EAG Responses of Adult Lobesia botrana Males and Females Collected from Vitis vinifera and Daphne gnidium to Larval Host-Plant Volatiles and Sex Pheromone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Moth Strains and Tested Individuals
2.2. Test Stimuli
2.3. Electroantennograms
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ioriatti, C.; Anfora, G.; Tasin, M.; De Cristofaro, A.; Witzgall, P.; Lucchi, A. Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J. Econ. Entomol. 2011, 104, 1125–1137. [Google Scholar] [CrossRef]
- Torres-Vila, L.M. Lobesia botrana Den. and Schiff. (Lepidoptera: Tortricidae). In Crop Protection Compendium, 2nd ed.; CAB-International, CD-ROM, Eds.; CABI: Wallingford, Oxon, UK, 2000. [Google Scholar]
- Norin, T. Semiochemicals for insect pest management. Pure Appl. Chem. 2007, 79, 2129–2136. [Google Scholar] [CrossRef]
- Arn, H.; Rauscher, S.; Guerin, P.; Buser, H.R. Sex pheromone blends of three tortricid pests in European vineyards. Agric. Ecosyst. Environ. 1998, 21, 111–117. [Google Scholar] [CrossRef]
- El-Sayed, A.; Gödde, J.; Witzgall, P.; Arn, H. Characterization of pheromone blend for grapevine moth, Lobesia botrana by using flight track recording. J. Chem. Ecol. 1999, 25, 389–399. [Google Scholar] [CrossRef]
- Sans, A.; Morán, M.; Riba, M.; Guerrero, Á.; Roig, J.; Gemeno, C. Plant volatiles challenge inhibition by structural analogs of the sex pheromone in Lobesia botrana (Lepidoptera: Tortricidae). Eur. J. Entomol. 2016, 113, 579–586. [Google Scholar] [CrossRef]
- Torres-Vila, L.M.; Stockel, J.; Lecharpentier, P.; Rodríguez-Molina, M.C. Artificial selection in pheromone permeated air increases mating ability of the European grape vine moth Lobesia botrana (Lep., Tortricidae). J. Appl. Entomol. 1997, 121, 189–194. [Google Scholar] [CrossRef]
- Holdcraft, R.; Rodriguez-Saona, C.; Stelinski, L.L. Pheromone autodetection: Evidence and implications. Insects 2016, 7, 17. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Suckling, D.M. Behavioural observations of mating disruption in three lepidopteran pests. Behaviour 2005, 142, 717–729. [Google Scholar] [Green Version]
- Harari, A.R.; Zahavi, T.; Steinitz, H. Female detection of the synthetic sex pheromone contributes to the efficacy of mating disruption of the European grapevine moth, Lobesia botrana. Pest Manag. Sci. 2015, 71, 316–322. [Google Scholar] [CrossRef]
- Krieger, J.; Breer, H. Olfactory reception in invertebrates. Science 1999, 286, 720–723. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Pickett, J.A. Perception of plant volatile blends by herbivorous insects—Finding the right mix. Phytochemistry 2011, 72, 1605–1611. [Google Scholar] [CrossRef]
- Agosta, S.J. On ecological fitting, plant insect associations, herbivore host shifts, and host plant selection. Oikos 2006, 114, 556–565. [Google Scholar] [CrossRef]
- Tasin, M.; Anfora, G.; Ioriatti, C.; Carlin, S.; De Cristofaro, A.; Schmidt, S.; Bengtsson, M.; Versini, G.; Witzgall, P.; Cristofaro, A. Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine. J. Chem. Ecol. 2005, 31, 77–87. [Google Scholar] [CrossRef]
- Tasin, M.; Bäckman, A.C.; Bengtsson, M.; Varela, N.; Ioriatti, C.; Witzgall, P. Wind tunnel attraction of grapevine moth females, Lobesia botrana, to natural and artificial grape odour. Chemoecology 2006, 16, 87–92. [Google Scholar] [CrossRef]
