Genetic Divergence of Two Sitobion avenae Biotypes on Barley and Wheat in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Sampling
2.2. Aphid Genotyping
2.3. Biotype Identification
2.4. Data Analysis
3. Results
3.1. Geographic Distribution and Genetic Diversity of Biotypes 1 and 2
3.2. Genetic Differentiation between S. avenae Biotypes
3.3. Gene Flow
4. Discussion
4.1. Geographic Divergence among S. avenae Clones
4.2. Genetic Diversity and Divergence for S. avenae Biotypes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, P.; Zhao, G.; Niu, J.G.; Wang, J.; Zhou, Q.; Guo, Y.; Ma, X.F. Comprehensive analysis of population genetics of Phoxinus phoxinus ujmonensis in the Irtysh River: Abiotic and biotic factors. Ecol. Evol. 2019, 9, 7997–8012. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, D.; Dai, P.; Wang, D.; Shi, X. Genetic differentiation and structure of Sitobion avenae (Hemiptera: Aphididae) populations from moist, semiarid and arid areas in Northwestern China. J. Econ. Entomol. 2018, 111, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Cobben, M.M.; Verboom, J.; Opdam, P.F.; Hoekstra, R.F.; Jochem, R.; Smulders, M.J. Landscape prerequisites for the survival of a modelled metapopulation and its neutral genetic diversity are affected by climate change. Landsc. Ecol. 2012, 27, 227–237. [Google Scholar] [CrossRef]
- Via, S.; Conte, G.; Mason-Foley, C.; Mills, K. Localizing FST outliers on a QTL map reveals evidence for large genomic regions of reduced gene exchange during speciation-with-gene-flow. Mol. Ecol. 2012, 21, 5546–5560. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Murat, S.; Clark, A.G.; Gouppil, G.; Blais, C.; Matzkin, L.M.; Guittard, É.; Yoshiyama-Yanagawa, T.; Kataoka, H.; Niwa, R. Mutations in the neverland gene turned Drosophila pachea into an obligate specialist species. Science 2012, 337, 1658–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Liu, D.; Wang, D.; Shi, X.; Simon, J.-C. Molecular and quantitative genetic differentiation in Sitobion avenae populations from both sides of the Qinling Mountains. PLoS ONE 2015, 10, e0122343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Liu, D.; Zhai, Y.; Zhang, R.; Shi, X. Clonal diversity and genetic differentiation of Sitobion avenae (Hemiptera: Aphididae) from wheat and barley in China. J. Econ. Entomol. 2019, 112, 1217–1226. [Google Scholar] [CrossRef]
- Nosil, P. Speciation with gene flow could be common. Mol. Ecol. 2008, 17, 2103–2106. [Google Scholar] [CrossRef]
- De Barba, M.; Waits, L.; Garton, E.; Genovesi, P.; Randi, E.; Mustoni, A.; Groff, C. The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol. Ecol. 2010, 19, 3938–3951. [Google Scholar] [CrossRef]
- McKinnon, J.S.; Rundle, H.D. Speciation in nature: The threespine stickleback model systems. Trends Ecol. Evol. 2002, 17, 480–488. [Google Scholar] [CrossRef]
- Collin, H.; Fumagalli, L. Evidence for morphological and adaptive genetic divergence between lake and stream habitats in European minnows (Phoxinus phoxinus, Cyprinidae). Mol. Ecol. 2011, 20, 4490–4502. [Google Scholar] [CrossRef] [PubMed]
