Durum Wheat Cultivars Express Different Level of Resistance to Granary Weevil, Sitophilus granarius (Coleoptera; Curculionidae) Infestation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Collection and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taylor, R.D.; Koo, W.W. 2015 outlook of the U.S. and world wheat industries, 2015–2024. Agribus. Appl. Econ. 2015, 738, 1–23. [Google Scholar]
- Ranieri, R. Geography of the durum wheat crop. Pastaria Int. 2015, 6, 24–36. [Google Scholar]
- Kabbaj, H.; Sall, A.T.; Al-Abdallat, A.; Geleta, M.; Amri, A.; Filali-Maltouf, A.; Belkadi, B.; Ortiz, R.; Bassi, F.M. Genetic diversity within a Global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front. Plant. Sci. 2017, 8, 1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sissons, M. Role of durum wheat composition on the quality of pasta and bread. Food 2008, 2, 75–90. [Google Scholar]
- Subira, J.; Peña, R.J.; Álvaro, F.; Ammar, K.; Ramdani, A.; Royo, C. Breeding progress in the pasta-making quality of durum wheat cultivars released in Italy and Spain during the 20th Century. Crop. Pasture Sci. 2014, 65, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Nazco, R.; Villegas, D.; Ammar, K.; Peña, R.J.; Moragues, M.; Royo, C. Can Mediterranean durum wheat landraces contribute to improved grain quality attributes in modern cultivars? Euphytica 2012, 185, 1–17. [Google Scholar] [CrossRef]
- Quaglia, G.B. Other durum wheat products. In Durum Wheat: Chemistry and Technology; Fabriani, G., Lintas, C., Eds.; AACC Inc.: St Paul, MN, USA, 1988; pp. 263–282. [Google Scholar]
- Warchalewski, J.R.; Gralik, J.; Nawrot, J. Possibilities of reducing stored grain damage caused by insect pests. Postêpy Nauk Rol. 2000, 6, 85–96. [Google Scholar]
- Warchalewski, J.R.; Gralik, J.; Winiecki, Z.; Nawrot, J.; Piasecka-Kwiatkowska, D. The effect of wheat-amylase inhibitors incorporated into wheat-based artificial diets on development of Sitophilus granarius L., Tribolium confusum Duv. and Ephestia kuehniella Zell. J. Appl. Entomol. 2002, 126, 161–168. [Google Scholar] [CrossRef]
- Kiszonas, A.M.; Morris, C.F. Wheat breeding for quality: A historical review. Cereal Chem. J. 2017, 95, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, K.; Chauhan, S.K.; Gore, P.G.; Mehta, P.S.; Bisht, I.S.; Bhalla, S. Evaluation of wheat landraces of north-western Himalaya against rice weevil, Sitophilus oryzae L. vis-a-vis physical seed parameters. Plant. Genet. Resour. Charact. Util. 2018, 15, 321–326. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Piesik, D.; Krasinska, A. Response of mated insects of both sexes of granary weevil to blends of volatiles a short communication. Plant. Prot. Sci. 2018, 54, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Wenda-Piesik, A.; Piesik, D.; Nowak, A.; Wawrzyniak, M. Tribolium confusum responses to blends of cereal kernels and plant volatiles. J. Appl. Entomol. 2016, 140, 558–563. [Google Scholar] [CrossRef]
- Korunić, Z. Pests of Stored Agricultural Products-Biology, Ecology and Control; Gospodarski List–Novinsko–Izdavaĉko Poduzeće: Zagreb, Croatia, 1990; pp. 103–108. (In Croatian) [Google Scholar]
- Storey, C.L. Effect and control of insects affecting corn quality. In Corn Chemistry and Technology; Watson, S.A., Ramstad, P.E., Eds.; American Association of Cereal Chemistry: St Paul, MN, USA, 1987; pp. 185–199. [Google Scholar]
