Biotic Threats to Cycas micronesica Continue to Expand to Complicate Conservation Decisions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Previously Reported Herbivores
3.2. Newly Reported Herbivores
4. Discussion
4.1. Ranking of Individual Herbivores
4.1.1. Aulacaspis yasumatsui
4.1.2. Luthrodes pandava
4.1.3. Erechthias
4.1.4. Acalolepta marianarum
4.1.5. Sus scrofa
4.1.6. Oryctes rhinoceros
4.1.7. The Remainder of the Coalition
4.2. Complicated Interactions Among the Threats
4.2.1. Direct Competition
4.2.2. Antecedent Damage Reduces Leaf Miners
4.2.3. Antecedent Damage Increases Stem Borers
4.2.4. Herbivory Compromises Tropical Cyclone Resistance and Resilience
4.2.5. Urban-Natural Boundaries Not Respected
4.2.6. Indirect Damage Worse than Direct Damage
4.2.7. The Two Wild Ungulates
4.2.8. Sequential Invasions Magnify Damage
4.2.9. Protection from One Threat May Not Protect from a Second Threat
4.3. Recovery Coalitions
4.3.1. Protecting Pollinators
4.3.2. Passive Protection Best
4.3.3. Root Symbionts
4.4. Future Research Needs
4.4.1. Start Where It Starts
4.4.2. Successful Biological Control May Require Long-Term Commitments
4.4.3. Pre-Existing Natural Stressors Must Be Integrated into Future Conservation Actions
4.4.4. Exploiting Fortuitous Developments
4.4.5. One Size Does Not Fit All
4.4.6. Cascading Ecosystem Changes
4.4.7. Species Experts Required
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leakey, R.; Lewis, R. The Sixth Extinction: Patterns of Life and the Future of Humankind; Doubleday: New York, NY, USA, 1995; p. 271. [Google Scholar]
- Pimm, S.L.; Russell, G.J.; Gittleman, J.L.; Brooks, T.M. The future of biodiversity. Science 1995, 269, 347–350. [Google Scholar] [CrossRef] [Green Version]
- Dirzo, R.; Raven, P.H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 2003, 28, 137–167. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are humans now overwhelming the great forces of nature? Ambio 2007, 36, 614–621. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; Garcia, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turvey, S.T.; Crees, J.J. Extinction in the Anthropocene. Curr. Biol. 2019, 29, R982–R986. [Google Scholar] [CrossRef]
- Laurance, W.F. The Anthropocene. Curr. Biol. 2019, 29, R953–R954. [Google Scholar] [CrossRef]
- Soulé, M.E. What is conservation biology? BioScience 1985, 35, 727–734. [Google Scholar]
- Kareiva, P.; Marvier, M. What is conservation science? BioScience 2012, 62, 962–969. [Google Scholar] [CrossRef]
- Vermeij, G.J. An agenda for invasion biology. Biol. Conserv. 1996, 78, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Williamson, M. Biological Invasions; Chapman & Hall Ltd.: London, UK, 1996; p. 244. [Google Scholar]
- Courchamp, F.; Fournier, A.; Bellard, C.; Bertelsmeier, C.; Bonnaud, E.; Jeschke, J.M.; Russell, J.C. Invasion biology: Specific problems and possible solutions. Trends Ecol. Evol. 2017, 32, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.A. Let’s welcome a variety of voices to invasion biology. Conserv. Biol. 2020, 34, 1329–1330. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.R.; Graham, B.M.; Achury, R.; Coon, J.J.; Daniels, M.K.; Gambrell, D.K.; Jonasen, K.L.; King, G.D.; LaRacuente, N.; Perrin-Stowe, T.I.; et al. From eDNA to citizen science: Emerging tools for the early detection of invasive species. Front. Ecol. Environ. 2020, 18, 194–202. [Google Scholar] [CrossRef]
- Wilson, J.R.; Bacher, S.; Daehler, C.C.; Groom, Q.J.; Kumschick, S.; Lockwood, J.L.; Robinson, T.B.; Zengeya, T.A.; Richardson, D.M. Frameworks used in invasion science: Progress and prospects. NeoBiota 2020, 62, 1–30. [Google Scholar] [CrossRef]
