 10% CS, and sumithion 50EC against the dengue vector Aedes albopictus in discarded tires. J. Vect. Ecol. 1999, 24, 154–157. [Google Scholar]
- Pettit, W.J.; Whelan, P.I.; McDonnell, J.; Jacups, S.P. Efficacy of alpha-cypermethrin and lambda-cyhalothrin applications to prevent Aedes breeding in tires. J. Am. Mosq. Contr. Assoc. 2010, 26, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.C.; Assi, S.B.; Rogier, C.; Dossou-Yovo, J.; Chandre, F.; Guillet, P.; Carnevale, P. Protective efficacy of lambda-cyhalothrin treated nets in Anopheles gambiae pyrethroid resistance areas of Cote d’Ivoire. Am. J. Trop. Med. Hyg. 2005, 73, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Muzari, O.M.; Adamczyk, R.; Davis, J.; Ritchie, S.; Devine, G. Residual effectiveness of λ-cyhalothrin harbourage sprays against foliage-resting mosquitoes in North Queensland. J. Med. Entomol. 2014, 51, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.; Maoz, D.; Manrique, P.; Ward, T.; Runge-Ranzinger, S.; Toledo, J.; Boyce, R.; Horstick, O. Community effectiveness of indoor spraying as a dengue vector control method: A systematic review. PLoS Negl. Trop. Dis. 2017, 11, e0005837. [Google Scholar] [CrossRef] [PubMed]
- Ardila-Roldán, S.; Santacoloma, L.; Brochero, H. Status of insecticide susceptibility of public health use in natural populations of Aedes aegypti (Diptera: Culicidae) of Casanare, Colombia. Biomedica 2013, 33, 446–458. [Google Scholar] [CrossRef]
- Sullivan, J.J.; Goh, K.S. Environmental fate and properties of pyriproxyfen. J. Pestic. Sci. 2008, 33, 339–350. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Pyriproxyfen in Drinking-Water. Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2008; (WHO/HSE/AMR/08.03/10). [Google Scholar]
- World Health Organization. WHO Specifications and Evaluations for Public Health Pesticides. Pyriproxyfen, 4-phenoxyphenyl (RS)-2-(2-pyridyloxy)propyl Ether. Available online: http://www.who.int/whopes/quality/Pyriproxyfen_eval_specs_WHO_Oct_2017.pdf (accessed on 4 June 2019).
- Sihuincha, M.; Zamora-Perea, E.; Orellana-Rios, W.; Stancil, J.D.; Lopez-Sifuentes, V.; Vidal-Ore, C.; Devine, G.J. Potential use of pyriproxyfen for control of Aedes aegypti (Diptera: Culicidae) in Iquitos, Peru. J. Med. Entomol. 2005, 42, 620–630. [Google Scholar] [CrossRef]
- Seng, C.M.; Setha, T.; Chanta, N.; Socheat, D.; Guillet, P.; Nathan, M.B. Inhibition of adult emergence of Aedes aegypti in simulated domestic water-storage containers by using a controlled-release formulation of pyriproxyfen. J. Am. Mosq. Contr. Assoc. 2006, 22, 152–154. [Google Scholar] [CrossRef]
- Seccacini, E.; Lucia, A.; Harburguer, L.; Zerba, E.; Licastro, S.; Masuh, H. Effectiveness of pyriproxyfen and diflubenzuron formulations as larvicides against Aedes aegypti. J. Am. Mosq. Contr. Assoc. 2008, 24, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Darriet, F.; Marcombe, S.; Etienne, M.; Yébakima, A.; Agnew, P.; Yp-Tcha, M.M.; Corbel, V. Field evaluation of pyriproxyfen and spinosad mixture for the control of insecticide resistant Aedes aegypti in Martinique (French West Indies). Parasites Vectors 2010, 3, 88. [Google Scholar] [CrossRef] [PubMed]
- Suman, D.S.; Wang, Y.; Bilgrami, A.L.; Gaugler, R. Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes. Acta Trop. 2013, 128, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Suman, D.S.; Wang, Y.; Gaugler, R. The insect growth regulator pyriproxyfen terminates egg diapause in the Asian tiger mosquito, Aedes albopictus. PLoS ONE 2015, 10, e0130499. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; Lwetoijera, D.W.; Dongus, S.; Matowo, N.S.; Lorenz, L.M.; Devine, G.J.; Majambere, S. Sterilising effects of pyriproxyfen on Anopheles arabiensis and its potential use in malaria control. Parasites Vectors 2013, 6, 144. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, E.O.L.; Macoris, M.D.L.D.G.; Santos, R.F.D.; Morato, D.G.; Isabel, M.D.S.S.; Cerqueira, N.A.; Monte-Alegre, A.F. Experimental study on the action of larvicides in Aedes aegypti populations collected in the Brazilian municipality of Itabuna, Bahia, under simulated field conditions. Epidemiol. Serv. Saúde 2019, 28, e2017316. [Google Scholar] [PubMed]
- Nazni, W.A.; Lee, H.L.; Wan Rozita, W.M.; Lian, A.C.; Chen, C.D.; Azahari, A.H.; Sadiyah, I.; Sadiyah, I. Oviposition behaviour of Aedes albopictus in temephos and Bacillus thuringiensis israelensis-treated ovitraps. Dengue Bull. 2009, 33, 209–217. [Google Scholar]
