Data on Herbivore Performance and Plant Herbivore Damage Identify the Same Plant Traits as the Key Drivers of Plant–Herbivore Interaction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Plant Species and Study Localities
2.2. Herbivore Used for the Experiment
2.3. Experimental Design
2.4. Plant Traits
2.5. Plant Damage
2.6. Data Analyses
2.6.1. Plant Traits
2.6.2. Correlation Among the Dependent Variables
2.6.3. Determinants of Survival and Growth of S. littoralis and Leaf Damage
2.6.4. Importance of Phylogenetic Relationships
3. Results
3.1. Correlation among the Dependent Variables
3.2. Determinants of Survival and Growth of S. littoralis
3.3. Determinants of Leaf Damage
3.4. Effects of Phylogeny
4. Discussion
4.1. Determinants of Survival and Growth of S. littoralis
4.2. Determinants of Leaf Damage
4.3. Correspondence between Determinants of Herbivore Performance and Plant Damage
4.4. Effects of Phylogeny
4.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Futuyma, D.; Mitter, C. Insect-plant interactions: The evolution of component communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 1361–1366. [Google Scholar]
- Ehrlén, J.; Münzbergová, Z. Timing of flowering: Opposed selection on different fitness components and trait covariation. Am. Nat. 2009, 173, 819–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvanitis, L.; Wiklund, C.; Münzbergová, Z.; Dahlgren, J.P.; Ehrlen, J. Novel antagonistic interactions associated with plant polyploidization influence trait selection and habitat preference. Ecol. Lett. 2010, 13, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Erb, M. Plant defenses against herbivory: Closing the fitness gap. Trends Plant Sci. 2018, 23, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.A. Plant defense and density dependence in the population growth of herbivores. Am. Nat. 2004, 164, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travers-Martin, N.; Muller, C. Matching plant defence syndromes with performance and preference of a specialist herbivore. Funct. Ecol. 2008, 22, 1033–1043. [Google Scholar] [CrossRef]
- Ruhnke, H.; Schadler, M.; Klotz, S.; Matthies, D.; Brandl, R. Variability in leaf traits, insect herbivory and herbivore performance within and among individuals of four broad-leaved tree species. Basic Appl. Ecol. 2009, 10, 726–736. [Google Scholar] [CrossRef]
- Tomas, F.; Abbott, J.; Steinberg, C.; Balk, M.; Williams, S.; Stachowicz, J. Plant genotype and nitrogen loading influence seagrass productivity, biochemistry, and plant-herbivore interactions. Ecology 2011, 92, 1807–1817. [Google Scholar] [CrossRef]
- Holeski, L.; Hillstrom, M.; Whitham, T.; Lindroth, R. Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia 2012, 170, 695–707. [Google Scholar] [CrossRef]
- Whitfeld, T.J.S.; Novotny, V.; Miller, S.E.; Hrcek, J.; Klimes, P.; Weiblen, G.D. Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology 2012, 93, S211–S222. [Google Scholar] [CrossRef]
- Loranger, J.; Meyer, S.T.; Shipley, B.; Kattge, J.; Loranger, H.; Roscher, C.; Weisser, W.W. Predicting invertebrate herbivory from plant traits: Evidence from 51 grassland species in experimental monocultures. Ecology 2012, 93, 2674–2682. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.A.; Kearney, E.E.; Hastings, A.P.; Ramsey, T.E. Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca). J. Chem. Ecol. 2012, 38, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, E.P.; Hjalten, J. Tolerance and growth responses of populus hybrids and their genetically modified varieties to simulated leaf damage and harvest. Forest Ecol. Manag. 2012, 276, 217–223. [Google Scholar] [CrossRef]
- Mooney, E.H.; Niesenbaum, R.A. Population-specific responses to light influence herbivory in the understory shrub Lindera benzoin. Ecology 2012, 93, 2683–2692. [Google Scholar] [CrossRef]