- Orsini, L.; Vanoverbeke, J.; Swillen, I.; Mergeay, J.; De Meester, L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 2013, 22, 5983–5999. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gonzalez, A.; Cushman, S.A.; Madeira, M.J.; Randi, E.; Gómez-Moliner, B.J. Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous landscape. Mol. Ecol. 2015, 24, 5110–5129. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.X.; Liu, D.G.; Chen, H.; Meng, X.X. Fitness traits and underlying genetic variation related to host plant specialization in the aphid Sitobion avenae. Insect Sci. 2014, 21, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, D. Differential performance of Sitobion avenae (Hemiptera: Aphididae) clones from wheat and barley with implications for its management through alternative cultural practices. J. Econ. Entomol. 2013, 106, 1294–1301. [Google Scholar] [CrossRef]
- Simon, J.-C.; Mahéo, F.; Mieuzet, L.; Buchard, C.; Gauthier, J.-P.; Maurice, D.; Bonhomme, J.; Outreman, Y.; Hullé, M. Life on the Edge: Ecological Genetics of a High Arctic Insect Species and Its Circumpolar Counterpart. Insects 2019, 10, 427. [Google Scholar] [CrossRef] [Green Version]
- Cartier, J.J. Recognition of three biotypes of the pea aphid from southern Quebec. J. Econ. Entomol. 1959, 52, 293–294. [Google Scholar] [CrossRef]
- Ratcliffe, R.H.; Cambron, S.E.; Flanders, K.L.; Bosque-Perez, N.A.; Clement, S.L.; Ohm, H.W. Biotype composition of Hessian fly (Diptera: Cecidomyiidae) populations from the southeastern, midwestern, and northwestern United States and virulence to resistance genes in wheat. J. Econ. Entomol. 2000, 94, 1319–1328. [Google Scholar] [CrossRef]
- Hellqvist, S. Biotypes of Dasineura tetensi, differing in ability to gall and develop on black currant genotypes. Entomol. Exp. Appl. 2001, 98, 85–94. [Google Scholar] [CrossRef]
- Kim, K.-S.; Hill, C.B.; Hartman, G.L.; Mian, M.A.R.; Diers, B.W. Discovery of Soybean Aphid Biotypes. Crop Sci. 2008, 48, 923–928. [Google Scholar] [CrossRef]
- Bansal, R.; Michel, A. Molecular Adaptations of Aphid Biotypes in Overcoming Host-Plant Resistance. In Short Views on Insect Genomics and Proteomics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 75–93. [Google Scholar]
- Wang, D.; Zhai, Y.; Liu, D.; Zhang, N.; Li, C.; Shi, X. Identification and genetic differentiation of Sitobion avenae (Hemiptera: Aphididae) biotypes in China. J. Econ. Entomol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, D.; Gao, S.; Chen, H. Differential performance of Sitobion avenae populations from both sides of the Qinling Mountains under common garden conditions. Environ. Entomol. 2013, 42, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Gao, S.; Liu, D. Genetic basis and selection for life-history trait plasticity on alternative host plants for the cereal aphid Sitobion avenae. PLoS ONE 2014, 9, e106179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, N.A. The evolution of aphid life cycles. Annu. Rev. Entomol. 1992, 37, 321–348. [Google Scholar] [CrossRef]
- Dreyer, D.; Campbell, B. Association of the degree of methylation of intercellular pectin with plant resistance to aphids and with induction of aphid biotypes. Experientia 1984, 40, 224–226. [Google Scholar] [CrossRef]
- Lapitan, N.L.; Li, Y.-C.; Peng, J.; Botha, A.-M. Fractionated extracts of Russian wheat aphid eliciting defense responses in wheat. J. Econ. Entomol. 2007, 100, 990–999. [Google Scholar] [CrossRef]
- Mutti, N.S.; Louis, J.; Pappan, L.K.; Pappan, K.; Begum, K.; Chen, M.-S.; Park, Y.; Dittmer, N.; Marshall, J.; Reese, J.C. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant. Proc. Nat. Acad. Sci. USA 2008, 105, 9965–9969. [Google Scholar] [CrossRef] [Green Version]