- Rotim, N.; Ostojić, I. Najvažniji štetnici uskladištenih poljoprivrednih proizvoda na području Bosne i Hercegovine. Glas. Zaštite Bilja 2014, 37, 40–45. [Google Scholar]
- Schwartz, B.E.; Burkholder, W.E. Development of the granary weevil (Coleoptera: Curculionidae) on barley, corn, oats, rice, and wheat. J. Econ. Entomol. 1991, 84, 1047–1052. [Google Scholar] [CrossRef]
- Rajendran, S. Postharvest pest losses. In Encyclopedia of Pest Management; Pimentel, D., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2002; pp. 654–656. [Google Scholar]
- Sauer, D.B.; Storey, C.L.; Walker, D.E. Fungal populations in US farming-stored grain and their relationship to moisture, storage time, regions and insect infestation. Phytopathology 1984, 74, 1050–1053. [Google Scholar] [CrossRef]
- Magan, N.; Hope, R.; Cairns, V.; Aldred, D. Postharvest fungal ecology: Impact of fungal growth and mycotoxin accumulation in stored grain. Eur. J. Plant. Pathol. 2003, 109, 723–730. [Google Scholar] [CrossRef]
- Germinara, G.S.; De Cristofaro, A.; Rotundo, G. Bioactivity of short-chain aliphatic ketones against adults of the granary weevil, Sitophilus granarius (L.). Pest Manag. Sci. 2012, 68, 371–377. [Google Scholar] [CrossRef]
- Mason, L.J.; McDonough, M. Biology, Behavior, and Ecology of Stored Grain and Legume Insects. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 7–21. [Google Scholar]
- Andersen, K.T. Biologie des Kornkäfers (Calandra granaria L.). Nachr. Über Schädlingsbekämpfung 1934, 9, 105–131. [Google Scholar]
- Campbell, A.; Sinha, R.N. Damage of wheat by feeding of some stored product beetles. J. Econ. Entomol. 1976, 69, 11–13. [Google Scholar] [CrossRef]
- Fleurat-Lessard, F. Qualitative reasoning and integrated management of the quality of stored grain: A promising new approach. J. Stored Prod. Res. 2002, 38, 191–218. [Google Scholar] [CrossRef]
- Saad, A.S.A.; Tayeb, E.H.M.; El-Shazli, M.M.; Baheeg, S.A. Susceptibility of certain Egyptian and imported wheat cultivars to infestation by Sitophilus oryzae and Rhyzopertha dominica. Arch. Phytopathol. Plant. Prot. 2018, 51, 14–29. [Google Scholar] [CrossRef]
- Tomasović, S.; Javor, P.; Sesar, B. Primadur—The first Croatian durum wheat (Triticum durum Desf.) developed by the Zagreb Bc Institute. Agron. Glas. 1998, 60, 59–70. [Google Scholar]
- Tomasović, S.; Javor, P.; Sesar, B. Primadur and Bodur—The first Croatian durum winter wheat varieties (Triticum durum Desf.) developed by the Bc institute for breeding and production of field crops—Zagreb. Sjemenarstvo 1999, 16, 389–401. [Google Scholar]
- Badmin, J. Techniques for Evaluating Insect Resistance in Crop Plants; Smith, C.M., Khan, Z.R., Pathak, M.D., Eds.; CRC Press: Boca Raton, FL, USA, 1994; 320p. [Google Scholar]
- El Bouhssini, M.; Amri, A.; Hatchett, J.H.; Lhaloui, S. New Sources of Resistance in Wheat to Hessian Fly, Mayetiola destructor (Say), (Diptera: Cecidomyiidae) im Morocco. Available online: http://webagris.inra.org.ma/doc/awamia/07705.pdf (accessed on 28 April 2020).
- Shukle, R.H.; Craver, P.B.; Mocelin, J.R.C. Responses of Susceptible and Resistant Wheat Associated with Hessian Fly (Diptera: Cecidomyiidae) