The Bacterium Pantoea ananatis Modifies Behavioral Responses to Sugar Solutions in Honeybees
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Solutions
2.2. Preparation of Honeybees
2.3. Influence of Bacteria and Their Soluble Metabolites on the Responses of Honeybees to Different Sugar Solutions
2.4. Do P. ananatis Bacteria affect Responsiveness Measured at the Proboscis and Consumption?
2.5. Determining Responsiveness to Increasing Sucrose Solutions with or without Bacteria
2.6. Statistical Analysis
3. Results
3.1. Responsiveness of Honeybees to Sugar Solutions Contaminated with Bacteria
3.2. Probability for Drinking of Solutions
3.3. Responsiveness to Increasing Sucrose Concentrations Contaminated with Bacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Losey, J.E.; Vaughan, M. The economic value of ecological services provided by insects. BioScience 2006, 56, 311. [Google Scholar] [CrossRef] [Green Version]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- McArt, S.H.; Koch, H.; Irwin, R.E.; Adler, L.S. Arranging the bouquet of disease: Floral traits and the trans-mission of plant and animal pathogens. Ecol. Lett. 2014, 17, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrode, S.D.; Bosque-Perez, N.A.; Davis, T.S. Insect-borne plant pathogens and their vectors: Ecology, evolution, and complex interactions. Annu. Rev. Entomol. 2018, 63, 169–191. [Google Scholar] [CrossRef] [PubMed]
- Gossard, H.A. The role of insects as carriers of fire blight. Mon. State Hort. Soc. Proc. 1916, 19, 84–90. [Google Scholar]
- Alexandrova, M.; Porrini, C.; Bazzi, C.; Carpana, E.; Bigliardi, M.; Sabatini, A.G. Erwinia amylovora longevity in beehives, beehive products and honeybees. Acta Hortic. 2002, 590, 201–205. [Google Scholar] [CrossRef]
- Jacquemyn, H.; Lenaerts, M.; Tyteca, D.; Lievens, B. Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species. Microbiol. Open 2013, 2, 644–658. [Google Scholar] [CrossRef] [Green Version]
- Serrano, F.B. Bacterial fruitlet brown-rot of pineapple in the Philippines. Phil. J. Sci. 1928, 36, 271–305. [Google Scholar]
- Mergaert, J.; Verdonck, L.; Kersters, K. Transfer of Erwinia ananas (synonym, Erwinia uredovora) and Erwinia stewartii to the Genus Pantoea emend. as Pantoea ananas (Serrano 1928) comb. nov. and Pantoea stewartii (Smith 1898) comb. nov.; respectively, and description of Pantoea stewartii subsp. indologenes subsp. nov. Int. J. Syst. Bacteriol. 1993, 43, 162–173. [Google Scholar] [CrossRef]
- Trüper, H.G.; De’Clari, L. Taxonomic note: Necessary correction of specific epithets formed as substantives (nouns) ‘in apposition’. Int. J. Syst. Bacteriol. 1997, 47, 908–909. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, T.A.; Venter, S.N. Pantoea ananatis: An unconventional plant pathogen. Mol. Plant Pathol. 2009, 10, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.P.; Chao, L.J.; Sun, S.Z.; Zhou, T.C. The ice nucleation active bacteria on poplar trees and their effects on the courses of freezing injury and induction of fungal canker. Sci. Sil. Sin. 1999, 35, 53–57. [Google Scholar]
- Paccola-Meirelles, L.D.; Ferreira, A.S.; Meirelles, W.F.; Marriel, I.E.; Casela, C.R. Detection of a bacterium associated with leafspot disease of maize in Brazil. J. Phytopathol. 2001, 149, 275–279. [Google Scholar] [CrossRef]
- Yazdani, R.; Safaie, N.; Shams-Bakhsh, M. Association of Pantoea ananatis and Pantoea agglomerans with leaf spot disease on ornamental plants of Araceae family. Eur. J. Plant Pathol. 2018, 150, 167–178. [Google Scholar] [CrossRef]
- Goszczynska, T.; Botha, W.J.; Venter, S.N.; Coutinho, T.A. Isolation and identification of the causal agent of brown stalk rot, a new disease of maize in South Africa. Plant Dis. 2007, 91, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Carr, E.A.; Bonasera, J.M.; Zaid, A.M.; Lorbeer, J.W.; Beer, S.V. First report of bulb disease of onion caused by Pantoea ananatis in New York. Plant Dis. 2010, 94, 916. [Google Scholar] [CrossRef]
- Watanabe, K.; Sato, M. Gut colonization by an ice nucleation active bacterium, Erwinia (Pantoea) ananatis reduces the cold hardiness of mulberry pyralid larvae. Cryobiology 1999, 38, 281–289. [Google Scholar] [CrossRef]