- Tasin, M.; Bäckman, A.C.; Anfora, G.; Carlin, S.; Ioriatti, C.; Witzgall, P. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chem. Senses 2010, 35, 57–64. [Google Scholar] [CrossRef]
- Thiéry, D.; Moreau, J. Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia 2005, 143, 548–557. [Google Scholar] [CrossRef]
- Torres-Vila, L.M.; Cruces-Caldera, E.; Rodríguez-Molina, M.C. Host plant selects for egg size in the moth Lobesia botrana: integrating reproductive and ecological trade-offs is not a simple matter. In Moths: Types, Ecological Significance and Control Methods; Cauterruccio, L., Ed.; Nova Science Pub.: Hauppauge, NY, USA, 2012; pp. 145–167. [Google Scholar]
- Maher, N.; Thiéry, D. Daphne gnidium, a possible native host plant of the European grapevine moth Lobesia botrana, stimulates its oviposition. Is a host shift relevant? Chemoecology 2006, 16, 135–144. [Google Scholar] [CrossRef]
- Torres-Vila, L.M.; Rodríguez-Molina, M.C. Host plant-mediated reaction norms in the European grapevine moth: Evidence for evolutionary host shift from daphne to vine. Arthropod Plant Interact. 2013, 7, 125–136. [Google Scholar] [CrossRef]
- von Arx, M.; Schmidt-Büsser, D.; Guerin, P.M. Host plant volatiles induce oriented flight behaviour in male European grapevine moths, Lobesia botrana. J. Insect Physiol. 2011, 57, 1323–1331. [Google Scholar] [CrossRef]
- von Arx, M.; Schmidt-Büsser, D.; Guerin, P.M. Plant volatiles enhance behavioral responses of grapevine moth males, Lobesia botrana to sex pheromone. J. Chem. Ecol. 2012, 38, 222–225. [Google Scholar] [CrossRef]
- Masante-Roca, I.; Anton, S.; Delbac, L.; Dufour, M.C.; Gadenne, C. Attraction of the grapevine moth to host and non-host plant parts in the wind tunnel: Effects of plant phenology, sex, and mating status. Entomol. Exp. Appl. 2007, 122, 239–245. [Google Scholar] [CrossRef]
- Vitagliano, S.; Anfora, G.; Tasin, M.; Germinara, G.S.; Ioriatti, C.; Rotundo, G.; De Cristofaro, A. Electrophysiological and olfactory responses of Lobesia botrana (Den. et Schiff.) (Lepidoptera Tortricidae) to odours of host plant. IOBC/WPRS Bull. 2005, 28, 429–435. [Google Scholar]
- Stockel, J.; Roehrich, R.; Carles, J.P.; Nadaud, A. Technique d’élevage pour l’obtention programmée d’adultes vierges d’Eudémis. Phytoma 1989, 412, 45–47. [Google Scholar]
- R Core Team. R: A language and Environment for Statistical Computing Internet; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- De Bruyne, M.; Baker, T.C. Odor detection in insects: Volatile codes. J. Chem. Ecol. 2008, 34, 882–897. [Google Scholar] [CrossRef]
- Ammagarahalli, B.; Gemeno, C. Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae). J. Insect Physiol. 2014, 71, 128–136. [Google Scholar] [CrossRef]
- De Cristofaro, A.; Vitagliano, S.; Anfora, G.; Germinara, G.S.; Tasin, M.; Lucchi, A.; Ioriatti, C.; Rotundo, G. Olfactory cells responding to the main pheromone component and plant volatiles in Lobesia botrana (Den. & Schiff.): Possible effects on monitoring systems. IOBC/WPRS Bull. 2008, 36, 245–249. [Google Scholar]
- Suckling, D.M.; Karg, G.; Gibb, A.R.; Bradley, S.J. Electroantennogram and oviposition responses of Epiphyas postvittana (Lepidoptera: Tortricidae) to plant volatiles. N. Z. J. Crop Hortic. Sci. 1996, 24, 323–333. [Google Scholar] [CrossRef]