- Moran, N.A.; Wernegreen, J.J. Lifestyle evolution in symbiotic bacteria: Insights from genomics. Trends Ecol. Evol. 2000, 15, 321–326. [Google Scholar] [CrossRef]
- Oliver, K.M.; Degnan, P.H.; Burke, G.R.; Moran, N.A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 2010, 55, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Shi, X.; Dai, P.; Liu, D.; Dai, X.; Shang, Z.; Ge, Z.; Meng, X. Comparison of fitness traits and their plasticity on multiple plants for Sitobion avenae infected and cured of a secondary endosymbiont. Sci. Rep. 2016, 6, 23177. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.; Barrion, A. Biotypes of insect pests of agricultural crops. Int. J. Trop. Insect Sci. 1987, 8, 453–458. [Google Scholar] [CrossRef]
- Wood, E., Jr. Biological studies of a new greenbug biotype. J. Econ. Entomol. 1961, 54, 1171–1173. [Google Scholar] [CrossRef]
- Puterka, G.; Burd, J.; Burton, R. Biotypic variation in a worldwide collection of Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1992, 85, 1497–1506. [Google Scholar] [CrossRef]
- Jankielsohn, A. Distribution and diversity of Russian wheat aphid (Hemiptera: Aphididae) biotypes in South Africa and Lesotho. J. Econ. Entomol. 2011, 104, 1736–1741. [Google Scholar] [CrossRef]
- Sunnucks, P.; De Barro, P.; Lushai, G.; Maclean, N.; Hales, D. Genetic structure of an aphid studied using microsatellites: Cyclic parthenogenesis, differentiated lineages and host specialization. Mol. Ecol. 1997, 6, 1059–1073. [Google Scholar] [CrossRef]
- Shufran, K.; Burd, J.; Anstead, J.; Lushai, G. Mitochondrial DNA sequence divergence among greenbug (Homoptera: Aphididae) biotypes: Evidence for host-adapted races. Insect Mol. Biol. 2000, 9, 179–184. [Google Scholar] [CrossRef]
- Vorwerk, S.; Forneck, A. Reproductive mode of grape phylloxera (Daktulosphaira vitifoliae, Homoptera: Phylloxeridae) in Europe: Molecular evidence for predominantly asexual populations and a lack of gene flow between them. Genome 2006, 49, 678–687. [Google Scholar] [CrossRef]
- Duan, X.; Peng, X.; Qiao, X.; Chen, M. Life cycle and population genetics of bird cherry-oat aphids Rhopalosiphum padi in China: An important pest on wheat crops. J. Pest Sci. 2017, 90, 103–116. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Yang, Y.; Kloos, S.; Mora-Ramírez, I.; Romeis, J.; Brunner, S.; Li, Y.; Meissle, M. Transgenic Winter Wheat Expressing the Sucrose Transporter HvSUT1 from Barley does not Affect Aphid Performance. Insects 2019, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Kanbe, T.; AKIMOTO, S.I. Allelic and genotypic diversity in long-term asexual populations of the pea aphid, Acyrthosiphon pisum in comparison with sexual populations. Mol. Ecol. 2009, 18, 801–816. [Google Scholar] [CrossRef]
- Peccoud, J.; Figueroa, C.; Silva, A.; Ramirez, C.; Mieuzet, L.; Bonhomme, J.; Stoeckel, S.; Plantegenest, M.; Simon, J.C. Host range expansion of an introduced insect pest through multiple colonizations of specialized clones. Mol. Ecol. 2008, 17, 4608–4618. [Google Scholar] [CrossRef]
- Carletto, J.; Lombaert, E.; Chavigny, P.; Brévault, T.; Lapchin, L.; Vanlerberghe-Masutti, F. Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Mol. Ecol. 2009, 18, 2198–2212. [Google Scholar] [CrossRef]
- Wilson, G.A.; Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 2003, 163, 1177–1191. [Google Scholar]
