Effects of Prey Distribution and Heterospecific Interactions on the Functional Response of Harmonia axyridis and Aphidius gifuensis to Myzus persicae
Abstract
:1. Introduction
2. Material and Methods
2.1. Plants and Insects
2.2. Functional Response of Single Predators or Parasitoids
2.3. Functional Response of Paired Heterospecific Enemies
2.4. Data Analysis
3. Results
3.1. Functional Response of Single Predators or Parasitoids
3.2. Functional Response of Paired Heterospecific Enemies
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bloemhard, C.M.J.; Ramakers, P.M.J. Strategies for aphid control in organically grown sweet pepper in the Netherlands. IOBC/WPRS 2008, 32, 25–28. [Google Scholar]
- van Lenteren, J.C. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl 2012, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Barratt, B.I.P.; Moran, V.C.; Bigler, F.; van Lenteren, J.C. The status of biological control and recommendations for improving uptake for the future. BioControl 2018, 63, 155–167. [Google Scholar] [CrossRef]
- Straub, C.S.; Snyder, W.E. Increasing enemy biodiversity strengthens herbivore suppression on two plant species. Ecology 2008, 89, 1605–1615. [Google Scholar] [CrossRef]
- Gontijo, L.M.; Beers, E.H.; Snyder, W.E. Complementary suppression of aphids by predators and parasitoids. Biol. Control 2015, 90, 83–91. [Google Scholar] [CrossRef]
- Snyder, W.E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 2019, 135, 73–82. [Google Scholar] [CrossRef]
- Snyder, W.E.; Ives, A.R. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology 2003, 84, 91–107. [Google Scholar] [CrossRef]
- Michaelides, G.; Sfenthourakis, S.; Pitsillou, M.; Seraphides, N. Functional response and multiple predator effects of two generalist predators preying on Tuta absoluta eggs. Pest Manag. Sci. 2018, 74, 332–339. [Google Scholar] [CrossRef]
- Schmitz, O.J. Effects of predator functional diversity on grassland ecosystem function. Ecology 2009, 90, 2339–2345. [Google Scholar] [CrossRef]
- Frago, E.; Godfray, H.C.J. Avoidance of intraguild predation leads to a long-term positive trait-mediated indirect effect in an insect community. Oecologia 2014, 174, 943–952. [Google Scholar] [CrossRef]
- Rocca, M.; Rizzo, E.; Greco, N.; Sánchez, N. Intra- and interspecific interactions between aphidophagous ladybirds: The role of prey in predator coexistence. Entomol. Exp. Appl. 2017, 162, 284–292. [Google Scholar] [CrossRef]
- Lang, B.; Rall, B.C.; Brose, U. Warming effects on consumption and intraspecific interference competition depend on predator metabolism. J. Anim. Ecol. 2012, 81, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Messelink, G.J.; Sabelis, M.W.; Janssen, A. Generalist predators, food web complexities and biological pest control in greenhouse crops. In Integrated Pest Management and Pest Control-Current and Future Tactics; Larramendy, M.L., Soloneski, S., Eds.; InTech: Rijeka, Croatia, 2012; pp. 191–214. [Google Scholar]
- Vanaclocha, P.; Papacek, D.; Monzó, C.; Verdú, M.J.; Urbaneja, A. Intra-guild interactions between the parasitoid Aphytis lingnanensis and the predator Chilocorus circumdatus: Implications for the biological control of armoured scales. Biol. Control 2013, 65, 169–175. [Google Scholar] [CrossRef]
- Martinou, A.F.; Raymond, B.; Milonas, P.G.; Wright, D.J. Impact of intraguild predation on parasitoid foraging behaviour. Ecol. Entomol. 2010, 35, 183–189. [Google Scholar] [CrossRef]
- Lipcius, R.N.; Hines, A.H. Variable functional responses of a marine predator in dissimilar homogeneous microhabitats. Ecology 1986, 67, 1361–1371. [Google Scholar] [CrossRef] [Green Version]
- Fernández-arhex, V.; Corley, J.C. The functional response of parasitoids and its implications for biological control. Biocontrol Sci. Technol. 2003, 13, 403–413. [Google Scholar] [CrossRef]
- Okuyama, T. On selection of functional response models: Holling’s models and more. BioControl 2013, 58, 293–298. [Google Scholar] [CrossRef]
