Metarhizium Anisopliae Challenges Immunity and Demography of Plutella xylostella
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect and Fungi Culture
2.2. Screening of Entomopathogenic Fungi
2.3. Isolate Selection
2.4. Experimental Validation of Lethal (LC50) and Sublethal (LC20) Concentrations
2.5. Entomopathogenic Fungi Effect on Hemocyte Concentration of P. xylostella
2.6. PO and SOD Activity in P. xylostella Larvae
2.7. Effect of M. anisopliae on the Expression of Immune-Related Genes in P. xylostella
2.8. Effects of Lethal Concentration of M. anisopliae on Biological Parameters of P. xylostella
2.9. Statistical Analysis
3. Results
3.1. Screening of Entomopathogenic Fungi
3.2. Selection of Entomopathogenic Fungi
3.3. Experimental Validation of Lethal (LC50) and Sublethal (LC20) Concentrations of M. anisopliae
3.4. Effects of M. anisopliae on Hemocyte Concentration of P. xylostella
3.5. Effects of M. anisopliae (LC50) on the Activity of PO and SOD in Larvae of P. xylostella
3.6. Effect of Lethal Concentration of M. anisopliae on Immune Genes of P. xylostella
3.7. The Lethal Concentration of M. anisopliae Affects the Biological Parameters of P. xylostella
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Freed, S.; Feng Liang, J.; Shun Xiang, R. Intraspecific Variability among the Isolates of Metarhizium anisopliae var. anisopliae by RAPD Markers. Int. J. Agric. Biol. 2014, 16, 899–904. [Google Scholar]
- Shoukat, R.F.; Hassan, B.; Shakeel, M.; Zafar, J.; Li, S.; Freed, S.; Xu, X.; Jin, F. Pathogenicity and Transgenerational Effects of Metarhizium anisopliae on the Demographic Parameters of Aedes albopictus (Culicidae: Diptera). J. Med. Entomol. 2020, 57, 677–685. [Google Scholar] [PubMed]
- Shoukat, R.F.; Freed, S.; Ahmad, K.W. Evaluation of binary mixtures of entomogenous fungi and botanicals on biological parameters of Culex pipiens (Diptera: Culicidae) under laboratory and field conditions. Int. J. Mosq. Res. 2016, 3, 17–24. [Google Scholar]
- Shoukat, R.F.; Freed, S.; Ahmad, K.W.; Rehman, A.-U. Assessment of Binary Mixtures of Entomopathogenic Fungi and Chemical Insecticides on Biological Parameters of Culex pipiens (Diptera: Culicidae) under Laboratory and Field Conditions. Pak. J. Zool. 2018, 50, 299–309. [Google Scholar] [CrossRef]
- Zafar, J.; Freed, S.; Khan, B.A.; Farooq, M. Effectiveness of Beauveria bassiana Against Cotton Whitefly, Bemisia tabaci (Gennadius) (Aleyrodidae: Homoptera) on Different Host Plants. Pak. J. Zool. 2016, 48, 91–99. [Google Scholar]
- Khan, B.A.; Freed, S.; Zafar, J.; Farooq, M.; Shoukat, R.F.; Ahmad, K.W.; Li, S.; Zhang, Y.; Hua, Y.; Shoukat, R.F. Efficacy of different entomopathogenic fungi on biological parameters of pulse beetle Callosobruchus chinensis L. (Coleoptera: Bruchidae). J. Entomol. Zool. Stud. 2018, 6, 1972–1976. [Google Scholar]
- Khan, B.A.; Freed, S.; Zafar, J.; Farooq, M. Evaluation of three different insect pathogenic fungi for the control of Dysdercus koenigii and Oxycarenus hyalinipennis. Pak. J. Zool 2014, 46, 1759–1766. [Google Scholar]
- Duarte, R.; Gonçalves, K.; Espinosa, D.; Moreira, L.; De Bortoli, S.; Humber, R.; Polanczyk, R. Potential of entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae) and compatibility with chemical insecticides. J. Econ. Entomol. 2016, 109, 594–601. [Google Scholar]