- Shu, S.; Grant, G.G.; Langevin, D.; Lombardo, D.A.; Macdonald, L. Oviposition and electroantennogram responses of Dioryctria abietivorella (Lepidoptera: Pyralidae) elicited by monoterpenes and enantiomers from eastern white pine. J. Chem. Ecol. 1997, 23, 35–50. [Google Scholar] [CrossRef]
- Ansebo, L.; Coracini, M.D.A.; Bengtsson, M.; Liblikas, I.; Ramirez, M.; Borg-Karlson, A.-K.; Tasin, M.; Witzgall, P. Antennal and behavioural response of codling moth Cydia pomonella to plant volatiles. J. Appl. Entomol. 2004, 128, 488–493. [Google Scholar] [CrossRef]
- Raguso, R.A.; Light, D.M.; Pickersky, E. Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J. Chem. Ecol. 1996, 22, 1735–1766. [Google Scholar] [CrossRef]
- Hansson, B.S.; Van Der Pers, J.; Löfqvist, J. Comparison of male and female olfactory cell response to pheromone compounds and plant volatiles in the turnip moth, Agrotis segetum. Physiol. Entomol. 1989, 14, 147–155. [Google Scholar] [CrossRef]
- Ahman, I.; Wiersma, N.; Lindstrom, M. Electroantennogram responses in Cydia strobiella (L.) (Lep., Tortricidae) to flower and twig odours of its host Picea abies Karst. J. Appl. Ent. 1988, 105, 314–316. [Google Scholar] [CrossRef]
- Shulaev, V.; Silverman, P.; Raskin, I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 1997, 385, 718–721. [Google Scholar] [CrossRef]
- James, D.G.; Price, T.S. Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J. Chem. Ecol. 2004, 30, 1613–1628. [Google Scholar] [CrossRef]
- Ulland, S.; Ian, E.; Mozuraitis, R.; Borg-Karlson, A.-K.; Meadow, R.; Mustaparta, H. Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Chem. Senses 2007, 33, 35–46. [Google Scholar] [CrossRef]
- Rojas, J.C. Electrophysiological and behavioral responses of the cabbage moth to plant volatiles. J. Chem. Ecol. 1999, 25, 1867–1883. [Google Scholar] [CrossRef]
- Jordan, M.D.; Anderson, A.; Begum, D.; Carraher, C.; Authier, A.; Marshall, S.D.; Kiely, A.; Gatehouse, L.N.; Greenwood, D.R.; Christie, D.L.; et al. Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem. Senses 2009, 34, 383–394. [Google Scholar] [CrossRef]
- Becher, P.G.; Guerin, P.M. Oriented responses of grapevine moth larvae Lobesia botrana to volatiles from host plants and an artificial diet on a locomotion compensator. J. Insect Physiol. 2009, 55, 384–393. [Google Scholar] [CrossRef]
- Ansebo, L.; Ignell, R.; Löfqvist, J.; Hansson, B.S. Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). J. Insect Physiol. 2005, 51, 1066–1074. [Google Scholar] [CrossRef]
- Ammagarahalli, B.; Gemeno, C. Interference of plant volatiles on pheromone receptor neurons of male Grapholita molesta (Lepidoptera: Tortricidae). J. Insect Physiol. 2015, 81, 118–128. [Google Scholar] [CrossRef]
- Haverkamp, A.; Hansson, B.S.; Knaden, M. Combinatorial codes and labeled lines: how insects use olfactory cues to find and judge food, mates, and oviposition sites in complex environments. Front. Physiol. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tasin, M.; Bäckman, A.-C.; Bengtsson, M.; Ioriatti, C.; Witzgall, P. Essential host plant cues in the grapevine moth. Naturwissenschaften 2006, 93, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Gabel, B.; Thiery, D.; Suchy, V.; Marion-Poll, F.; Hradsky, P.; Farkas, P. Floral volatiles of Tanacetum vulgare L. attractive to Lobesia botrana Den. et Schiff. females. J. Chem. Ecol. 1992, 18, 693–701. [Google Scholar] [CrossRef] [PubMed]
Code | Host Plant | Collection Date | Municipality | Site | WGS84 Coordinates |