- Ahmed, S.S.; Liu, D.; Simon, J.-C. Impact of water-deficit stress on tritrophic interactions in a wheat-aphid-parasitoid system. PLoS ONE 2017, 12, e0186599. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.C.; Baumann, S.; Sunnucks, P.; Hebert, P.D.; Pierre, J.S.; Le Gallic, J.F.; Dedryver, C.A. Reproductive mode and population genetic structure of the cereal aphid Sitobion avenae studied using phenotypic and microsatellite markers. Mol. Ecol. 1999, 8, 531–545. [Google Scholar] [CrossRef]
- Wilson, A.C.; Massonnet, B.; Simon, J.C.; Prunier-Leterme, N.; Dolatti, L.; Llewellyn, K.S.; Figueroa, C.C.; Ramirez, C.C.; Blackman, R.L.; Estoup, A. Cross-species amplification of microsatellite loci in aphids: Assessment and application. Mol. Ecol. Notes 2004, 4, 104–109. [Google Scholar] [CrossRef]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233. [Google Scholar] [CrossRef]
- Arnaud-Haond, S.; Belkhir, K. GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol. Ecol. Notes 2007, 7, 15–17. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and researchdan update. Bioinformatics 2012, 28, 2537e2539. [Google Scholar] [CrossRef] [Green Version]
- Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Dieringer, D.; Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 2003, 3, 167–169. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Xin, J.-J.; Shang, Q.-L.; Desneux, N.; Gao, X.-W. Genetic diversity of Sitobion avenae (Homoptera: Aphididae) populations from different geographic regions in China. PLoS ONE 2014, 9, e109349. [Google Scholar] [CrossRef] [Green Version]
- Wright, S. Variability within and Among Natural Populations Evolution and the Genetics of Populations: A Treatise in Four Volumes; The University of Chicago Press: Chicago, IL, USA, 1988. [Google Scholar]
- Papura, D.; Simon, J.; Halkett, F.; Delmotte, F.; Le Gallic, J.; Dedryver, C. Predominance of sexual reproduction in Romanian populations of the aphid Sitobion avenae inferred from phenotypic and genetic structure. Heredity 2003, 90, 397. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Lu, Z.; Han, J.; Chen, X. Overwintering eggs of Sitobion avenae in Yangzhou area. Entomol. Knowl. 1994, 31, 207–209. [Google Scholar]
- Dedryver, C.-A.; Hullé, M.; Le Gallic, J.-F.; Caillaud, M.C.; Simon, J.-C. Coexistence in space and time of sexual and asexual populations of the cereal aphid Sitobion avenae. Oecologia 2001, 128, 379–388. [Google Scholar] [CrossRef]
- Delmotte, F.; Leterme, N.; Gauthier, J.P.; Rispe, C.; Simon, J.C. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol. Ecol. 2002, 11, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Balloux, F.; Lehmann, L.; de Meeûs, T. The population genetics of clonal and partially clonal diploids. Genetics 2003, 164, 1635–1644. [Google Scholar] [PubMed]
- Bengtsson, B.O. Genetic variation in organisms with sexual and asexual reproduction. J. Evol. Biol. 2003, 16, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Roush, T.L.; Walker, M.A.; Granett, J.; Lin, H. Reproductive mode and fine-scale population genetic structure of grape phylloxera (Daktulosphaira vitifoliae) in a viticultural area in California. BMC Genetics 2013, 14, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedryver, C.A.; Le Gallic, J.F.; Mahéo, F.; Simon, J.C.; Dedryver, F. The genetics of obligate parthenogenesis in an aphid species and its consequences for the maintenance of alternative reproductive modes. Heredity 2013, 110, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Heath, J.J.; Abbot, P.; Stireman, J.O., III. Adaptive Divergence in a Defense Symbiosis Driven from the Top Down. Am. Nat. 2018, 192, E21–E36. [Google Scholar] [CrossRef]
- Wang, I.J.; Bradburd, G.S. Isolation by environment. Mol. Ecol. 2014, 23, 5649–5662. [Google Scholar] [CrossRef]
- Ramirez-Romero, R.; Garibay-Benítez, D.; Vargas-Ponce, O.; Joyce, A.; Bernal, J.S. Do assortative mating and immigrant inviability help maintain population genetic structuring of an herbivore on a crop and a wild relative? Insect Sci. 2019, 26, 283–296. [Google Scholar] [CrossRef]
- Simon, J.-C.; Rispe, C.; Sunnucks, P. Ecology and evolution of sex in aphids. Trends Ecol. Evol. 2002, 17, 34–39. [Google Scholar] [CrossRef]
- Vidal, M.C.; Quinn, T.W.; Stireman, J.O.; Tinghitella, R.M.; Murphy, S.M. Geography is more important than host plant use for the population genetic structure of a generalist insect herbivore. Mol. Ecol. 2019, 28, 4317–4334. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; van Staden, J. Molecular insights into genetic diversity and population dynamics of five medicinal Eulophia species: A threatened orchid taxa of Africa. Physiol. Mol. Biol. Plants 2018, 24, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, V.; Meena, B.; Nair, K.N.; Upreti, D.K.; Tamta, S.; Rana, T.S. Assessment of genetic diversity and population structure of Bergenia stracheyi (Saxifragaceae) in the western Himalaya (India). Biochem. Syst. Ecol. 2017, 70, 205–210. [Google Scholar] [CrossRef]
- Hennink, S.; Zeven, A.C. The interpretation of Nei and Shannon-Weaver within population variation indices. Euphytica 1991, 51, 235–240. [Google Scholar] [CrossRef]
Province | Code | Sample Size | Host | Coordinates | Collection Date |
---|---|---|---|---|---|
Zhejiang | ZJ | 50 | wheat, barley | 120°54′ E; 30°52′ N | 2016.04 |
Jiangsu | JS | 64 | wheat, barley | 120°13′ E; 33°24′ N | 2016.04 |
Anhui | AH | 82 | wheat, barley | 116°53′ E; 33°59′ N | 2016.04 |
Henan | HN | 83 | wheat, barley | 114°02′ E; 33°00′ N | 2016.04 |
Hubei | HB | 105 | wheat, barley | 112°14′ E; 32°01′ N | 2016.04 |
Gansu | GS | 75 | wheat, barley | 100°46′ E; 38°38′ N | 2016.06 |
Xinjaing | XJ | 64 | wheat, barley | 92°53′ E; 43°36′ N | 2016.06 |
Qinghai | QH | 113 | barley | 101°44′ E; 36°43′ N | 2016.07 |
Shaanxi | SX | 117 | wheat | 108°05′ E; 34°17′ N | 2016.04 |
Groups | N | Na | Ne | Hs | AR | I | Ho | He |
---|---|---|---|---|---|---|---|---|
Western Provinces | ||||||||
GS1 | 34 | 7.833 | 3.483 | 0.732 | 4.010 | 1.404 | 0.466 | 0.645 |
QH1 | 49 | 11.333 | 4.336 | 0.763 | 4.851 | 1.779 | 0.573 | 0.753 |
SX1 | 10 | 7.000 | 4.841 | 0.801 | 5.091 | 1.639 | 0.617 | 0.752 |
XJ1 | 24 | 5.500 | 3.192 | 0.796 | 3.739 | 1.274 | 0.493 | 0.634 |
Mean | 29.3 | 7.917 | 3.963 | 0.773 | 4.423 | 1.524 | 0.537 | 0.696 |
GS2 | 5 | 1.558 | 0.892 | 0.75 | 4.000 | 0.209 | 0.061 | 0.057 |
QH2 | 6 | 4.167 | 3.368 | 0.783 | 4.056 | 1.304 | 0.572 | 0.698 |
SX2 | 5 | 4.000 | 3.175 | 0.721 | 4.000 | 1.190 | 0.767 | 0.653 |
XJ2 | 5 | 4.833 | 3.973 | 0.746 | 4.833 | 1.350 | 0.733 | 0.670 |
Mean | 5.3 | 3.640 | 2.852 | 0.750 | 4.222 | 1.013 | 0.533 | 0.520 |
Eastern Provinces | ||||||||
AH1 | 8 | 5.333 | 3.614 | 0.651 | 4.450 | 1.370 | 0.646 | 0.668 |
HB1 | 21 | 8.500 | 4.301 | 0.761 | 4.733 | 1.655 | 0.587 | 0.739 |