- Salafsky, N.; Margoluis, R.; Redford, K.H.; Robinson, J.G. Improving the practice of conservation: A conceptual framework and research agenda for conservation science. Conserv. Biol. 2002, 16, 1469–1479. [Google Scholar] [CrossRef]
- Donnegan, J.A.; Butler, S.L.; Grabowiecki, W.; Hiserote, B.A.; Limtiaco, D. Guam’s forest resources. In 2002 Resource Bulletin PNW-RB-243; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2004. [Google Scholar]
- Marler, T.; Haynes, J.; Lindstrom, A. Cycas micronesica. In The IUCN Red List of Threatened Species; IUCN: Cambridge, UK, 2010. [Google Scholar]
- Marler, T.E.; Muniappan, R. Pests of Cycas micronesica leaf, stem, and male reproductive tissues with notes on current threat status. Micronesica 2006, 39, 1–9. [Google Scholar]
- Marler, T.E. Cycad aulacaspis scale invades the Mariana Islands. In Proceedings of the Cycad 2008. The 8th International Conference on Cycad Biology, Panama City, Panama, 13–15 January 2008; New York Botanical Garden Press: Bronx, NY, USA, 2012; Volume 106, pp. 20–35. [Google Scholar]
- Blair, K.G. Coleoptera Heteromera from Guam. Insects of Guam—I. Bernice P. Bishop Mus. Bull. 1942, 172, 56–60. [Google Scholar]
- Lallemand, V. Homoptera: Cercopidae on Guam. Insects of Guam—I. Bernice P. Bishop Mus. Bull. 1942, 172, 17–18. [Google Scholar]
- Zimmerman, E.C. Curculionidae of Guam. Insects of Guam—I. Bernice P. Bishop Mus. Bull. 1942, 172, 73–146. [Google Scholar]
- Townes, H. Results of an Entomological Tour of Micronesia; US Commercial Company Economic Survey: Honolulu, HI, USA, 1946.
- Usinger, R.L. Hemiptera: Heteroptera of Guam. Insects of Micronesia—II. Bernice P. Bishop Mus. Bull. 1946, 189, 11–103. [Google Scholar]
- Beller, S. A Summary of the Insects and Flora of Guam; Division of Foreign Plant Quarantines; Bureau of Entomology and Plant Quarantine, Agricultural Research Administration, USDA: Washington, DC, USA, 1948; p. 279.
- Gillogly, L.R. Coleoptera: Nitidulidae, Insects of Micronesia. In Bishop Museum Occasional Papers; Bernice P. Bishop Museum: Honolulu, HI, USA, 1962; pp. 133–188. [Google Scholar]
- Beardsley, J.W. Homoptera: Coccoidea, Insects of Micronesia. In Bishop Museum Occasional Papers; Bernice P. Bishop Museum: Honolulu, HI, USA, 1966; pp. 377–562. [Google Scholar]
- Beardsley, J.W. Homoptera: Coccoidea, Supplement, Insects of Micronesia. In Bishop Museum Occasional Papers; Bernice P. Bishop Museum: Honolulu, HI, USA, 1975; pp. 657–662. [Google Scholar]
- Hirsh, H.; Marler, T. Damage and recovery of Cycas micronesica after Typhoon Paka. Biotropica 2002, 34, 598–602. [Google Scholar] [CrossRef]
- Moore, A.; Marler, T.; Miller, R.H.; Muniappan, R. Biological control of cycad aulacaspis scale on Guam. Cycad Newsl. 2005, 28, 6–8. [Google Scholar]
- Marler, T.E.; Yudin, L.S.; Moore, A. Schedorhinotermes longirostris (Isoptera: Rhinotermitidae) on Guam adds to assault on the endemic Cycas micronesica. Fla. Entomol. 2011, 94, 699–700. [Google Scholar] [CrossRef]
- Terry, I.; Roe, M.; Tang, W.; Marler, T.E. Cone insects and putative pollen vectors of the endangered cycad, Cycas micronesica. Micronesica 2009, 41, 83–99. [Google Scholar]
- Marler, T.E.; Matanane, F.C.; Terry, L.I. Burrowing activity of coconut rhinoceros beetle on Guam cycads. Communic. Integr. Biol. 2020, 13, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Reinert, J.A. Management of the false oleander scale, Pseudaulacaspis cockerelli (Cooley). Proc. Fla. State Hort. Soc. 1974, 87, 518–520. [Google Scholar]
- Bohart, G.E.; Gressitt, J.L. Filth-Inhabiting Flies of Guam; Bernice P. Bishop Museum: Honolulu, HI, USA, 1951; p. 152. [Google Scholar]
- Marler, T.E.; Lindström, A.J. First, do no harm. Commun. Integr. Biol. 2017, 10, e1393593. [Google Scholar] [CrossRef]
- Marler, T.E.; Cascasan, A.N.J. Carbohydrate depletion during lethal infestation of Aulacaspis yasumatsui on Cycas revoluta. Inter. J. Plant Sci. 2018, 179, 497–504. [Google Scholar] [CrossRef]
- Marler, T.E.; Moore, A. Cryptic scale infestations on Cycas revoluta facilitate scale invasions. HortScience 2010, 45, 837–839. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E. Boomeranging in structural defense: Phytophagous insect uses cycad trichomes to defend against entomophagy. Plant Signal. Behav. 2012, 7, 1484–1487. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Miller, R.; Moore, A. Vertical stratification of predation on Aulacaspis yasumatsui infesting Cycas micronesica seedlings. HortScience 2013, 48, 60–62. [Google Scholar] [CrossRef]
- Marler, T.E.; Marler, P.N. Rhyzobius lophanthae behavior is influenced by cycad plant age providing odor samples in Y-tube olfactometer. Insects 2018, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Dongol, N. Models to describe Cycas micronesica leaf and strobili development. HortScience 2011, 46, 1333–1337. [Google Scholar] [CrossRef]
- Marler, T.E.; Lindström, A.J.; Terry, L.I. Chilades pandava damage among 85 Cycas species in a common garden setting. HortScience 2012, 47, 1832–1836. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Lindström, A.; Terry, L.I. Information-based or resource-based systems may mediate Cycas herbivore interactions. Plant Signal. Behav. 2012, 7, 760–762. [Google Scholar] [CrossRef] [Green Version]
- Hlásny, T.; Turčáni, M. Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: Case study from Central Europe. Ann. For. Sci. 2013, 70, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Platt, W.J.; Beckage, B.; Doren, R.F.; Slater, H.H. Interactions of large-scale disturbances: Prior fire regimes and hurricane mortality of savanna pines. Ecology 2002, 83, 1566–1572. [Google Scholar] [CrossRef]
- Muzika, R.; Liebhold, A.; Twery, M. Dynamics of twolined chestnut borer Agrilus bilineatus as influenced by defoliation and selection thinning. Agric. For. Entomol. 2000, 2, 283. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Lawrence, J.H. Phytophagous insects reduce cycad resistance to tropical cyclone winds and impair storm recovery. HortScience 2013, 48, 1224–1226. [Google Scholar] [CrossRef]
- Rogers, R.F. Destiny’s Landfall: A History of Guam; University of Hawaii Press: Honolulu, HI, USA, 1995. [Google Scholar]
- Marshall, S.D.G.; Moore, A.; Vaqalo, M.; Noble, A.; Jackson, T.A. A new haplotype of the coconut rhinoceros beetle, Oryctes rhinoceros, has escaped biological control by Oryctes rhinoceros nudivirus and is invading Pacific Islands. J. Invertebr. Pathol. 2017, 149, 127–134. [Google Scholar] [CrossRef]
- Parker, I.; Simberloff, D.; Lonsdale, W.; Goodell, K.; Wonham, M.; Kareiva, P.M.; Williamson, M.H.; Von Holle, B.; Moyle, P.B.; Byers, J.E.; et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1999, 1, 3–19. [Google Scholar] [CrossRef]
- Simberloff, D.; Von Holle, B. Positive interactions of nonindigenous species: Invasional meltdown? Biol. Invasions 1999, 1, 21–32. [Google Scholar] [CrossRef]
- Barney, J.; Tekiela, D. Framing the concept of invasive species “impact” within a management context. Invasive Plant Sci. Manag. 2020, 13, 37–40. [Google Scholar] [CrossRef]
- Martin, T.G.; Burgman, M.A.; Fidler, F.; Kuhnert, P.M.; Low-Choy, S.; McBride, M.; Mengersen, K. Eliciting expert knowledge in conservation science. Conserv. Biol. 2012, 26, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, H.L.; Goad, R.; Vitt, P.; Knight, T.M. Nonadditive effects among threats on rare plant species. Conserv. Biol. 2020, 34, 1029–1034. [Google Scholar] [CrossRef]