---|---|---|---|---|---|
VA | V. vinifera | 14 May 2014 | Arroyo de San Serván | El Calvario | 38.853554, −6.442819 |
VG1 | V. vinifera | 22 May 2014 | Guareña | Sartenillas | 38.887461, −6.148765 |
VG2 | V. vinifera | 22 May 2014 | Guareña | Pozo Calero | 38.895705, −6.137196 |
TA | D. gnidium | 14 May 2014 | Arroyo de San Serván | Dehesa Grajera | 38.860016, −6.436377 |
TJ | D. gnidium | 20 May 2014 | Jaraicejo | La Sarna | 39.668019, −5.794076 |
TM | D. gnidium | 20 May 2014 | Madroñera | Dehesa de la Solana | 39.442581, −5.791424 |
Compound | Abbr | Host | CAS Number | Product Number (Sigma Aldrich) | Lot Number | Purity a (≥ %) |
---|---|---|---|---|---|---|
1-Octen-3-ol | 1OL | V. vinifera | 3391-86-4 | O5284 | PR 03904AQ | 98 |
(E)-4,8-Dimethyl-1,3,7-nonatriene | DMN | V. vinifera | 19945-61-0 | d | ||
(E)-β-farnesene | FAR | V. vinifera | 18794-84-8 | 73492 | 90 | |
2-Ethyl-1-hexanol | 2EH | D. gnidium | 104-76-7 | 04050 | BCBJ9176V | 99 |
Benzothiazole | BEN | D. gnidium | 95-16-9 | W325600 | STBC5100V | 96 |
Ethyl benzanoate | EBZ | D. gnidium | 93-89-0 | W242209 | STBC8296V | 99 |
Linalool oxide b | LOX | D. gnidium | 60047-17-8 | 62141 | BCBM5843V | 97 |
Linalool c | LOL | Both | 78-70-6 | L2602 | STBC9155V | 97 |
Methyl salicylate | MSL | Both | 119-36-8 | d |
A. Pheromone and Plant Stimuli | |||||
Source of Variation | Df | Sum Sq. | Mean Sq. | F | Pr(>F) |
Larval Host-Plant | 1 | 5.2 | 5.20 | 15.1 | 0.00013 |
Odorant | 11 | 53.1 | 4.83 | 14.1 | <2 × 10−16 |
Sex | 1 | 7.0 | 7.03 | 20.4 | 9.6 × 10−6 |
Odorant * Sex | 11 | 83.5 | 7.59 | 22.1 | <2 × 10−16 |
Residuals | 239 | 82.1 | 0.34 | ||
B. Plant Stimuli | |||||
Source of Variation | Df | Sum Sq. | Mean Sq. | F | Pr(>F) |
Larval Host-Plant | 1 | 5.3 | 5.33 | 13.78 | 0.00027 |
Plant Odorant | 8 | 26.7 | 3.34 | 8.64 | 5.3 × 10−10 |
Sex | 1 | 3.1 | 3.15 | 8.13 | 0.00483 |
Residuals | 187 | 72.3 | 0.39 | ||
C. Pheromone Stimuli | |||||
Source of Variation | Df | Sum Sq. | Mean Sq. | F | Pr(>F) |
Pheromone Compound | 2 | 26.3 | 13.2 | 66.3 | 6.3 × 10−16 |
Sex | 1 | 70.1 | 70.1 | 353.6 | <2 × 10−16 |
Pheromone Compound * Sex | 2 | 15.1 | 7.5 | 38.0 | 2.1 × 10−11 |
Residuals | 60 | 11.9 | 0.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Aparicio, A.; Torres-Vila, L.M.; Gemeno, C. EAG Responses of Adult Lobesia botrana Males and Females Collected from Vitis vinifera and Daphne gnidium to Larval Host-Plant Volatiles and Sex Pheromone. Insects 2019, 10, 281. https://doi.org/10.3390/insects10090281
Pérez-Aparicio A, Torres-Vila LM, Gemeno C. EAG Responses of Adult Lobesia botrana Males and Females Collected from Vitis vinifera and Daphne gnidium to Larval Host-Plant Volatiles and Sex Pheromone. Insects. 2019; 10(9):281. https://doi.org/10.3390/insects10090281
Chicago/Turabian StylePérez-Aparicio, Alicia, Luis M. Torres-Vila, and César Gemeno. 2019. "EAG Responses of Adult Lobesia botrana Males and Females Collected from Vitis vinifera and Daphne gnidium to Larval Host-Plant Volatiles and Sex Pheromone" Insects 10, no. 9: 281. https://doi.org/10.3390/insects10090281
APA StylePérez-Aparicio, A., Torres-Vila, L. M., & Gemeno, C. (2019). EAG Responses of Adult Lobesia botrana Males and Females Collected from Vitis vinifera and Daphne gnidium to Larval Host-Plant Volatiles and Sex Pheromone. Insects, 10(9), 281. https://doi.org/10.3390/insects10090281