HN1 | 13 | 6.167 | 3.128 | 0.678 | 4.121 | 1.360 | 0.731 | 0.654 |
JS1 | 12 | 8.000 | 4.657 | 0.717 | 5.259 | 1.711 | 0.514 | 0.751 |
ZJ1 | 10 | 5.333 | 3.812 | 0.658 | 4.267 | 1.378 | 0.592 | 0.687 |
Mean | 12.8 | 6.667 | 3.902 | 0.693 | 4.566 | 1.495 | 0.614 | 0.700 |
AH1 | HB1 | HN1 | JS1 | ZJ1 | GS1 | QH1 | SX1 | XJ1 | GS2 | QH2 | SX2 | XJ2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AH1 | |||||||||||||
HB1 | 0.014 | ||||||||||||
HN1 | 0.001 | 0.019 | |||||||||||
JS1 | 0.003 | 0.013 | 0.014 | ||||||||||
ZJ1 | 0.054 | 0.012 | 0.052 | 0.020 | |||||||||
GS1 | 0.174 | 0.164 | 0.195 | 0.170 | 0.213 | ||||||||
QH1 | 0.103 | 0.093 | 0.125 | 0.091 | 0.121 | 0.055 | |||||||
SX1 | 0.037 | 0.046 | 0.057 | 0.038 | 0.091 | 0.117 | 0.064 | ||||||
XJ1 | 0.211 | 0.191 | 0.244 | 0.197 | 0.241 | 0.029 | 0.095 | 0.140 | |||||
GS2 | 0.152 | 0.151 | 0.188 | 0.129 | 0.190 | 0.031 | 0.051 | 0.106 | 0.067 | ||||
QH2 | 0.071 | 0.061 | 0.090 | 0.059 | 0.112 | 0.076 | 0.001 | 0.012 | 0.123 | 0.051 | |||
SX2 | 0.116 | 0.092 | 0.117 | 0.082 | 0.130 | 0.175 | 0.088 | 0.078 | 0.221 | 0.186 | 0.090 | ||
XJ2 | 0.117 | 0.098 | 0.139 | 0.104 | 0.145 | 0.047 | 0.040 | 0.053 | 0.041 | 0.089 | 0.061 | 0.120 |
Sources of Variation | d. f. | Sum of Squares | Variance Components | Percentage of Variation | p-Value |
---|---|---|---|---|---|
Biotype effect | |||||
Among groups | 1 | 2.51 | 0.05 Va | 0.26 | 0.822 |
Among populations within groups | 11 | 110 | 0.25 Vb | 11.56 | <0.001 |
Within populations | 391 | 839.32 | 2.15 Vc | 88.18 | <0.001 |
Geographic effect | |||||
Among groups | 1 | 49.76 | 0.24 Va | 9.70 | <0.001 |
Among populations within groups | 11 | 62.74 | 0.13 Vb | 4.98 | <0.001 |
Within populations | 391 | 839.32 | 2.15 Vc | 85.32 | <0.001 |
Plant effect | |||||
Among groups | 1 | 4.616 | 0.05 Va | 0.48 | 0.950 |
Among populations within groups | 14 | 117.99 | 0.28 Vb | 12.40 | <0.001 |
Within populations | 388 | 829.21 | 2.14 Vc | 87.12 | <0.001 |
Population | E1 | W1 | W2 |
---|---|---|---|
E1 | 0.0258 (0.0102–0.0463) | 0.0823 (0.0339–0.1431) | |
W1 | 0.0053 (0.0001–0.0177) | 0.2227 (0.1568–0.2804) | |
W2 | 0.0487 (0.0190–0.0859) | 0.0233 (0.0107–0.0407) |
Population | BA1 | BA2 | WH1 | WH2 |
---|---|---|---|---|
BA1 | 0.0521 (0.0057–0.1265) | 0.1205 (0.0833–0.1613) | 0.1322 (0.0429–0.2421) | |
BA2 | 0.0246 (0.0058–0.0519) | 0.0173 (0.0042–0.0397) | 0.0295 (0.0004–0.1066) | |
WH1 | 0.1784 (0.1410–0.2140) | 0.2291 (0.1477–0.3003) | 0.1317 (0.0426–0.2348) | |
WH2 | 0.0148 (0.0006–0.0372) | 0.0128 (0.0001–0.05513) | 0.0031 (0.0001–0.0127) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Shi, X.; Liu, D.; Yang, Y.; Shang, Z. Genetic Divergence of Two Sitobion avenae Biotypes on Barley and Wheat in China. Insects 2020, 11, 117. https://doi.org/10.3390/insects11020117
Wang D, Shi X, Liu D, Yang Y, Shang Z. Genetic Divergence of Two Sitobion avenae Biotypes on Barley and Wheat in China. Insects. 2020; 11(2):117. https://doi.org/10.3390/insects11020117
Chicago/Turabian StyleWang, Da, Xiaoqin Shi, Deguang Liu, Yujing Yang, and Zheming Shang. 2020. "Genetic Divergence of Two Sitobion avenae Biotypes on Barley and Wheat in China" Insects 11, no. 2: 117. https://doi.org/10.3390/insects11020117
APA StyleWang, D., Shi, X., Liu, D., Yang, Y., & Shang, Z. (2020). Genetic Divergence of Two Sitobion avenae Biotypes on Barley and Wheat in China. Insects, 11(2), 117. https://doi.org/10.3390/insects11020117