- Dick, J.T.A.; Alexander, M.E.; Jeschke, J.M.; Ricciardi, A.; MacIsaac, H.J.; Robinson, T.B.; Kumschick, S.; Weyl, O.L.F.; Dunn, A.M.; Hatcher, M.J.; et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 2014, 16, 735–753. [Google Scholar] [CrossRef] [Green Version]
- Solomon, M.E. The natural control of animal populations. J. Anim. Ecol. 1949, 18, 1–35. [Google Scholar] [CrossRef]
- Murdoch, W.W.; Oaten, A. Predation and population stability. Adv. Ecol. Res. 1975, 9, 1–131. [Google Scholar]
- Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Holling, C.S. The functional response of invertebrate predators to prey density. Mem. Ent. Soc. Can. 1966, 98, 5–86. [Google Scholar] [CrossRef]
- Verheggen, F.J.; Vogel, H.; Vilcinskas, A. Behavioral and immunological features promoting the invasive performance of the harlequin ladybird Harmonia axyridis. Front. Ecol. Evol. 2017, 5, 156. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.E. Scale-dependent foraging and patch choice in fractal environments. Evol. Ecol. 1998, 12, 309–330. [Google Scholar] [CrossRef]
- Yazdani, M.; Keller, M. Mutual interference in Dolichogenidea tasmanica (Cameron) (Hymenoptera: Braconidae) when foraging for patchily-distributed light brown apple moth. Biol. Control 2015, 86, 1–6. [Google Scholar] [CrossRef]
- Hassell, M.P.; May, R.M. Stability in insect host-parasite models. J. Anim. Ecol. 1973, 42, 693–726. [Google Scholar] [CrossRef]
- Ives, A.R. Continuous-time models of host-parasitoid interactions. Am. Nat. 1992, 140, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Wajnberg, É. Time allocation strategies in insect parasitoids: From ultimate predictions to proximate behavioral mechanisms. Behav. Ecol. Sociobiol. 2006, 60, 589–611. [Google Scholar] [CrossRef]
- Kareiva, P. Population dynamics in spatially complex environments: Theory and data. Philos. Trans. R. Soc. B 1990, 330, 175–190. [Google Scholar]
- Godfray, H.C.J. Host location. In Parasitoids: Behavioral and Evolutionary Ecology; Princeton University Press: New Jersey, NJ, USA, 1994; pp. 26–81. [Google Scholar]
- Zhou, H.; Yu, Y.; Tan, X.; Chen, A.; Feng, J. Biological control of insect pests in apple orchards in China. Biol. Control 2014, 68, 47–56. [Google Scholar] [CrossRef]
- Hossie, T.J.; Murray, D.L. Spatial arrangement of prey affects the shape of ratio-dependent functional response in strongly antagonistic predators. Ecology 2016, 97, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Chi, H.; Liu, T.X. Demography and parasitic effectiveness of Aphelinus asychis reared from Sitobion avenae as a biological control agent of Myzus persicae reared on chili pepper and cabbage. Biol. Control 2016, 92, 111–119. [Google Scholar] [CrossRef]
- Xia, P.; Liu, Y.; Fan, J.; Tan, J. Geostatistical analysis on distribution dynamics of Myzus persicae (Sulzer) in flue-cured tobacco field. J. Appl. Ecol. 2015, 26, 548–554. [Google Scholar]
- Wang, S.; Zhang, R.Z.; Zhang, F. Research progress on biology and ecology of Harmonia axyridis Pallas (Coleoptera: Coccinellidae). J. Appl. Ecol. 2007, 18, 2117–2126. [Google Scholar]
- Pan, M.Z.; Liu, T.X. Suitability of three aphid species for Aphidius gifuensis (Hymenoptera: Braconidae): Parasitoid performance varies with hosts of origin. Biol. Control 2014, 69, 90–96. [Google Scholar] [CrossRef]
- Pan, M.Z.; Wang, L.; Zhang, C.Y.; Zhang, L.X.; Liu, T.X. The influence of feeding and host deprivation on egg load and reproduction of an aphid parasitoid, Aphidius gifuensis (Hymenoptera: Braconidae). Appl. Entomol. Zool. 2017, 52, 255–263. [Google Scholar] [CrossRef]
- Koch, R.L. The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. J. Insect Sci. 2003, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Berkvens, N.; Bonte, J.; Berkvens, D.; Deforce, K.; Tirry, L.; De Clercq, P. Pollen as an alternative food for Harmonia axyridis. In From Biological Control to Invasion: The Ladybird Harmonia axyridis as a Model Species; Roy, H.E., Wajnberg, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 201–210. [Google Scholar]
- Ohta, I.; Ohtaishi, M. Fertility, longevity and intrinsic rate of increase of Aphidius gifuensis Ashmead (Hymenoptera: Braconidae) on the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Appl. Entomol. Zool. 2004, 39, 113–117. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, T.J. Functional response of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) to Aphis gossypii Glover (Homoptera: Aphididae) in the laboratory. Biol. Control 2004, 31, 306–310. [Google Scholar] [CrossRef]
- Seko, T.; Miura, K. Functional response of the lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) on the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Appl. Entomol. Zool. 2008, 43, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Zhou, Z.X.; An, M.R.; Yu, X.L.; Liu, T.X. The effects of prey distribution and digestion on functional response of Harmonia axyridis (Coleoptera: Coccinellidae). Biol. Control 2018, 124, 74–81. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, Z.X.; An, M.R.; Li, Y.D.; Liu, Z.G.; Wang, L.L.; Ren, J.Z.; Liu, T.X. Conspecific and heterospecific interactions modify the functional response of Harmonia axyridis and Propylea japonica to Aphis citricola. Entomol. Exp. Appl. 2018, 166, 873–882. [Google Scholar] [CrossRef]
- Lü, X.K.; Xu, X.; Ma, L.; Liu, Q.; Chen, G.H.; Li, Q. Study on characteristics and dynamics of arthropod community in corn field of Zhaotong, Yunnan. J. Environ. Entomol. 2013, 35, 707–712. [Google Scholar]
- Core Team, R. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Juliano, S. Non-linear curve fitting: Predation and functional response curves. In Design and Analysis of Ecological Experiments; Scheiner, S.M., Gurevitch, J., Eds.; Oxford University Press: New York, NY, USA, 2001; pp. 178–196. [Google Scholar]
- Rogers, D. Random search and insect population models. J. Anim. Ecol. 1972, 41, 369–383. [Google Scholar] [CrossRef]
- Pritchard, D.; Barrios-O’Neill, D.; Bovy, H.; Paterson, R.; Pritchard, M.D. Frair: Functional response analysis in R. R Package Version 0.4. 2017. Available online: http://CRAN.R-project.org/package=frair (accessed on 10 August 2019).
- Frewin, A.J.; Xue, Y.; Welsman, J.A.; Broadbent, A.B.; Schaafsma, A.W.; Hallett, R.H. Development and parasitism by Aphelinus certus (Hymenoptera: Aphelinidae), a parasitoid of Aphis glycines (Hemiptera: Aphididae). Environ. Entomol. 2010, 39, 1570–1578. [Google Scholar] [CrossRef] [Green Version]
- Atlıhan, R.; Kaydan, M.B.; Yarımbatman, A.; Okut, H. Functional response of the coccinellid predator Adalia fasciatopunctata reveliereito walnut aphid (Callaphis juglandis). Phytoparasitica 2010, 38, 23–29. [Google Scholar] [CrossRef]
- Hassell, M.P. Non-Random Search. In The Dynamics of Arthropod Predator-Prey Systems; Princeton University Press: New Jersey, NJ, USA, 1978; pp. 50–80. [Google Scholar]
- Dieckhoff, C.; Theobald, J.C.; Wäckers, F.L.; Heimpel, G.E. Egg load dynamics and the risk of egg and time limitation experienced by an aphid parasitoid in the field. Ecol. Evol. 2014, 4, 1739–1750. [Google Scholar] [CrossRef]
- Borer, E.T.; Murdoch, W.W.; Swarbrick, S.L. Parasitoid coexistence: Linking spatial field patterns with mechanism. Ecology 2004, 85, 667–678. [Google Scholar] [CrossRef]
- Frago, E. Interactions between parasitoids and higher order natural enemies: Intraguild predation and hyperparasitoids. Curr. Opin. Insect Sci. 2016, 14, 81–86. [Google Scholar] [CrossRef]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casula, P.; Wilby, A.; Thomas, M.B. Understanding biodiversity effects on prey in multi-enemy systems. Ecol. Lett. 2006, 9, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Greenop, A.; Woodcock, B.A.; Wilby, A.; Cook, S.M.; Pywell, R.F. Functional diversity positively affects prey suppression by invertebrate predators: A meta-analysis. Ecology 2018, 99, 1771–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.; Bahlai, C.A.; Frewin, A.; McCreary, C.M.; Marteaux, L.E.D.; Schaafsma, A.W.; Hallett, R.H. Intraguild predation of the aphid parasitoid Aphelinus certus by Coccinella septempunctata and Harmonia axyridis. BioControl 2012, 57, 627–634. [Google Scholar] [CrossRef]