- Rizvi, S.A.H.; Xie, F.; Ling, S.; Zeng, X. Development and evaluation of emulsifiable concentrate formulation containing Sophora alopecuroides L. extract for the novel management of Asian citrus psyllid. Environ. Sci. Pollut. Res. 2019, 21, 21871–21881. [Google Scholar] [CrossRef]
- Shoukat, R.F.; Zafar, J.; Shakeel, M.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Assessment of Lethal, Sublethal, and Transgenerational Effects of Beauveria Bassiana on the Demography of Aedes Albopictus (Culicidae: Diptera). Insects 2020, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Shoukat, R.F.; Shakeel, M.; Rizvi, S.A.H.; Zafar, J.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Larvicidal, Ovicidal, Synergistic, and Repellent Activities of Sophora alopecuroides and Its Dominant Constituents Against Aedes albopictus. Insects 2020, 11, 246. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Relyea, R.; Hoverman, J. Assessing the ecology in ecotoxicology: A review and synthesis in freshwater systems. Ecol. Lett. 2006, 9, 1157–1171. [Google Scholar] [PubMed]
- Sukumar, K.; Perich, M.J.; Boobar, L.R. Botanical derivatives in mosquito control: A review. J. Am. Mosq. Control Assoc. 1991, 7, 210–237. [Google Scholar] [PubMed]
- Thomas, M.B.; Read, A.F. Can fungal biopesticides control malaria? Nat. Rev. Microbiol. 2007, 5, 377. [Google Scholar] [PubMed]
- Zimmermann, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Saeed, M.; Nawaz, A.; Usman, M.; Shoukat, R.F.; Li, S.; Zhang, Y.; Zeng, L.; Zafar, J.; Akash, A. Monitoring of quantitative and qualitative losses by lepidopteran, and homopteran pests in different crop production systems of Brassica oleracea L. J. Entomol. Zool. Stud. 2018, 6, 6–12. [Google Scholar]
- Malik, S.U.; Zia, K.; Ajmal, M.; Shoukat, R.F.; Li, S.; Saeed, M.; Zafar, J.; Shoukat, R.F. Comparative efficacy of different insecticides and estimation of yield losses on BT and non-BT cotton for thrips, red cotton bug, and dusky cotton bug. J. Entomol. Zool. Stud. 2018, 6, 505–512. [Google Scholar]
- Saeed, M.; Shoukat, R.F.; Zafar, J. Population dynamics of natural enemies and insect pest in different Brassica oleracea (cabbage) growing seasons with different production systems. J. Entomol. Zool. Stud. 2017, 5, 1669–1674. [Google Scholar]
- Sarfraz, M.; Keddie, A.B.; Dosdall, L.M. Biological control of the diamondback moth, Plutella xylostella: A review. Biocontrol Sci. Technol. 2005, 15, 763–789. [Google Scholar]
- Zhang, S.; Zhang, X.; Shen, J.; Li, D.; Wan, H.; You, H.; Li, J. Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth, Plutella xylostella. Pestic. Biochem. Physiol. 2017, 140, 85–89. [Google Scholar] [PubMed]
- Ashfaq, M.; Sonoda, S.; Tsumuki, H. Expression of two methionine-rich storage protein genes of Plutella xylostella (L.) in response to development, juvenile hormone-analog and pyrethroid. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2007, 148, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Niu, H.; Xiao, T.; Xue, C.; Liu, Z.; Luo, W. Does phenoloxidase contributed to the resistance? Selection with butane-fipronil enhanced its activities from diamondback moths. Open Biochem. J. 2009, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.W.; Freed, S.; Shoukat, R.F. Efficacy of entomopathogenic fungi and botanicals on development of Musca domestica. J. Entomol. Zool. Stud. 2017, 5, 593–599. [Google Scholar]
- Farooq, M.; Freed, S. Mortality, Biological, and Biochemical Response of Musca domestica (Diptera: Muscidae) to Selected Insecticides 1. J. Entomol. Sci. 2018, 53, 27–45. [Google Scholar] [CrossRef]
- Farooq, M.; Freed, S. Insecticidal activity of toxic crude proteins secreted by entomopathogenic fungi against musca domestica l. (Diptera: Muscidae). Kuwait J. Sci. 2018, 45, 64–74. [Google Scholar]
- Farooq, M.; Steenberg, T.; Castberg, D.; Freed, S.; Kristensen, M. Impact of sequential exposure of Beauveria bassiana and imidacloprid against susceptible and resistant strains of Musca domestica. BioControl 2018, 63, 703–718. [Google Scholar] [CrossRef]
- Freed, S.; Farooq, M. Entomopatojen fungus ve sentetik insektisit karışımlarının Musca domestica L.’nın biyolojik dönemleri üzerinde lethal ve sublethal etkileri. Türkiye Entomoloji Derg. 2016, 40, 211–225. [Google Scholar]
- Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar]
- Fite, T.; Tefera, T.; Negeri, M.; Damte, T.; Sori, W. Evaluation of Beauveria bassiana, Metarhizium anisopliae, and Bacillus thuringiensis for the management of Helicoverpa armigera (Hubner)(Lepidoptera: Noctuidae) under laboratory and field conditions. Biocontrol Sci. Technol. 2020, 30, 278–295. [Google Scholar]
- Freed, S.; Saleem, M.A.; Khan, M.; Naeem, M. Prevalence and effectiveness of Metarhizium anisopliae against Spodoptera exigua (Lepidoptera: Noctuidae) in southern Punjab, Pakistan. Pak. J. Zool. 2012, 44, 753. [Google Scholar]
- Lu, H.-L.; Leger, R.S. Insect immunity to entomopathogenic fungi. In Advances in Genetics; Elsevier: Amsterdam, The Netherlands, 2016; Volume 94, pp. 251–285. [Google Scholar]
- Butt, T.M.; Greenfield, B.P.J.; Greig, C.; Maffeis, T.G.G.; Taylor, J.W.D.; Piasecka, J.; Dudley, E.; Abdulla, A.; Dubovskiy, I.M.; Garrido-Jurado, I.; et al. Metarhizium anisopliae Pathogenesis of Mosquito Larvae: A Verdict of Accidental Death. PLoS ONE 2013, 8, e81686. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Xu, X.; Shakeel, M.; Li, S.; Wang, S.; Zhou, X.; Yu, J.; Xu, X.; Yu, X.; Jin, F. The entomopathogenic fungi Isaria fumosorosea plays a vital role in suppressing the immune system of Plutella xylostella: RNA-Seq and DGE analysis of immunity-related genes. Front. Microbiol. 2017, 8, 1421. [Google Scholar] [PubMed] [Green Version]
- Peng, G.; Jin, K.; Liu, Y.; Xia, Y. Enhancing the utilization of host trehalose by fungal trehalase improves the virulence of fungal insecticide. Appl. Microbiol. Biotechnol. 2015, 99, 8611–8618. [Google Scholar]
- Broxton, C.N.; Culotta, V.C. SOD enzymes and microbial pathogens: Surviving the oxidative storm of infection. PLoS Pathog. 2016, 12, e1005295. [Google Scholar] [CrossRef] [Green Version]
- Robinett, N.G.; Peterson, R.L.; Culotta, V.C. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J. Biol. Chem. 2018, 293, 4636–4643. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Yang, B.; Wang, J.; Luo, Y.; Ni, Y.; Huang, W. Detection of Enzyme Distribution, Expression, Activation, and Activity of Insect Prophenoloxidase. In Immunity in Insects; Springer: Berlin/Heidelberg, Germany, 2020; pp. 115–126. [Google Scholar]
- González-Rete, B.; Salazar-Schettino, P.M.; Bucio-Torres, M.I.; Córdoba-Aguilar, A.; Cabrera-Bravo, M. Activity of the prophenoloxidase system and survival of triatomines infected with different Trypanosoma cruzi strains under different temperatures: Understanding Chagas disease in the face of climate change. Parasites Vectors 2019, 12, 219. [Google Scholar]
