Range-Expansion in Processionary Moths and Biological Control
Abstract
:1. Introduction
1.1. Biodiversity in a Changing World
1.2. Climate Change and Range Expansions: A Different Type of Invasiveness
2. Processionary Moths
2.1. Life History and Pest Status of Oak and Pine Processionary Moths
2.2. Distribution, Population Dynamics and Effects of Climate Change on Range Expansion
2.3. Natural Enemies of the OPM and PPM
2.4. Range Expansion of OPM and PPM and the ERH
3. Control of OPM and PPM
3.1. Classical Biological Control
3.2. Conservation Biological Control
4. Conclusions and Research Agenda
Funding
Acknowledgments
Conflicts of Interest
References
- McKinney, M.L.; Lockwood, J.L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 1999, 14, 450–453. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Harvey, J.A.; Cronin, J.T. Response of native insect communities to invasive plants. Annu. Rev. Entomol. 2014, 59, 119–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockwood, J.L.; Hoopes, M.F.; Marchetti, M.P. Invasion Ecology; Wiley-Blackwell: West Sussex, UK, 2013. [Google Scholar]
- Mooney, H.A.; Cleland, E.E. The evolutionary impact of invasive species. Proc. Nat. Acad. Sci. USA 2001, 98, 5446–5451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, B.; Clavero, M.; Sanchez, M.I.; Vila, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Chang. Biol. 2016, 22, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Keane, R.M.; Crawley, M.J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Callaway, R.M.; Ridenour, W.M. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2004, 2, 436–443. [Google Scholar] [CrossRef]
- Blossey, B.; Nötzold, R. Evolution of increased competitive ability in invasive nonindigenous plants—A hypothesis. J. Ecol. 1995, 83, 887–889. [Google Scholar] [CrossRef]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; Baughman, S.; Cabin, R.J.; Cohen, J.E.; Ellstrand, N.C.; et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef] [Green Version]
- Cappuccino, N.; Arnason, J.T. Novel chemistry of invasive exotic plants. Biol. Lett. 2006, 2, 189–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J.D.; Torchin, M.E.; Hufbauer, R.A.; Lemoine, N.P.; Alba, C.; Blumenthal, D.M.; Bossdorf, O.; Byers, J.E.; Dunn, A.M.; Heckman, R.W.; et al. Do invasive species perform better in their new ranges? Ecology 2013, 94, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Neukom, R.; Steiger, N.; Gómez-Navarro, J.J.; Wang, J.; Werner, J.P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 2019, 571, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travis, J.M.J. Climate change and habitat destruction: A deadly anthropogenic cocktail. Proc. R. Soc. B 2003, 270, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.L.; Sloan, L.C.; Snyder, M.A. Regional changes in extreme climatic events: A future climate scenario. J. Clim. 2004, 17, 81–87. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B. Extreme climatic events and their evolution under changing climatic conditions. Glob. Planet. Chang. 2004, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Botkin, D.B.; Saxe, H.; Araujo, M.B.; Betts, R.; Bradshaw, R.H.W.; Cedhagen, T.; Chesson, P.; Dawson, T.P.; Etterson, J.R.; Faith, D.P.; et al. Forecasting the effects of global warming on biodiversity. Bioscience 2007, 57, 227–236. [Google Scholar] [CrossRef]