- Kempel, A.; Schadler, M.; Chrobock, T.; Fischer, M.; van Kleunen, M. Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc. Natl. Acad. Sci. USA 2011, 108, 5685–5689. [Google Scholar] [CrossRef] [Green Version]
- Schaffler, I.; Balao, F.; Dotterl, S. Floral and vegetative cues in oil-secreting and non-oil-secreting Lysimachia species. Ann. Bot. 2012, 110, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.G.; Keeler, K.H. The phylogenetic distribution of extrafloral nectaries in plants. Ann. Bot. 2013, 111, 1251–1261. [Google Scholar] [CrossRef] [Green Version]
- Becerra, J.X. Synchronous coadaptation in an ancient case of herbivory. Proc. Natl. Acad. Sci. USA 2012, 100, 12804–12807. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.A.; Fishbein, M.; Halitschke, R.; Hastings, A.P.; Rabosky, D.L.; Rasmann, S. Evidence for adaptive radiation from a phylogenetic study of plant defenses. Proc. Natl. Acad. Sci. USA 2009, 106, 18067–18072. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.A. Current trends in the evolutionary ecology of plant defence. Funct. Ecol. 2011, 25, 420–432. [Google Scholar] [CrossRef]
- Kirk, H.; Vrieling, K.; Pelser, P.; Schaffner, U. Can plant resistance to specialist herbivores be explained by plant chemistry or resource use strategy? Oecologia 2012, 168, 1043–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, M.G.; Agrawal, A.A. Phylogeny, ecology, and the coupling of comparative and experimental approaches. Trends Ecol. Evol. 2012, 27, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.G.; Clement, W.L.; Donoghue, M.J.; Agrawal, A.A. Phylogenetic and experimental tests of interactions among mutualistic plant defense traits in Viburnum (Adoxaceae). Am. Nat. 2012, 180, 450–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Münzbergová, Z.; Skuhrovec, J. Effect of habitat conditions and plant traits on leaf damage in the Carduoideae subfamily. PLoS ONE 2013, 8, e64639. [Google Scholar] [CrossRef] [Green Version]
- Kuglerová, M.; Skuhrovec, J.; Münzbergová, Z. Relative importance of drought, soil quality, and plant species in determining the strength of plant–herbivore interactions. Ecol. Entomol. 2019, 44, 665–677. [Google Scholar] [CrossRef]
- Redfern, M. Insects and Thistles. Naturalists’ Handbooks 4; The Richmond Publishing Co. Ltd.: Slough, UK, 1995. [Google Scholar]
- Münzbergová, Z. Determinants of species rarity: Population growth rates of species sharing the same habitat. Am. J. Bot. 2005, 92, 1987–1994. [Google Scholar] [CrossRef]
- Patočka, J.; Kulfan, J. Lepidoptera of Slovakia (Bionomics and Ecology); Veda: Bratislava, Slovakia, 2009. [Google Scholar]
- Abela-Hofbauerová, I.; Münzbergová, Z.; Skuhrovec, J. The effect of different natural enemies on the performance of Cirsium arvense in its native range. Weed Res. 2011, 51, 394–403. [Google Scholar] [CrossRef]
- Louda, S.M.; Potvin, M.A. Effect of inflorescence-feeding insects on the demography and lifetime fitness of a native plant. Ecology 1995, 76, 229–245. [Google Scholar] [CrossRef]
- Eckberg, J.O.; Tenhumberg, B.; Louda, S.M. Insect herbivory and propagule pressure influence Cirsium vulgare invasiveness across the landscape. Ecology 2012, 93, 1787–1794. [Google Scholar] [CrossRef] [Green Version]
- Van Zandt, P.A. Plant defense, growth, and habitat: A comparative assessment of constitutive and induced resistance. Ecology 2007, 88, 1984–1993. [Google Scholar] [CrossRef]
- Borzak, C.L.; Potts, B.M.; Davies, N.W.; O’Reilly-Wapstra, J.M. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species. Ann. Bot. 2016, 115, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanley, M.E.; Shannon, R.W.R.; Lemoine, D.G.; Sandey, B.; Newland, P.L.; Poppy, G.M. Riding on the wind: Volatile compounds dictate selection of grassland seedlings by snails. Ann. Bot. 2018, 122, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Carmona, D.; Lajeunesse, M.J.; Johnson, M.T.J. Plant traits that predict resistance to herbivores. Funct. Ecol. 2011, 25, 358–367. [Google Scholar] [CrossRef]
- Münzbergová, Z.; Skuhrovec, J.; Maršík, P. Large differences in the composition of herbivore communities and seed damage in diploid and autotetraploid plant species. Biol. J. Linn. Soc. 2015, 115, 270–287. [Google Scholar] [CrossRef] [Green Version]
- Münzbergová, Z.; Skuhrovec, J. Contrasting effects of ploidy level on seed production in a diploid-tetraploid system. AoB Plants 2017, 9, plw077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.; Dewhurst, C. Genus Spodoptera (Lepidoptera, Noctuidae) in Africa and Near East. Bull. Entomol. Res. 1975, 65, 221–262. [Google Scholar] [CrossRef]
- Dostálek, T.; Rokaya, M.B.; Maršík, P.; Rezek, J.; Skuhrovec, J.; Pavela, R.; Münzbergová, Z. Trade-off among different anti-herbivore defence strategies along an altitudinal gradient. AoB Plants 2016, 8, plw026. [Google Scholar] [CrossRef] [Green Version]
- Macel, M.; Dostálek, T.; Esch, S.; Bucharová, A.; van Dam, N.M.; Tielboerger, K.; Verhoeven, K.J.F.; Münzbergová, Z. Evolutionary responses to climate change in a range expanding plant. Oecologia 2017, 184, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Hanley, M.E.; Lamont, B.B.; Fairbanks, M.M.; Rafferty, C.M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. Evol. Syst. 2007, 8, 157–178. [Google Scholar] [CrossRef]
- Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 1998, 199, 213–227. [Google Scholar] [CrossRef]
- Scriber, J.M.; Slansky, F. The nutritional ecology of immature insects. Annu. Rev. Entomol. 1981, 26, 183–211. [Google Scholar] [CrossRef]
- Fei, M.H.; Gols, R.; Zhu, F.; Harvey, J.A. Plant quantity affects development and survival of a gregarious insect herbivore and its endoparasitoid wasp. PLoS ONE 2016, 11, e0149539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsuffi, T.; Suberkropp, K. Leaf processing capabilities of aquatic hyphomycetes—Interspecific differences and influence on shredder feeding preference. Oikos 1984, 42, 144–154. [Google Scholar] [CrossRef]
- Graça, M.; Zimmer, M. Chapter 18 Leaf toughness. In Methods to Study Litter Decomposition; Graça, M., Bärlocher, F., Gessner, M., Eds.; Springer: Dodrecht, The Netherlands, 2005; pp. 121–126. [Google Scholar]
- Dirzo, R. Experimental studies on slug-plant interactions. 1. The acceptability of 30 plant species to the slug Agriolimax caruanae. J. Ecol. 1980, 68, 981–998. [Google Scholar] [CrossRef]
- Coley, P.D. Interspecific variation in plant anti-herbivore properties—The role of habitat quality and rate of disturbance. New Phytol. 1987, 106, 251–263. [Google Scholar] [CrossRef]
- Knappová, J.; Židlická, D.; Kadlec, T.; Knapp, M.; Haisel, D.; Hadincová, V.; Münzbergová, Z. Population differentiation related to climate of origin affects the intensity of plant-herbivore interactions in a clonal grass. Basic Appl. Ecol. 2018, 28, 76–86. [Google Scholar] [CrossRef]
- Gowda, J. Spines of Acacia tortilis: What do they defend and how? Oikos 1996, 77, 279–284. [Google Scholar] [CrossRef]
- Gomez, J.; Zamora, R. Spatial variation in the selective scenarios of Hormathophylla spinosa (Cruciferae). Am. Nat. 2000, 155, 657–668. [Google Scholar] [CrossRef]
- Young, T.; Stanton, M.; Christian, C. Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos 2003, 101, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Mauricio, R. Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am. Nat. 1998, 151, 20–28. [Google Scholar] [CrossRef]
- Werker, E. Trichome diversity and development. Adv. Bot. Res. 2000, 31, 1–35. [Google Scholar]
- Dalin, P.; Ågren, J.; Björkman, C.; Huttunen, P.; Kärkkäinen, K. Leaf trichome formation and plant resistance to herbivory. In Induced Plant Resistance to Herbivory; Schaller, A., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 89–105. [Google Scholar]