- Butt, T.; Ibrahim, L.; Ball, B.; Clark, S. Pathogenicity of the entomogenous fungi Metarhizium anisopliae and Beauveria bassiana against crucifer pests and the honey bee. Biocontrol Sci. Technol. 1994, 4, 207–214. [Google Scholar] [CrossRef]
- Darbro, J.M.; Thomas, M.B. Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. Am. J. Trop. Med. Hyg. 2009, 80, 992–997. [Google Scholar] [CrossRef]
- Scholte, E.-J.; Knols, B.G.; Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 2006, 91, 43–49. [Google Scholar] [CrossRef]
- Scholte, E.-J.; Takken, W.; Knols, B.G. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop. 2007, 102, 151–158. [Google Scholar]
- Ibrahim, A.M.; Kim, Y. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. J. Insect Physiol. 2006, 52, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, X.; Zheng, Z.; Zheng, J.; Shakeel, M.; Jin, F. MicroRNA expression profiling of Plutella xylostella after challenge with B. thuringiensis. Dev. Comp. Immunol. 2019, 93, 115–124. [Google Scholar] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golizadeh, A.; Kamali, K.; Fathipour, Y.; Abbasipour, H. Life table of the diamondback moth, Plutella xylostella (L.)(Lepidoptera: Plutellidae) on five cultivated brassicaceous host plants. J. Econ. Entomol. 2009, 112, 932–938. [Google Scholar]
- Ai, C.; Norton, E.C. Interaction terms in logit and probit models. Econ. Lett. 2003, 80, 123–129. [Google Scholar] [CrossRef]
- Abbott, W. Abbott’s formula. J. Econ. Entomol. 1925, 18, 267–268. [Google Scholar]
- Abbott, W. A method of computing the effectiveness of an insecticide. J. Am. Mosq. Control Assoc. (USA) 1987, 3, 302–303. [Google Scholar]
- LeOra Software LLC. Poloplus, A User’s Guide to Probit or Logit Analysis; LeOra Software LLC: Berkeley, CA, USA, 2003. [Google Scholar]
- Statistical Analysis System Institute. SAS/STAT User’s Guide: Statistics, version 8.1; Statistical Analysis System Institute: Cary, NC, USA, 2000. [Google Scholar]
- Liu, X.; Wang, H.-Y.; Ning, Y.-B.; Qiao, K.; Wang, K.-Y. Resistance selection and characterization of chlorantraniliprole resistance in Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 2015, 108, 1978–1985. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Aw, K.M.S.; Hue, S.M. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. J. Fungi 2017, 3, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozilawati, H.; Masri, M.; Tanaselvi, K.; TH, M.Z.; Zairi, J.; Nazni, W.; Lee, H. Life Table Characteristics of Malaysian Strain Aedes albopictus (Skuse). Serangga 2018, 22, 85–121. [Google Scholar]
- O’Brien, D.; McVey, J. Blood Coagulation, Inflammation, and Defense; The Natural Immune System, Humoral Factors; IRL Press: New York, NY, USA, 1993; pp. 257–280. [Google Scholar]
- Wang, C.; Leger, R.J.S. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 6647–6652. [Google Scholar]
- Huang, S.; He, Z.; Zhang, S.; Keyhani, N.O.; Song, Y.; Yang, Z.; Jiang, Y.; Zhang, W.; Pei, Y.; Zhang, Y. Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana. Fungal Genet. Biol. 2015, 83, 78–91. [Google Scholar]
- Strand, M.R. The insect cellular immune response. Insect Sci. 2008, 15, 1–14. [Google Scholar]