- Pérez, C.M.; Marina, C.F.; Bond, J.G.; Rojas, J.C.; Valle, J.; Williams, T. Spinosad, a naturally-derived insecticide, for control of Aedes aegypti: Efficacy, persistence and oviposition response. J. Med. Entomol. 2007, 44, 631–638. [Google Scholar] [CrossRef]
- Miller, J.E.; Gibson, G. Behavioral response of host-seeking mosquitoes (Diptera: Culicidae) to insecticide-impregnated bed netting: A new approach to insecticide bioassays. J. Med. Entomol. 1994, 31, 114–122. [Google Scholar] [CrossRef]
- Focks, D.A.; Dame, D.A.; Cameron, A.L.; Boston, M.D. Predator-prey interaction between insular populations of Toxorhynchites rutilus rutilus and Aedes aegypti. Environ. Entomol. 1980, 9, 37–42. [Google Scholar] [CrossRef]
- Kesavaraju, B.; Juliano, S.A. Differential behavioral responses to water-borne cues to predation in two container-dwelling mosquitoes. Ann. Entomol. Soc. Am. 2004, 97, 194–201. [Google Scholar] [CrossRef]
- Albeny-Simões, D.; Murrell, E.G.; Elliot, S.L.; Andrade, M.R.; Lima, E.; Juliano, S.A.; Vilela, E.F. Attracted to the enemy: Aedes aegypti prefers oviposition sites with predator-killed conspecifics. Oecologia 2014, 175, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Zuharah, W.F.; Fadzly, N.; Yusof, N.A.; Dieng, H. Risky behaviors: Effects of Toxorhynchites splendens (Diptera: Culicidae) predator on the behavior of three mosquito species. J. Insect Sci. 2015, 15, 128. [Google Scholar] [CrossRef] [PubMed]
- Steffan, W.A.; Evenhuis, N.L. Biology of Toxorhynchites. Annu. Rev. Entomol. 1981, 26, 159–181. [Google Scholar] [CrossRef]
- Thavara, U.; Tawatsin, A.; Srithommarat, R.; Zaim, M.; Mulla, M.S. Sequential release and residual activity of temephos applied as sand granules to water-storage jars for the control of Aedes aegypti larvae (Diptera: Culicidae). J. Vector Ecol. 2005, 30, 62–72. [Google Scholar]
- Moyes, C.L.; Vontas, J.; Martins, A.J.; Ng, L.C.; Koou, S.Y.; Dusfour, I.; Raghavendra, K.; Pinto, J.; Corbel, V.; David, J.P.; et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 2017, 11, e0005625. [Google Scholar] [CrossRef] [PubMed]
- Marcombe, S.; Mathieu, R.B.; Pocquet, N.; Riaz, M.A.; Poupardin, R.; Sélior, S.; Darriet, F.; Reynaud, S.; Yébakima, A.; Corbel, V.; et al. Insecticide resistance in the dengue vector Aedes aegypti from Martinique: Distribution, mechanisms and relations with environmental factors. PLoS ONE 2012, 7, e30989. [Google Scholar] [CrossRef]
- Dos Santos Dias, L.; da Graça Macoris, M.D.L.; Andrighetti, M.T.M.; Otrera, V.C.G.; dos Santos Dias, A.; da Rocha Bauzer, L.G.S.; de Melo Rodovalho, C.; Martins, A.J.; Lima, J.B.P. Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil. PLoS ONE 2017, 12, e0173689. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía. Panorama Sociodemográfico de México. Available online: http://internet.contenidos.inegi.org.mx/contenidos/Productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825078065.pdf (accessed on 4 June 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, T.; Farfán, J.L.; Mercado, G.; Valle, J.; Abella, A.; Marina, C.F. Efficacy of Spinosad Granules and Lambda-Cyhalothrin Contrasts with Reduced Performance of Temephos for Control of Aedes spp. in Vehicle Tires in Veracruz, Mexico. Insects 2019, 10, 242. https://doi.org/10.3390/insects10080242
Williams T, Farfán JL, Mercado G, Valle J, Abella A, Marina CF. Efficacy of Spinosad Granules and Lambda-Cyhalothrin Contrasts with Reduced Performance of Temephos for Control of Aedes spp. in Vehicle Tires in Veracruz, Mexico. Insects. 2019; 10(8):242. https://doi.org/10.3390/insects10080242
Chicago/Turabian StyleWilliams, Trevor, Juan L. Farfán, Gabriel Mercado, Javier Valle, Antonio Abella, and Carlos F. Marina. 2019. "Efficacy of Spinosad Granules and Lambda-Cyhalothrin Contrasts with Reduced Performance of Temephos for Control of Aedes spp. in Vehicle Tires in Veracruz, Mexico" Insects 10, no. 8: 242. https://doi.org/10.3390/insects10080242
APA StyleWilliams, T., Farfán, J. L., Mercado, G., Valle, J., Abella, A., & Marina, C. F. (2019). Efficacy of Spinosad Granules and Lambda-Cyhalothrin Contrasts with Reduced Performance of Temephos for Control of Aedes spp. in Vehicle Tires in Veracruz, Mexico. Insects, 10(8), 242. https://doi.org/10.3390/insects10080242