- Kobayashi, S.; Asai, T.; Fujimoto, Y.; Kohshima, S. Anti-herbivore structures of Paulownia tomentosa: Morphology, distribution, chemical constituents and changes during shoot and leaf development. Ann. Bot. 2008, 101, 1035–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kariyat, R.R.; Smith, J.D.; Stephenson, A.G.; De Moraes, C.M.; Mescher, M.C. Non- glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proc. Royal Soc. B Biol. Sci. 2017, 284, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campo, J.; Dirzo, R. Leaf quality and herbivory responses to soil nutrient addition in secondary tropical dry forests of Yucatan, Mexico. J. Trop. Ecol. 2003, 19, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Santiago, L.; Wright, S.; Harms, K.; Yavitt, J.; Korine, C.; Garcia, M.; Turner, B. Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. J. Ecol. 2012, 100, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Schadler, M.; Roeder, M.; Brandl, R.; Matthies, D. Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Glob. Chang. Biol. 2007, 13, 1005–1015. [Google Scholar] [CrossRef]
- Ter Braak, C.; Šmilauer, P. Canoco Reference Manual and Users Guide to Canoco forWindows: Software for Canonical Community Ordination (Version 4); Microcomputer Power: Ithaca, NY, USA, 1998. [Google Scholar]
- Defossez, E.; Pellissier, L.; Rasmann, S. The unfolding of plant growth form-defence syndromes along elevation gradients. Ecol. Lett. 2018, 21, 609–618. [Google Scholar] [CrossRef]
- Kergunteuil, A.; Humair, L.; Münzbergová, Z.; Rasmann, S. Plant adaptation to different climates shapes the strengths of chemically-mediated tritrophic interactions. Funct. Ecol. 2019, 33, 1893–1903. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
- Crawley, M. The R Book, 2nd ed.; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar]
- Garcia, L.V. Escaping the Bonferroni iron claw in ecological studies. Oikos 2004, 105, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Münzbergová, Z.; Šurinová, M. The importance of species phylogenetic relationships and species traits for the intensity of plant-soil feedback. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Diniz, J.A.F.; De Sant’ana, C.E.R.; Bini, L.M. An eigenvector method for estimating phylogenetic inertia. Evolution 1998, 52, 1247–1262. [Google Scholar] [CrossRef] [PubMed]
- Desdevises, Y.; Legendre, P.; Azouzi, L.; Morand, S. Quantifying phylogenetically structured environmental variation. Evolution 2003, 57, 2647–2652. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves-Silva, E.; Del-Claro, K. Herbivory causes increases in leaf spinescence and fluctuating asymmetry as a mechanism of delayed induced resistance in a tropical savanna tree. Plant Ecol. Evol. 2016, 149, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, M.V.; Gavrikov, D.E.; Zverev, V.; Zvereva, E.L. Local insect damage reduces fluctuating asymmetry in next-year’s leaves of downy birch. Insects 2018, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Nicotra, A.; Leigh, A.; Boyce, C.; Jones, C.; Niklas, K.; Royer, D.; Tsukaya, H. The evolution and functional significance of leaf shape in the angiosperms. Funct. Plant Biol. 2011, 38, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Coley, P.; Bateman, M.; Kursar, T. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 2006, 115, 219–228. [Google Scholar] [CrossRef]
- Gotthard, K. Adaptive growth decisions in butterflies. Bioscience 2008, 58, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, K.; Lev-Yadun, S. Dense white trichome production by plants as possible mimicry of arthropod silk or fungal hyphae that deter herbivory. J. Theor. Biol. 2015, 364, 1–6. [Google Scholar] [CrossRef]