- Kwon, B.; Kim, Y. Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 2008, 32, 932–942. [Google Scholar]
- Fiorotti, J.; Menna-Barreto, R.F.S.; Gôlo, P.S.; Coutinho-Rodrigues, C.J.B.; Bitencourt, R.O.B.; Spadacci-Morena, D.D.; Angelo, I.d.C.; Bittencourt, V.R.E.P. Ultrastructural and cytotoxic effects of Metarhizium robertsii infection on Rhipicephalus microplus hemocytes. Front. Physiol. 2019, 10, 654. [Google Scholar]
- Cao, G.; Jia, M.; Zhao, X.; Wang, L.; Tu, X.; Wang, G.; Nong, X.; Zhang, Z. Correction: Different Effects of Metarhizium anisopliae Strains IMI330189 and IBC200614 on Enzymes Activities and Hemocytes of Locusta migratoria L. PLoS ONE 2017, 12, e0175219. [Google Scholar] [CrossRef] [Green Version]
- Samson, R.A.; Evans, H.C.; Latgé, J.-P. Atlas of Entomopathogenic Fungi; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Yu, Y.; Cao, Y.; Xia, Y.; Liu, F. Wright–Giemsa staining to observe phagocytes in Locusta migratoria infected with Metarhizium acridum. J. Invertebr. Pathol. 2016, 139, 19–24. [Google Scholar] [CrossRef]
- Cerenius, L.; Lee, B.L.; Söderhäll, K. The proPO-system: Pros and cons for its role in invertebrate immunity. Trends Immunol. 2008, 29, 263–271. [Google Scholar] [PubMed]
- Cerenius, L.; Söderhäll, K. The prophenoloxidase-activating system in invertebrates. Immunol. Rev. 2004, 198, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Rahmawaty, A.; Chang, Z.-W. Molecular and immunological responses of the giant freshwater prawn, Macrobrachium rosenbergii, to the organophosphorus insecticide, trichlorfon. Aquat. Toxicol. 2013, 130, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Peng, Y.; Ye, J.; Wen, Y.; Liu, G.; Xie, J. Effects of the Entomopathogenic Fungus Metarhizium anisopliae on the Mortality and Immune Response of Locusta migratoria. Insects 2020, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, H.; Hao, C.; Zhang, X. Effects of Isaria fumosorosea infection on different enzyme activities in the larvae of Plutella xylostella. Mycosystema 2013, 32, 269–276. [Google Scholar]
- Keppanan, R.; Krutmuang, P.; Sivaperumal, S.; Hussain, M.; Bamisile, B.S.; Aguila, L.C.R.; Dash, C.K.; Wang, L. Synthesis of mycotoxin protein IF8 by the entomopathogenic fungus Isaria fumosorosea and its toxic effect against adult Diaphorina citri. Int. J. Biol. Macromol. 2019, 125, 1203–1211. [Google Scholar]
- Alves, S.; Alves, L.; Lopes, R.; Pereira, R.; Vieira, S. Potential of some Metarhizium anisopliae isolates for control of Culex quinquefasciatus (Dipt., Culicidae). J. Appl. Entomol. 2002, 126, 504–509. [Google Scholar]
- Leles, R.N.; D’Alessandro, W.B.; Luz, C. Effects of Metarhizium anisopliae conidia mixed with soil against the eggs of Aedes aegypti. Parasitol. Res. 2012, 110, 1579–1582. [Google Scholar] [CrossRef]
- Luz, C.; Tai, M.; Santos, A.; Rocha, L.; Albernaz, D.; Silva, H. Ovicidal activity of entomopathogenic hyphomycetes on Aedes aegypti (Diptera: Culicidae) under laboratory conditions. J. Med. Entomol. 2007, 44, 799–804. [Google Scholar] [CrossRef]
- Mousseau, T.A.; Dingle, H. Maternal Effects in Insect Life Histories. Annu. Rev. Entomol. 1991, 36, 511–534. [Google Scholar] [CrossRef]
- Jin, K.; Peng, G.; Liu, Y.; Xia, Y. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genet. Biol. 2015, 77, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Malarvannan, S.; Murali, P.; Shanthakumar, S.; Prabavathy, V.; Nair, S. Laboratory evaluation of the entomopathogenic fungi, Beauveria bassiana against the Tobacco caterpillar, Spodoptera litura Fabricius (Noctuidae: Lepidoptera). J. Biopestic. 2010, 3, 126. [Google Scholar]