- Ferguson, K.I.; Stiling, P. Non-additive effects of multiple natural enemies on aphid populations. Oecologia 1996, 108, 375–379. [Google Scholar] [CrossRef]
- Bautista, R.C.; Harris, E.J. Effect of insectary rearing on host preference and oviposition behavior of the fruit fly parasitoid Diachasmimorpha longicaudata. Entomol. Exp. Appl. 1997, 83, 213–218. [Google Scholar] [CrossRef]
Treatments (E: Estimated) | Distribution | Linear Coefficient, p | Type of Response Fitted | Attack Rate a (Estimated with 95% CI) | p (Z Value) | Handling Time Th (In Hour) (Estimated with 95% CI) | p (Z Value) |
---|---|---|---|---|---|---|---|
Single H. axyridis | Aggregate | −0.006, <0.0001 | Type 2 | 1.590 (1.306–1.979) | <0.0001(22.843) | 0.006 (0.005–0.008) | <0.0001(21.484) |
Uniform | −0.005, <0.0001 | Type 2 | 1.145 (0.961–1.358) | <0.0001 (20.391) | 0.007 (0.006–0.008) | <0.0001 (16.312) | |
Single A. gifuensis | Aggregate | −0.004, <0.0001 | Type 2 | 0.645 (0.465–0.890) | <0.0001 (14.956) | 0.013 (0.007–0.021) | <0.0001 (13.047) |
Uniform | −0.005, <0.0001 | Type 2 | 0.541 (0.424–0.678) | <0.0001 (12.610) | 0.022 (0.015–0.029) | <0.0001 (13.176) | |
H. axyridis in heterospecific combination | Aggregate | −0.007, <0.0001 | Type 2 | 1.908 (1.629–2.263) | <0.0001 (22.838) | 0.007 (0.006–0.008) | <0.0001 (24.802) |
Uniform | −0.005, <0.0001 | Type 2 | 1.317 (1.024–1.642) | <0.0001 (20.096) | 0.007 (0.006–0.009) | <0.0001 (18.197) | |
A. gifuensis in heterospecific combination | Aggregate | −0.002, <0.0001 | Type 2 | 0.177 (0.129–0.249) | <0.0001 (11.469) | 0.015 (0.006–0.024) | <0.0001 (4.5899) |
Uniform | −0.002, <0.0001 | Type 2 | 0.213 (0.162–0.312) | <0.0001 (12.402) | 0.013 (0.002–0.024) | <0.0001 (5.1391) |
Predator Treatments | Model Factors | Estimated | SE | t | p |
---|---|---|---|---|---|
Single H. axyridis | Aphid density | 0.399 | 0.018 | 22.693 | <0.0001 |
Aphid distribution | −2.149 | 2.104 | −1.021 | <0.001 | |
Aphid density × aphid distribution | −0.047 | 0.019 | −2.493 | 0.013 | |
Single A. gifuensis | Aphid density | 0.195 | 0.013 | 14.587 | <0.0001 |
Aphid distribution | −0.128 | 1.730 | −0.074 | <0.001 | |
Aphid density × aphid distribution | −0.066 | 0.015 | −4.285 | <0.0001 | |
H. axyridis in heterospecific combination | Aphid density | 0.405 | 0.016 | 24.962 | <0.0001 |
Aphid distribution | −2.676 | 1.742 | −1.536 | <0.0001 | |
Aphid density × aphid distribution | −0.045 | 0.016 | −2.887 | 0.004 | |
A. gifuensis in heterospecific combination | Aphid density | 0.099 | 0.008 | 11.681 | <0.0001 |
Aphid distribution | 0.272 | 1.044 | 0.261 | 0.056 | |
Aphid density × aphid distribution | 0.017 | 0.009 | 1.831 | 0.067 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.-L.; Tang, R.; Xia, P.-L.; Wang, B.; Feng, Y.; Liu, T.-X. Effects of Prey Distribution and Heterospecific Interactions on the Functional Response of Harmonia axyridis and Aphidius gifuensis to Myzus persicae. Insects 2020, 11, 325. https://doi.org/10.3390/insects11060325
Yu X-L, Tang R, Xia P-L, Wang B, Feng Y, Liu T-X. Effects of Prey Distribution and Heterospecific Interactions on the Functional Response of Harmonia axyridis and Aphidius gifuensis to Myzus persicae. Insects. 2020; 11(6):325. https://doi.org/10.3390/insects11060325
Chicago/Turabian StyleYu, Xing-Lin, Rui Tang, Peng-Liang Xia, Bo Wang, Yi Feng, and Tong-Xian Liu. 2020. "Effects of Prey Distribution and Heterospecific Interactions on the Functional Response of Harmonia axyridis and Aphidius gifuensis to Myzus persicae" Insects 11, no. 6: 325. https://doi.org/10.3390/insects11060325
APA StyleYu, X. -L., Tang, R., Xia, P. -L., Wang, B., Feng, Y., & Liu, T. -X. (2020). Effects of Prey Distribution and Heterospecific Interactions on the Functional Response of Harmonia axyridis and Aphidius gifuensis to Myzus persicae. Insects, 11(6), 325. https://doi.org/10.3390/insects11060325