- Moya-Raygoza, G. Early development of leaf trichomes is associated with decreased damage in teosinte, compared with maize, by Spodoptera frugiperda (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 2016, 109, 737–743. [Google Scholar] [CrossRef]
- Scalabrin, E.; Radaelli, M.; Rizzato, G.; Bogani, P.; Buiatti, M.; Gambaro, A.; Capodaglio, G. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: Unraveling metabolic responses. Anal. Bioanal. Chem. 2015, 407, 6357–6368. [Google Scholar] [CrossRef] [PubMed]
- Bickford, C.P. Ecophysiology of leaf trichomes. Funct. Plant Biol. 2016, 43, 807–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, W.J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 1980, 11, 119–161. [Google Scholar] [CrossRef]
- Osier, T.L.; Hwang, S.Y.; Lindroth, R.L. Effects of phytochemical variation in quaking aspen Populus tremuloides clones on gypsy moth Lymantria dispar performance in the field and laboratory. Ecol. Entomol. 2000, 25, 197–207. [Google Scholar] [CrossRef]
- Fortin, M.; Mauffette, Y. The suitability of leaves from different canopy layers for a generalist herbivore (Lepidoptera: Lasiocampidae) foraging on sugar maple. Can. J. For. Res. 2002, 32, 379–389. [Google Scholar] [CrossRef]
- Haukioja, E. Plant defenses and population fluctuations of forest defoliators: Mechanism-based scenarios. Ann. Zool. Fenn. 2005, 42, 313–325. [Google Scholar]
- Moe, S.R.; Gjorvad, I.R.; Eldegard, K.; Hegland, S.J. Ungulate browsing affects subsequent insect feeding on a shared food plant, bilberry (Vaccinium myrtillus). Basic Appl. Ecol. 2018, 31, 44–51. [Google Scholar] [CrossRef]
- Haukioja, E.; Niemela, P.; Siren, S. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation, in the mountain birch Betula pubescens ssp. tortuosa. Oecologia 1985, 65, 214–222. [Google Scholar] [CrossRef]
- Schadler, M.; Jung, G.; Auge, H.; Brandl, R. Palatability, decomposition and insect herbivory: Patterns in a successional old-field plant community. Oikos 2003, 103, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Bazely, D.; Myers, J.; Dasilva, K. The response of numbers of bramble prickles to herbivory and depressed resource availability. Oikos 1991, 61, 327–336. [Google Scholar] [CrossRef]
- Obeso, J. The induction of spinescence in European holly leaves by browsing ungulates. Plant Ecol. 1997, 129, 149–156. [Google Scholar] [CrossRef]
- Honek, A.; Martinkova, Z.; Saska, P.; Koprdova, S. Role of post-dispersal seed and seedling predation in establishment of dandelion (Taraxacum agg.) plants. Agric. Ecosyst. Environ. 2009, 134, 126–135. [Google Scholar] [CrossRef]
- Krebs, C.; Gerber, E.; Matthies, D.; Schaffner, U. Herbivore resistance of invasive Fallopia species and their hybrids. Oecologia 2011, 167, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, R.; de Boer, N.; van Groenendael, J. Comparing the preferences of three herbivore species with resistance traits of 15 perennial dicots: The effects of phylogenetic constraints. Plant Ecol. 1999, 143, 141–152. [Google Scholar] [CrossRef]
- Wagner, D.; Doak, P. Oviposition, larval survival and leaf damage by the willow leaf blotch miner, Micrurapteryx salicifoliella, in relation to leaf trichomes across 10 Salix species. Ecol. Entomol. 2017, 42, 629–635. [Google Scholar] [CrossRef]
- Ochoa-Lopez, S.; Villamil, N.; Zedillo-Avelleyra, P.; Boege, K. Plant defence as a complex and changing phenotype throughout ontogeny. Ann. Bot. 2015, 116, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Saska, P.; Skuhrovec, J.; Tylová, E.; Platková, H.; Tuan, S.-J.; Hsu, Y.-T.; Vítámvás, P. Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest Sci. 2020. [Google Scholar] [CrossRef]
- Fordyce, J.A.; Agrawal, A.A. The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtail Battus philenor. J. Anim. Ecol. 2001, 70, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Gassmann, A.J.; Hare, J.D. Indirect cost of a defensive trait: Variation in trichome type affects the natural enemies of herbivorous insects on Datura wrightii. Oecologia 2005, 144, 62–71. [Google Scholar] [CrossRef]