- Porter, J.H.; Parry, M.L.; Carter, T.R. The potential effects of climatic change on agricultural pests. Agric. For. Meteorol. 1991, 57, 221–240. [Google Scholar] [CrossRef]
- Cannon, R.J.C. The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob. Chang. Biol. 1998, 4, 785–796. [Google Scholar] [CrossRef]
- Harrington, R.; Fleming, R.A.; Woiwod, I.P. Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agric. For. Entomol. 2001, 3, 233–240. [Google Scholar] [CrossRef]
- Bale, J.S.; Hayward, S.A.L. Insect overwintering in a changing climate. J. Exp. Biol. 2010, 213, 980–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dukes, J.S.; Pontius, J.; Orwig, D.; Garnas, J.R.; Rodgers, V.L.; Brazee, N.; Cooke, B.; Theoharides, K.A.; Stange, E.E.; Harrington, R.; et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Can. J. For. Res. 2009, 39, 231–248. [Google Scholar] [CrossRef]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef]
- Dancau, T.; Mason, P.G.; Cappuccino, N. Elusively overwintering: A review of diamondback moth (Lepidoptera: Plutellidae) cold tolerance and overwintering strategy. Can. Entomol. 2018, 150, 156–173. [Google Scholar] [CrossRef]
- Shirai, Y. Temperature tolerance of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in tropical and temperate regions of Asia. Bull. Entomol. Res. 2000, 90, 357–364. [Google Scholar] [CrossRef]
- Harvey, J.A.; Gols, R. Effects of plant-mediated differences in host quality on the development of two related endoparasitoids with different host-utilization strategies. J. Insect Physiol. 2018, 107, 110–115. [Google Scholar] [CrossRef]
- Menendez, R.; Gonzalez-Megias, A.; Lewis, O.T.; Shaw, M.R.; Thomas, C.D. Escape from natural enemies during climate-driven range expansion: a case study. Ecol. Entomol. 2008, 33, 413–421. [Google Scholar] [CrossRef]
- Robinet, C.; Imbert, C.E.; Rousselet, J.; Sauvard, D.; Garcia, J.; Goussard, F.; Roques, A. Human-mediated long-distance jumps of the pine processionary moth in Europe. Biol. Invasions 2012, 14, 1557–1569. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, J.U.; Hagen, S.B.; Ims, R.A.; Yoccoz, N.G. Climate change and outbreaks of the geometrids Operophtera Brumata and Epirrita Autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. J. Anim. Ecol. 2008, 77, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Ramsfield, T.D.; Bentz, B.J.; Faccoli, M.; Jactel, H.; Brockerhoff, E.G. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry 2016, 89, 245–252. [Google Scholar] [CrossRef]
- Basso, A.; Negrisolo, E.; Zilli, A.; Battisti, A.; Cerretti, P. A total evidence phylogeny for the processionary moths of the genus Thaumetopoea (Lepidoptera: Notodontidae: Thaumetopoeinae). Cladistics 2017, 33, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Battisti, A.; Larsson, S.; Roques, A. Processionary moths and associated urtication risk: Global change-driven effects. Annu. Rev. Entomol. 2017, 62, 323–342. [Google Scholar] [CrossRef]
- Processionary Moths and Climate Change: An Update; Roques, A. (Ed.) Springer: Dordrecht, The Netherlands, 2014; p. 440. [Google Scholar]
- Gatto, P.; Zocca, A.; Battisti, A.; Barrento, M.J.; Branco, M.; Paiva, M.R. Economic assessment of managing processionary moth in pine forests: A case-study in Portugal. J. Environ. Manag. 2009, 90, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Groenen, F.; Meurisse, N. Historical distribution of the oak processionary moth Thaumetopoea processionea in Europe suggests recolonization instead of expansion. Agric. For. Entomol. 2012, 14, 147–155. [Google Scholar] [CrossRef]
- Pocock, M.J.O.; Roy, H.E.; Fox, R.; Ellis, W.N.; Botham, M. Citizen science and invasive alien species: Predicting the detection of the oak processionary moth Thaumetopoea processionea by moth recorders. Biol. Conserv. 2017, 208, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Salman, M.H.R.; Bonsignore, C.P.; El Fels, A.E.A.; Giomi, F.; Hodar, J.A.; Laparie, M.; Marini, L.; Merel, C.; Zalucki, M.P.; Zamoum, M.; et al. Winter temperature predicts prolonged diapause in pine processionary moth species across their geographic range. Peerj 2019, 7. [Google Scholar] [CrossRef]
- Meurisse, N.; Hoch, G.; Schopf, A.; Battisti, A.; Gregoire, J.-C. Low temperature tolerance and starvation ability of the oak processionary moth: Implications in a context of increasing epidemics. Agric. For. Entomol. 2012, 14, 239–250. [Google Scholar] [CrossRef]
- Stigter, H.; Geraedts, W.; Spijkers, H.C.P. Thaumetopoea processionea in the Netherlands: Present status and management perspectives (Lepidoptera: Notodontidae). Proc. Sect. Exp. Appl. Entomol. Neth. Entomol. Soc. 1997, 8, 3–16. [Google Scholar]
- Jans, H.W.A.; Franssen, A.E.M. The urticating hairs of the oak processionary caterpillar (Thaumetopoea processionea L.), a potential problem for animals? Tijdschr. Voor Diergeneeskd. 2008, 133, 424–429. [Google Scholar]
- Battisti, A.; Holm, G.; Fagrell, B.; Larsson, S. Urticating hairs in arthropods: Their nature and medical significance. Annu. Rev. Entomol. 2011, 56, 203–220. [Google Scholar] [CrossRef] [PubMed]
- Groenen, F. Variation of Thaumetopoea processionea (Notodontidae: Thaumetopoeinae) in Europe and the Middle East. Entomol. Ber. 2000, 70, 77–82. [Google Scholar]
- Battisti, A.; Stastny, M.; Netherer, S.; Robinet, C.; Schopf, A.; Roques, A.; Larsson, S. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 2005, 15, 2084–2096. [Google Scholar] [CrossRef]
- Battisti, A.; Stastny, M.; Buffo, E.; Larsson, S. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Glob. Chang. Biol. 2006, 12, 662–671. [Google Scholar] [CrossRef]
- Townsend, M. Oak processionary moth in the United Kingdom. Outlooks Pest Manag. 2013, 24, 32–38. [Google Scholar] [CrossRef]
- Kitson, J.J.N.; Hahn, C.; Sands, R.J.; Straw, N.A.; Evans, D.M.; Lunt, D.H. Detecting host-parasitoid interactions in an invasive Lepidopteran using nested tagging DNA metabarcoding. Mol. Ecol. 2019, 28, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, G.; Marini, L.; Hellrigl, K.; Salvadori, C.; Battisti, A. Effects of climate and density-dependent factors on population dynamics of the pine processionary moth in the Southern Alps. Clim. Chang. 2013, 121, 701–712. [Google Scholar] [CrossRef]
- Csoka, G.; Hirka, A.; Szocs, L.; Moricz, N.; Rasztovits, E.; Podor, Z. Weather-dependent fluctuations in the abundance of the oak processionary moth, Thaumetopoea processionea (Lepidoptera: Notodontidae). Eur. J. Entomol. 2018, 115, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Bergström, C.; Bystrowski, C. The identity of Blondelia pinivorae (Ratzeburg) (Diptera: Tachinidae), a parasitoid of processionary moths (Lepidoptera: Thaumetopoeidae). Stuttg. Beiträge Nat. A 2011, 4, 321–334. [Google Scholar]
- Barbaro, L.; Dulaurent, A.M.; Payet, K.; Blache, S.; Vetillard, F.; Battisti, A. Winter bird numerical responses to a key defoliator in mountain pine forests. For. Ecol. Manag. 2013, 296, 90–97. [Google Scholar] [CrossRef]
- Barbaro, L.; Battisti, A. Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). Biol. Control 2011, 56, 107–114. [Google Scholar] [CrossRef]
- Halperin, J. Natural enemies of Thaumetopoea spp. (Lep, Thaumetopoeidae) in Israel. J. Appl. Entomol. 1990, 109, 425–435. [Google Scholar] [CrossRef]
- Weseloh, R.; Bernon, G.; Butler, L.; Fuester, R.; McCullough, D.; Stehr, F. Releases of Calosoma sycophanta (Coleoptera: Carabidae) near the edge of gypsy moth (Lepidoptera: Lymantriidae) distribution. Environ. Entomol. 1995, 24, 1713–1717. [Google Scholar] [CrossRef]
- Kanat, M.; Mol, T. The effect of Calosoma sycophanta L. (Coleoptera: Carabidae) feeding on the pine processionary moth, Thaumetopoea pityocampa (Denis & Schiffermuller) (Lepidoptera: Thaumetopoeidae), in the laboratory. Turk. J. Zool. 2008, 32, 367–372. [Google Scholar]
- Bonsignore, C.P.; Manti, F.; Castiglione, E. Interactions between pupae of the pine processionary moth (Thaumetopoea pityocampa) and parasitoids in a Pinus forest. Bull. Entomol. Res. 2015, 105, 621–628. [Google Scholar] [CrossRef]
- Bonsignore, C.P.; Manti, F.; Castiglione, E.; Vacante, V. A study on the emergence sequence of pupal parasitoids of the pine processionary moth, Thaumetopoea pityocampa. Biocontrol. Sci. Technol. 2011, 21, 587–591. [Google Scholar] [CrossRef]
- Tarasco, E.; Triggiani, O.; Zamoum, M.; Oreste, M. Natural enemies emerged from Thaumetopoea pityocampa (Denis & Sciffermüller) (Lepidoptera Notodontidae) pupae in Southern Italy. Redia 2015, 98, 103–108. [Google Scholar]
- Buxton, R.D. The influence of host tree species on timing of pupation of Thaumetopoea pityocampa Schiff (Lep, Thaumetopoeidae) and its exposure to parasitism by Phryxe caudata Rond (Dipt, Larvaevoridae). J. Appl. Entomol. 1990, 109, 302–310. [Google Scholar] [CrossRef]
- Sands, R.J.; Kitson, J.J.N.; Raper, C.M.; Jonusas, G.; Straw, N. Carcelia iliaca (Diptera: Tachinidae), a specific parasitoid of the oak processionary moth (Lepidoptera: Thaumetopoeidae), new to Great Britain. Br. J. Entomol. Nat. Hist. 2015, 28, 225–228. [Google Scholar]
- Zeegers, T. Sluipvliegen (Diptera: Tachinidae) van de Nederlandse eikenprocessierupsen. Entomol. Ber. 1997, 57, 73–78. [Google Scholar]
- AVCI, M.; Kara, K. Tachinidae parasitoids of Traumatocampa ispartaensis from Turkey. Phytoparasitica 2002, 30, 361–364. [Google Scholar] [CrossRef]
- Tiberi, R.; Roversi, P.F.; Bin, F. Egg parasitoids of pine and oak processionary caterpillars in central Italy. Redia 1991, 74, 249–250. [Google Scholar]
- Wagenhoff, E.; Veit, H. Five years of continuous Thaumetopoea processionea monitoring: Tracing population dynamics in an arable landscape of south-western Germany. Gesunde Pflanz. 2011, 63, 51–61. [Google Scholar] [CrossRef]
- Mirchev, P.; Georgiev, G.; Boyadzhiev, P.; Matova, M. Impact of entomophages on density of Thaumetopoea pityocampa in egg stage near Ivayvovgrad, Bulgaria. Acta Zool. Bulg. 2012, 103–110. [Google Scholar]
- Tiberi, R.; Bracalini, M.; Croci, F.; Florenzano, G.T.; Panzavolta, T. Effects of climate on pine processionary moth fecundity and on its egg parasitoids. Ecol. Evol. 2015, 5, 5372–5382. [Google Scholar] [CrossRef] [Green Version]
- Kitt, J.; Schmidt, G.H. Parasitism of egg batches of the pine processionary moth Thaumetopoea wilkinsoni Tams (Lep, Thaumetopoeidae) in the mountains of Lahav (Israel). J. Appl. Entomol. 1993, 115, 484–498. [Google Scholar] [CrossRef]
- Mirchev, P.; Georgiev, G.; Tsankov, G. Long-term studies on egg parasitoids of pine processionary moth (Thaumetopoea pityocampa) in a new locality in Bulgaria. J. Entomol. Res. Soc. 2017, 19, 15–25. [Google Scholar]
- Pimentel, C.; Calvão, T.; Ayres, M.P. Impact of climatic variation on populations of pine processionary moth Thaumetopoea pityocampa in a core area of its distribution. Agric. For. Entomol. 2011, 13, 273–281. [Google Scholar] [CrossRef]
- Zwakhals, K. Pimpla processioneae and P. rufipes: Specialist versus generalist (Hymenoptera: Ichneumonidae, Pimplinae). Entomol. Ber. 2005, 65, 14–16. [Google Scholar]
- Zamoum, M.; Berchiche, S.; Sai, K.; Triggiani, O.; Tarasco, E. Preliminary survey of the occurrence of entomopathogenic nematodes and fungi in the forest soils of Algeria. Silva Lusit. 2011, 19, 141–145. [Google Scholar]
- Karabörklü, S.; Ayvaz, A.; Yilmaz, S.; Azizoglu, U.; Akbulut, M. Native entomopathogenic nematodes isolated from Turkey and their effectiveness on pine processionary moth, Thaumetopoea wilkinsoni Tams. Int. J. Pest Manag. 2015, 61, 3–8. [Google Scholar] [CrossRef]
- Hoch, G.; Verucchi, S.; Schopf, A. Microsporidian pathogens of the oak processionary moth, Thaumetopoea processionea (L.) (Lep., Thaumetopoeidae), in eastern Austria’s oak forests. Mitt. Dtsch. Ges. Allg. Angew. Entomol. 2008, 16, 225–228. [Google Scholar]
- Weseloh, R.M. Changes in population size, dispersal behavior, and reproduction of Calosoma sycophanta (Coleoptera, Carabidae), associated with changes in gypsy moth, Lymantria dispar (Lepidoptera, Lymantriidae), abundance. Environ. Entomol. 1985, 14, 370–377. [Google Scholar] [CrossRef]
- Desender, K.; Dekoninck, W.; Maes, D. Een Nieuwe Verspreidingsatlas van de Loopkevers en Zandloopkevers (Carabidae) in België; Instituut voor Natuur-en Bosonderzooek: Brussels, Belgium, 2008. [Google Scholar]
- Görn, S. From pest predator to endangered species—A sampling of thousands of dead Calosoma sycophanta (Linné, 1758) specimens illustrates the collapse of ecosystem services after insecticide treatment. Angew. Carabidol. 2019, 13, 1–4. [Google Scholar]
- Halperin, J. Mass breeding of egg parasitoids (Hym, Chalcidoeidea) of Thaumetopoea wilkinsoni Tams (Lep, Thaumetopoeidae). J. Appl. Entomol. 1990, 109, 336–340. [Google Scholar] [CrossRef]
- Masutti, L.; Battisti, A.; Milani, N.; Zanata, M.; Zanazzo, G. In vitro rearing of Ooencyrtus pityocampae Hymp, Encyrtidae, an egg parasitoid of Thaumetopoea pityocampa Lep, Thaumetopoeidae. Entomophaga 1993, 38, 327–333. [Google Scholar] [CrossRef]
- AVCI, M. Parasitism of egg-batches of the cedar processionary moth Traumatocampa ispartaensis in Turkey. Phytoparasitica 2003, 31, 118–123. [Google Scholar] [CrossRef]
- Weseloh, R.M. Experimental forest releases of Calosoma sycophanta (Coleoptera, Carabidae) against the gypsy moth. J. Econ. Entomol. 1990, 83, 2229–2234. [Google Scholar] [CrossRef]