- Marler, T.E. Temporal variations in leaf miner, butterfly, and stem borer infestations of Cycas micronesica in relation to Aulacaspis yasumatsui incidence. HortScience 2013, 48, 1334–1338. [Google Scholar] [CrossRef]
- Marler, T.E. Increased threat of island endemic tree’s extirpation via invasion-induced decline of intrinsic resistance to recurring tropical cyclones. Communic. Integr. Biol. 2013, 6, e22361. [Google Scholar] [CrossRef]
- Marler, T.E.; Lawrence, J.H.; Cruz, G.N. Topographic relief, wind direction, and conservation management decisions influence Cycas micronesica K.D. Hill population damage during tropical cyclone. J. Geogr. Nat. Disasters 2016, 6, 3. [Google Scholar] [CrossRef]
- Andersen Air Force Base. Cycas micronesica Management Plan for Andersen Air Force Base, Guam. In Contract No. N40192-12-P-5008; Andersen Air Force Base: Yigo, Guam, 2013. [Google Scholar]
- Novoa, A.; Richardson, D.M.; Pyšek, P.; Meyerson, L.A.; Bacher, S.; Canavan, S.; Catford, J.A.; Ćuda, J.; Essl, F.; Foxcroft, L.C.; et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 2020, 22, 1801–1820. [Google Scholar] [CrossRef] [Green Version]
- Robertson, P.A.; Mill, A.; Novoa, A.; Jeschke, J.M.; Essl, F.; Gallardo, B.; Geist, J.; Jarić, I.; Lambin, X.; Musseau, C.; et al. A proposed unified framework to describe the management of biological invasions. Biol. Invasions 2020, 22, 2633–2645. [Google Scholar] [CrossRef]
- Marler, T.E.; Krishnapillai, M.V. Longitude, forest fragmentation, and plant size influence Cycas micronesica mortality following island insect invasions. Diversity 2020, 12, 194. [Google Scholar] [CrossRef]
- Norstog, K.J.; Nicholls, T.J. The Biology of the Cycads; Cornell University Press: Ithaca, NY, USA, 1997. [Google Scholar]
- Marler, T.E.; Calonje, M. Stem branching of cycad plants informs horticulture and conservation decisions. Horticulturae 2020, 6, 65. [Google Scholar] [CrossRef]
- Marler, T.E.; Griffith, M.P.; Krishnapillai, M.V. Height increment of Cycas micronesica informs conservation decisions. Plant Signal. Behav. 2020, 15, e1830237. [Google Scholar] [CrossRef] [PubMed]
- Safford, W.E. The Useful Plants of the Island of Guam; Govt. Print. Off.: Washington, DC, USA, 1905; Volume 9.
- Gawel, A.M.; Rogers, H.S.; Miller, R.H.; Kerr, A.M. Contrasting ecological roles of non-native ungulates in a novel ecosystem. R. Soc. Open Sci. 2018, 5, 170151. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Shaw, C.A. Free and glycosylated sterol bioaccumulation in developing Cycas micronesica seeds. Food Chem. 2009, 115, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Jensen, D.A.; Ma, K.; Svenning, J.-C. Steep topography buffers threatened gymnosperm species against anthropogenic pressures in China. Ecol. Evol. 2020, 10, 1838–1855. [Google Scholar] [CrossRef]
- Heinen, J.H.; Rahbek, C.; Borregaard, M.K. Conservation of species interactions to achieve self-sustaining ecosystems. Ecography 2020, 43, 1–9. [Google Scholar] [CrossRef]
- United States Fish & Wildlife Service. Endangered and threatened wildlife and plants; endangered status for 16 species and threatened status for 7 species in Micronesia. Fed. Regist. 2015, 80, 59424–59497. [Google Scholar]
- Tooker, J.F.; Giron, D. The evolution of endophagy in herbivorous insects. Front. Plant Sci. 2020, 11, e581816. [Google Scholar] [CrossRef]
- Marler, T.E. Cycad mutualist offers more than pollen transport. Am. J. Bot. 2010, 97, 841–845. [Google Scholar] [CrossRef]
- Heywood, V.H. In Situ Conservation of Wild Plant Species: A Critical Global Review of Good Practices; Biodiversity International: Rome, Italy, 2005. [Google Scholar]