- Darbro, J.M.; Johnson, P.H.; Thomas, M.B.; Ritchie, S.A.; Kay, B.H.; Ryan, P.A. Effects of Beauveria bassiana on survival, blood-feeding success, and fecundity of Aedes aegypti in laboratory and semi-field conditions. Am. J. Trop. Med. Hyg. 2012, 86, 656–664. [Google Scholar] [PubMed] [Green Version]
- Howard, A.F.; N’Guessan, R.; Koenraadt, C.J.; Asidi, A.; Farenhorst, M.; Akogbéto, M.; Thomas, M.B.; Knols, B.G.; Takken, W. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide-resistant Culex quinquefasciatus mosquitoes in Benin, West Africa. Parasites Vectors 2010, 3, 87. [Google Scholar] [CrossRef] [Green Version]
- de Paula, A.R.; Brito, E.S.; Pereira, C.R.; Carrera, M.P.; Samuels, R.I. Susceptibility of adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: Prospects for Dengue vector control. Biocontrol Sci. Technol. 2008, 18, 1017–1025. [Google Scholar]
Fungi | Source | Location (Pakistan) | Coordinates |
---|---|---|---|
Metarhizium anisopliae | Soil | Multan, Punjab | 30°05′11.65″ N 71°39′15.65″ E |
Beauveria bassiana | Soil | Multan, Punjab | 30°05′11.65″ N 71°39′15.65″ E |
Isaria fumosorosea | Soil | Multan, Punjab, | 30°05′11.65″ N 71°39′15.65″ E |
Fungi | LC50 | LC20 | Slop ± SE | χ2 | p-Value | df |
---|---|---|---|---|---|---|
Metarhizium anisopliae | 6.2 × 104 | 2.3 × 102 | 0.29 ± 0.044 | 2.1 | 0.001 | 4 |
Beauveria bassiana | 9.3 × 105 | 3.1 × 103 | 0.38 ± 0.044 | 1.1 | 0.003 | 4 |
Isaria fumosorosea | 7.9 × 106 | 4.6 × 104 | 0.42 ± 0.046 | 1.8 | 0.002 | 4 |
Parameters | M. anisopliae (LC50) | Control |
---|---|---|
Means ± SE | Means ± SE | |
Mortality (%) | 51.34 ± 1.25 a | 5.4 ± 0.10 b |
L3 (days) | 1.10 ± 0.21 b | 2.14 ± 0.17 a |
L4 (days) | 1.72 ± 0.11 b | 2.59 ± 0.12 a |
Percent pupation | 64.21 ± 2.46 b | 93.51 ± 3.11 a |
Pupal duration (days) | 5.22 ± 0.71 a | 3.80 ± 0.27 b |
Adult emergence (%) | 61.47 ± 3.41 b | 92.11 ± 3.57 a |
Female longevity (days) | 6.87 ± 0.98 b | 10.11 ± 1.98 a |
Male longevity (days) | 8.11 ± 1.27 b | 12.38 ± 2.8 a |
Sex ratio (M:F) | 1:2 ns | 1:2 ns |
APOP | 1.92 ± 0.04 ns | 1.01 ± 0.07 ns |
Fecundity (eggs/female) | 101.55 ± 2.54 b | 192.55 ± 3.21 a |
Egg hatching (%) | 60.2 ± 3.44 b | 94.22 ± 2.98 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, J.; Shoukat, R.F.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Metarhizium Anisopliae Challenges Immunity and Demography of Plutella xylostella. Insects 2020, 11, 694. https://doi.org/10.3390/insects11100694
Zafar J, Shoukat RF, Zhang Y, Freed S, Xu X, Jin F. Metarhizium Anisopliae Challenges Immunity and Demography of Plutella xylostella. Insects. 2020; 11(10):694. https://doi.org/10.3390/insects11100694
Chicago/Turabian StyleZafar, Junaid, Rana Fartab Shoukat, Yuxin Zhang, Shoaib Freed, Xiaoxia Xu, and Fengliang Jin. 2020. "Metarhizium Anisopliae Challenges Immunity and Demography of Plutella xylostella" Insects 11, no. 10: 694. https://doi.org/10.3390/insects11100694
APA StyleZafar, J., Shoukat, R. F., Zhang, Y., Freed, S., Xu, X., & Jin, F. (2020). Metarhizium Anisopliae Challenges Immunity and Demography of Plutella xylostella. Insects, 11(10), 694. https://doi.org/10.3390/insects11100694