- Schaefer, P.W.; Fuester, R.W.; Taylor, P.B.; Barth, S.E.; Simons, E.E.; Blumenthal, E.M.; Handley, E.M.; Finn, T.B.; Elliott, E.W. Current distribution and historical range expansion of Calosoma sycophanta (L.) (Coleoptera: Carabidae) in North America. J. Entomol. Sci. 1999, 34, 339–362. [Google Scholar] [CrossRef]
- Weseloh, R.M. An artificial diet for larvae of Calosoma sycophanta (Coleoptera: Carabidae), a gypsy moth (Lepidoptera: Lymantriidae) predator. J. Entomol. Sci. 1998, 33, 233–240. [Google Scholar] [CrossRef]
- Harvey, J.A.; Heinen, R.; Armbrecht, I.; Basset, Y.; Baxter-Gilbert, J.H.; Bezemer, T.M.; Böhm, M.; Bommarco, R.; Borges, P.A.V.; Cardoso, P.; et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 2020, 4, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Er, M.K.; Tunaz, H.; Gökçe, A. Pathogenicity of entomopathogenic fungi to Thaumetopoea pityocampa (Schiff.) (Lepidoptera: Thaumatopoeidae) larvae in laboratory conditions. J. Pest Sci. 2007, 80, 235–239. [Google Scholar] [CrossRef]
- Goertz, D.; Hoch, G. Influence of the forest caterpillar hunter Calosoma sycophanta on the transmission of microsporidia in larvae of the gypsy moth Lymantria dispar. Agric. For. Entomol. 2013, 15, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Wäckers, F.L.; van Rijn, P.C.J.; Heimpel, G.E. Honeydew as a food source for natural enemies: Making the best of a bad meal? Biol. Control 2008, 45, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Dulaurent, A.M.; Rossi, J.P.; Deborde, C.; Moing, A.; Menassieu, P.; Jactel, H. Honeydew feeding increased the longevity of two egg parasitoids of the pine processionary moth. J. Appl. Entomol. 2011, 135, 184–194. [Google Scholar] [CrossRef]
- Barbaro, L.; Rossi, J.-P.; Vétillard, F.; Nezan, J.; Jactel, H. The spatial distribution of birds and carabid beetles in pine plantation forests: The role of landscape composition and structure. J. Biogeogr. 2007, 34, 652–664. [Google Scholar] [CrossRef]
- Jactel, H.; Brockerhoff, E.G. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 2007, 10, 835–848. [Google Scholar] [CrossRef]
- Dulaurent, A.M.; Porte, A.J.; van Halder, I.; Vetillard, F.; Menassieu, P.; Jactel, H. Hide and seek in forests: Colonization by the pine processionary moth is impeded by the presence of nonhost trees. Agric. For. Entomol. 2012, 14, 19–27. [Google Scholar] [CrossRef]
- Jactel, H.; Birgersson, G.; Andersson, S.; Schlyter, F. Non-host volatiles mediate associational resistance to the pine processionary moth. Oecologia 2011, 166, 703–711. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Boer, J.G.; Harvey, J.A. Range-Expansion in Processionary Moths and Biological Control. Insects 2020, 11, 267. https://doi.org/10.3390/insects11050267
de Boer JG, Harvey JA. Range-Expansion in Processionary Moths and Biological Control. Insects. 2020; 11(5):267. https://doi.org/10.3390/insects11050267
Chicago/Turabian Stylede Boer, Jetske G., and Jeffrey A. Harvey. 2020. "Range-Expansion in Processionary Moths and Biological Control" Insects 11, no. 5: 267. https://doi.org/10.3390/insects11050267
APA Stylede Boer, J. G., & Harvey, J. A. (2020). Range-Expansion in Processionary Moths and Biological Control. Insects, 11(5), 267. https://doi.org/10.3390/insects11050267