- Marler, T.E.; Dongol, N.; Cruz, G.N. Leucaena leucocephala and adjacent native limestone forest habitats contrast in soil properties on Tinian Island. Commun. Integr. Biol. 2016, 9, e1212792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marler, T.E. Three invasive tree species change soil chemistry in Guam forests. Forests 2020, 11, 279. [Google Scholar] [CrossRef] [Green Version]
- Corbin, J.; D’Antonio, C. Gone but not forgotten? Invasive plants’ legacies on community and ecosystem properties. Invasive Plant Sci. Manag. 2012, 5, 117–124. [Google Scholar] [CrossRef]
- Skurski, T.; Rew, L.; Maxwell, B. Mechanisms Underlying Nonindigenous Plant Impacts: A Review of Recent Experimental Research. Invasive Plant Sci. Manag. 2014, 7, 432–444. [Google Scholar] [CrossRef]
- Tekiela, D.; Barney, J. Invasion Shadows: The Accumulation and Loss of Ecological Impacts from an Invasive Plant. Invasive Plant Sci. Manag. 2017, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations Version 1.0; IUCN Species Survival Commission: Gland, Switzerland, 2013. [Google Scholar]
- Osborne, P.E.; Seddon, P.J. Selecting suitable habitats for reintroductions: Variation, change and the role of species distribution modelling. In Reintroduction Biology: Integrating Science and Management, Ewen, J.G., Armstrong, D.P., Parker, K.A., Seddon, P.J., Eds.; Wiley-Blackwell: Oxford, UK, 2012; pp. 73–105. [Google Scholar]
- Valiente-Banuet, A.; Aizen, M.A.; Alcántara, J.M.; Arroyo, J.; Cocucci, A.; Galetti, M.; García, M.B.; García, D.; Gómez, J.M.; Jordano, P.; et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 2015, 29, 299–307. [Google Scholar] [CrossRef]
- Boedhihartono, A.K.; Bongers, F.; Boot, R.G.A.; van Dijk, J.; Jeans, H.; van Kuijk, M.; Koster, H.; Reed, J.; Sayer, J.; Sunderland, T.; et al. Conservation science and practice must engage with the realities of complex tropical landscapes. Trop. Conserv. Sci. 2018, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sayer, J.; Wells, M.P. The pathology of projects. In Getting Biodiversity Projects to Work: Towards Better Conservation and Development; McShane, T., Wells, M.P., Eds.; Columbia University Press: New York, NY, USA, 2004; pp. 35–48. [Google Scholar]
- Sayer, J.; Campbell, B.M. The Science of Sustainable Development: Local Livelihoods and the Global Environment; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Marler, T.E.; Moore, A. Military threats to terrestrial resources not restricted to wartime: A case study from Guam. J. Environ. Sci. Eng. 2011, 5, 1198–1214. [Google Scholar]
- Deloso, B.E.; Ferreras, U.F.; Marler, T.E. Does phytogeography change with shifts in geopolitics? The curious case of cycads in the United States. Diversity 2020, 12, 445. [Google Scholar] [CrossRef]
- Wilmhurst, J.M.; Carpenter, J.K. Rodent detection and monitoring for conservation on islands: Gnawed seeds provide reliable indicator of rodent presence. N. Z. J. Ecol. 2020, 44, 3398. [Google Scholar]
- Marler, T.E. Stem CO2 efflux of Cycas micronesica is reduced by chronic non-native insect herbivory. Plant Signal. Behav. 2020, 15, e1716160. [Google Scholar] [CrossRef] [PubMed]
- Marler, T.E. Stem carbohydrates and adventitious root formation of Cycas micronesica following Aulacaspis yasumatsui infestation. HortScience 2018, 53, 1125–1128. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Dongol, N. Three invasive insects alter Cycas micronesica leaf chemistry and predict changes in biogeochemical cycling. Commun. Integr. Biol. 2016, 9, e1208324. [Google Scholar] [CrossRef] [PubMed]
- Deloso, B.E.; Krishnapillai, M.V.; Ferreras, U.F.; Lindström, A.J.; Calonje, M.; Marler, T.E. Chemical element concentrations of cycad leaves: Do we know enough? Horticulturae 2020, 6, 85. [Google Scholar] [CrossRef]
- Marler, T.E.; Lindström, A.J. The value of research to selling the conservation of threatened species: The case of Cycas micronesica. J. Threat. Taxa 2014, 6, 6523–6528. [Google Scholar] [CrossRef]