- Andama, J.B.; Mujiono, K.; Hojo, Y.; Shinya, T.; Galis, I. Non-glandular silicified trichomes are essential for rice defense against chewing herbivores. Plant Cell Environ. 2020, pce.13775. [Google Scholar] [CrossRef]
- Hall, C.R.; Dagg, V.; Waterman, J.M.; Johnson, S.N. Silicon alters leaf surface morphology and suppresses insect herbivory in a model grass species. Plants 2020, 9, 643. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, S.; Arene, F.; Lavergne, S. How phylogeny shapes the taxonomic and functional structure of plant-insect networks. Oecologia 2016, 180, 989–1000. [Google Scholar] [CrossRef]
- Senior, J.K.; Potts, B.M.; Davies, N.W.; Wooliver, R.C.; Schweitzer, J.A.; Bailey, J.K.; O’Reilly-Wapstra, J.M. Phylogeny explains variation in the root chemistry of Eucalyptus species. J. Chem. Ecol. 2016, 42, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Wigley, B.J.; Slingsby, J.A.; Diaz, S.; Bond, W.J.; Fritz, H.; Coetsee, C. Leaf traits of African woody savanna species across climate and soil fertility gradients: Evidence for conservative versus acquisitive resource-use strategies. J. Ecol. 2016, 104, 1357–1369. [Google Scholar] [CrossRef]
- Ehrenberger, F.; Gorbach, S. Methoden der Organischen Elementar- und Purenanalyse; Verlag Chemie: Weinheim, Germany, 1973. [Google Scholar]
- Olsen, R.; Cole, C.; Watanabe, F.; Dean, L. Estimation of available phosphorus in soils by extraction with podium bicarbonate. US Dep. Agric. Circ. 1954, 939, 1–19. [Google Scholar]
S. l. Survival | S. l. Weight-Fresh | S. l. Pupation | Prop. dam. Leaves | |
---|---|---|---|---|
S. l. survival | – | 0.38 | −0.15 | −0.33 |
S. l. weight-fresh | 0.38 | – | 0.01 | −0.21 |
S. l. pupation | −0.15 | 0.01 | – | 0.28 |
Prop. dam. leaves | −0.33 | −0.21 | 0.28 | – |
p | C:N Ratio | Water Content | SLA | Leaf Dissection | No. Spines | Spine Toughness | Trichome Density | Trichome Length | PCAtrait1 | Phylogeny | |
---|---|---|---|---|---|---|---|---|---|---|---|
Phylogeny | 0.002 | 0.006 | 0.017 | 0.004 | 0.012 | −0.144 * | −0.283 * | −0.022 * | −0.066 * | −0.219 * | |
S. l. survival | 0.272 | 0.819 | 0.682 | 0.659 | (−) −1.687 * | (−) −1.611* | (−) −1.590 *S | (+) −2.026 * | 0.109 | (−) −4.710 *S | −0.730 * |
S. l. weight-fresh | 0.04 | 0.038 | 0.037 | 0.008 | (−) −0.052 *S | 0.001 | 0.013 | 0.025 | 0.014 | (−) −0.034 * | 0.024 |
S. l. pupation | (−) −0.013 S | 0.103 | 0.148 | 0.141 | (+) −0.009 * | 0.088 | 0.153 | 0.149 | 0.082 | 0.160 | 0.158 |
Prop. dam. leaves | 0.365 | (+) −0.174 S | 0.242 | 0.315 | 0.145 | (+) −0.188 | (+) −0.499 *S | (−) −0.664 * | (+) −0.409 * | (+) −0.673 * | −0.057 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Münzbergová, Z.; Skuhrovec, J. Data on Herbivore Performance and Plant Herbivore Damage Identify the Same Plant Traits as the Key Drivers of Plant–Herbivore Interaction. Insects 2020, 11, 865. https://doi.org/10.3390/insects11120865
Münzbergová Z, Skuhrovec J. Data on Herbivore Performance and Plant Herbivore Damage Identify the Same Plant Traits as the Key Drivers of Plant–Herbivore Interaction. Insects. 2020; 11(12):865. https://doi.org/10.3390/insects11120865
Chicago/Turabian StyleMünzbergová, Zuzana, and Jiří Skuhrovec. 2020. "Data on Herbivore Performance and Plant Herbivore Damage Identify the Same Plant Traits as the Key Drivers of Plant–Herbivore Interaction" Insects 11, no. 12: 865. https://doi.org/10.3390/insects11120865
APA StyleMünzbergová, Z., & Skuhrovec, J. (2020). Data on Herbivore Performance and Plant Herbivore Damage Identify the Same Plant Traits as the Key Drivers of Plant–Herbivore Interaction. Insects, 11(12), 865. https://doi.org/10.3390/insects11120865