- Vantomme, R.; Mergaert, J.; Verdonck, L.; De Ley, J. Antagonistic effect in vitro of Erwinia uredovora LMG 2678 against some other bacteria. J. Phytopathol. 1989, 124, 372–376. [Google Scholar] [CrossRef]
- De Baere, T.; Verhelst, R.; Labit, C.; Verschraegen, G.; Wauter, G.; Claeys, G.; Vaneechoutte, M. Bacteremic infection with Panteoa ananatis. J. Clin. Microbiol. 2004, 42, 4393–4395. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Pérez, S.; Herrera, C.M.; de Vega, C. Zooming-in on floral nectar: A first exploration of nectar-associated bacteria in wild plant communities. FEMS Microbiol. Ecol. 2012, 80, 591–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridman, S.; Izhaki, I.; Gerchman, Y.; Halpern, M. Bacterial communities in floral nectar. Environ. Microbiol. Rep. 2012, 4, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Kido, K.; Adachi, R.; Hasegawa, M.; Yano, K.; Hikichi, Y.; Takeuchi, S.; Atsuchi, T.; Takikawa, Y. Internal fruit rot of netted melon caused by Pantoea ananatis (= Erwinia ananas) in Japan. J. Gen. Plant Pathol. 2008, 74, 302–312. [Google Scholar] [CrossRef]
- Loncaric, I.; Derakhshifar, I.; Oberlerchner, J.T.; Köglberger, H.; Moosbeckhofer, R. Genetic diversity among isolates of Paenibacillus larvae from Austria. J. Invert. Pathol. 2009, 100, 44–46. [Google Scholar] [CrossRef]
- Johnson, K.B.; Stockwell, V.O.; Burgett, D.M.; Sugar, D.; Loper, J.E. Dispersal of Erwinia amylovora and Pseu-domonas fluorescens by honey bees from hives to apple and pearblossoms. Phytopathology 1993, 83, 478–484. [Google Scholar] [CrossRef]
- Vanneste, J.L. Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear. Biocontrol News Inf. 1996, 1, 67–78. [Google Scholar]
- Junker, R.R.; Romeike, T.; Keller, A.; Langen, D. Density-dependent negative responses by bumblebees to bacteria isolated from flowers. Apidologie 2014, 45, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Herrera, C.M.; García, I.M.; Pérez, R. Invisible floral larcenies: Microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology 2008, 89, 2369–2376. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, R.; Page, R.E.; Erber, J. Responsiveness to sucrose affects tactile and olfactory learning in prefor-aging honey bees of two genetic strains. Behav. Brain Res. 2001, 120, 67–73. [Google Scholar] [CrossRef]
- Scheiner, R.; I Abramson, C.; Brodschneider, R.; Crailsheim, K.; Farina, W.M.; Fuchs, S.; Grünewald, B.; Hahshold, S.; Karrer, M.; Koeniger, G.; et al. Standard methods for behavioural studies of Apis mellifera. J. Apic. Res. 2013, 52, 1–58. [Google Scholar] [CrossRef]
- Lindow, S.E. Lack of correlation of in vitro antibiosis with antagonism of ice nucleation active bacteria on leaf surfaces by non-ice nucleation active bacteria. Phytopathology 1982, 78, 444–450. [Google Scholar] [CrossRef]
- Page, R.E.; Erber, J.; Fondrk, M.K. The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J. Comp. Physiol. A 1998, 182, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.A.; Curtis, B.S.; Curtis, W.R. Improving accuracy of cell and chromophore concentration measure-ments using optical density. BMC Biophys. 2013, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheiner, R.; Erber, J.; Page, R.E. Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.). J. Comp. Physiol. A 1999, 185, 1–10. [Google Scholar] [CrossRef]
- Scheiner, R.; Barnert, M.; Erber, J. Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie 2003, 34, 67–72. [Google Scholar] [CrossRef] [Green Version]
- De Brito Sanchez, M.G. Taste perception in honey bees. Chem. Sens. 2011, 36, 675–692. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Carroll, Z.S.; Long, S.C.; Roa-Espinosa, A.; Runge, T. Centrifuge separation effect on bacterial indicator reduction in dairy manure. J. Environ. Manag. 2017, 191, 268–274. [Google Scholar] [CrossRef]