Order | Family | Species | Organ 1 | Reference |
---|---|---|---|---|
Artiodactyla | Cervidae | Rusa marianna Desmarest | L,Me | [30] 2 |
Artiodactyla | Suidae | Sus scrofa L. | L,S,Se | [30] |
Blattodea | Termitidae | Nasutitermes sp. | S | [32] |
Blattodea | Termitidae | Schedorhinotermes longirostris Brauer | Me,S | [32] |
Coleoptera | Anobiidae | Dorcatomiella guamensis Blair | U | [26] |
Coleoptera | Cerambycidae | Acalolepta marianarum Aurivillius | S,Mi | [19] 3 |
Coleoptera | Chrysomelidae | Phytorus lineolatus Weise | NA | [26] |
Coleoptera | Curculionidae | Anaballus amplicollis Fairmaire | NA | [23] |
Coleoptera | Aderidae | Euglenes bifossicollis Blair | NA | [21] |
Coleoptera | Mordellidae | Mordellistena castanea Ermisch | NA | [26] |
Coleoptera | Nitidulidae | Carpophilus dimidiatus Fabricius | Mi+ 4 | [33] |
Coleoptera | Nitidulidae | Carpophilus freeman Dobson | Mi+ | [33] |
Coleoptera | Nitidulidae | Carpophilus mutilatus Erichson | S,Mi+ | [27,33] |
Coleoptera | Scarabaeidae | Oryctes rhinoceros L. | S | [34] |
Coleoptera | Scarabaeidae | Protaetia orientalis Gory & Percheron | Mi | [19] |
Diptera | Tephritidiae | Cycasia oculata Malloch | NA | [26] |
Hemiptera | Aphrophoridae | Lallemandana phalerata Stål | NA | [22] |
Hemiptera | Coccidae | Ceroplastes ceriferus Fabricius | L | [19] |
Hemiptera | Coccidae | Ceroplastes floridensis Comstock | NA | [28] |
Hemiptera | Coccidae | Ceroplastes rubens Maskell | NA | [24] |
Hemiptera | Coccidae | Saissetia coffeae Walker | L | [19] |
Hemiptera | Delphacidae | Ugyops samoaensis Muir | NA | [26] |
Hemiptera | Diaspididae | Aonidiella comperei McKenzie | NA | [28] |
Hemiptera | Diaspididae | Aulacaspis yasumatsui Takagi | L,R,S,Se,Me,Mi | [19] |
Hemiptera | Diaspididae | Lepidosaphes carolinensis Beardsley | NA | [28] |
Hemiptera | Diaspididae | Lepidosaphes rubrovittatus Cockerell | L | [29] |
Hemiptera | Diaspididae | Parlatoria proteus Curtis | NA | [28] |
Hemiptera | Pentatomidae | Alciphron glaucus Fabricius | NA | [25] |
Lepidoptera | Cosmopterigidae | Anatrachyntis sp. Meyrick | Mi+ | [19,33] |
Lepidoptera | Lycaenidae | Luthrodes pandava Horsfield | L | [31] 5 |
Lepidoptera | Tineidae | Dasyses rugosella Stainton | S | [19] |
Lepidoptera | Tineidae | Erechthias sp. Meyrick | L | [19] |
Order | Family | Species | Organ 1 |
---|---|---|---|
Blattodea | Rhinotermitidae | Coptotermes gestroi Wasmann | S |
Coleoptera | Curculionoidea | Myllocerus sp. Schönherr | L |
Decapoda | Coenobitidae | Coenobita sp. Latreille | S |
Diptera | Stratiomyidae | Hermetia illucens L. | Se |
Hemiptera | Diaspididae | Pseudaulacaspis cockerelli Cooley | L |
Rodentia | Muridae | Rattus rattus L. | Se |
Stylommatophora | Camaenidae | Satsuma sp. Adams | L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deloso, B.E.; Terry, L.I.; Yudin, L.S.; Marler, T.E. Biotic Threats to Cycas micronesica Continue to Expand to Complicate Conservation Decisions. Insects 2020, 11, 888. https://doi.org/10.3390/insects11120888
Deloso BE, Terry LI, Yudin LS, Marler TE. Biotic Threats to Cycas micronesica Continue to Expand to Complicate Conservation Decisions. Insects. 2020; 11(12):888. https://doi.org/10.3390/insects11120888
Chicago/Turabian StyleDeloso, Benjamin E., L. Irene Terry, Lee S. Yudin, and Thomas E. Marler. 2020. "Biotic Threats to Cycas micronesica Continue to Expand to Complicate Conservation Decisions" Insects 11, no. 12: 888. https://doi.org/10.3390/insects11120888
APA StyleDeloso, B. E., Terry, L. I., Yudin, L. S., & Marler, T. E. (2020). Biotic Threats to Cycas micronesica Continue to Expand to Complicate Conservation Decisions. Insects, 11(12), 888. https://doi.org/10.3390/insects11120888