- Pembrey, R.S.; Marshall, K.C.; Schneider, R.P. Cell surface analysis techniques: What do cell preparation protocols do to cell surface properties? Appl. Environ. Microbiol. 1999, 65, 2877–2894. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, R.; Kuritz-Kaiser, A.; Menzel, R.; Erber, J. Sensory responsiveness and the effects of equal subjec-tive rewards on tactile learning and memory of honeybees. Learn. Mem. 2005, 12, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Crawley, M.J. An Introduction Using R; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Maccagnani, B.; Giacomello, F.; Fanti, M.; Gobbin, D.; Maini, S.; Angeli, G. Apis mellifera and Osmia cornuta as carriers for the secondary spread of Bacillus subtilis on apple flowers. Biocontrol 2009, 54, 123–133. [Google Scholar] [CrossRef]
- Mattila, H.R.; Rios, D.; Walker-Sperling, V.E.; Roeselers, G.; Newton, I.L.G. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are ge-netically diverse. PLoS ONE 2012, 7, e32962. [Google Scholar] [CrossRef] [PubMed]
- Vannette, R.L.; Gauthier, M.; Fukami, T. Nectar bacteria, but not yeast, weaken a plant-pollinator mutual-ism. Proc. R. Soc. B 2012, 2, 20122601. [Google Scholar]
- Peters, B.; Türke, M.; Junker, R.R. Epiphytic bacteria on lettuce affect the feeding behavior of an invasive pest slug. Acta Agrobot. 2017, 70, 1708. [Google Scholar] [CrossRef] [Green Version]
- Chirife, J.; Herszage, L.; Joseph, A.; Kohn, E.S. In vitro study of bacterial growth inhibition in concentrated sugar solutions: Microbiological basis for the use of sugar in treating infected wounds. Antimicrob. Agents Chemother. 1983, 23, 766–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haupt, S.S. Antennal sucrose perception in the honey bee (Apis mellifera L.): Behaviour and electrophysiology. J. Comp. Physiol. A 2004, 190, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Canto, A.; Herrera, C.M.; Garcia, I.M.; Perez, R.; Vaz, M. Intra plant variation in nectar traits in Helleborus foetidus (Ranunculaceae) as related to floral phase, environmental conditions and pollinator exposure. Flora 2011, 206, 668–675. [Google Scholar] [CrossRef]
- Robertson, H.M.; Wanner, K.W. The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family. Genome Res. 2006, 16, 1395–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Density × Task | Task | Density | Density at r = 0.5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Data | Solution | Treatment | df | Deviance | p | df | Deviance | p | df | Deviance | p | Nectar | Pollen |
P.a. 30% sucrose | 30 % sucrose | bacteria | 327 | −0.024 | 0.877 | 328 | −0.352 | 0.553 | 329 | −15.909 | <0.001 | 1.28 × 108 | 2.92 × 108 |
P.a. 30% fructose | 30% fructose | bacteria | 267 | −0.079 | 0.779 | 268 | −0.021 | 0.884 | 269 | −20.792 | <0.001 | 1.89 × 107 | 5.15 × 107 |
P.a. 30% glucose | 30% glucose | bacteria | 302 | −1.414 | 0.234 | 303 | −0.089 | 0.765 | 304 | −22.244 | <0.001 | 3.13 × 108 | 4.91 × 107 |
P.a. 3% sucrose | 3% sucrose | bacteria | 287 | −0.005 | 0.941 | 288 | −0.367 | 0.545 | 289 | 24.251 | <0.001 | 3.10 × 107 | 3.53 × 108 |
P.a. metabolites | cell suspension | no bacteria | 327 | −0.946 | 0.331 | 328 | −0.552 | 0.458 | 329 | −1.3074 | 0.253 | 7.41 × 1014 | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheiner, R.; Strauß, S.; Thamm, M.; Farré-Armengol, G.; Junker, R.R. The Bacterium Pantoea ananatis Modifies Behavioral Responses to Sugar Solutions in Honeybees. Insects 2020, 11, 692. https://doi.org/10.3390/insects11100692
Scheiner R, Strauß S, Thamm M, Farré-Armengol G, Junker RR. The Bacterium Pantoea ananatis Modifies Behavioral Responses to Sugar Solutions in Honeybees. Insects. 2020; 11(10):692. https://doi.org/10.3390/insects11100692
Chicago/Turabian StyleScheiner, Ricarda, Sina Strauß, Markus Thamm, Gerard Farré-Armengol, and Robert R. Junker. 2020. "The Bacterium Pantoea ananatis Modifies Behavioral Responses to Sugar Solutions in Honeybees" Insects 11, no. 10: 692. https://doi.org/10.3390/insects11100692
APA StyleScheiner, R., Strauß, S., Thamm, M., Farré-Armengol, G., & Junker, R. R. (2020). The Bacterium Pantoea ananatis Modifies Behavioral Responses to Sugar Solutions in Honeybees. Insects, 11(10), 692. https://doi.org/10.3390/insects11100692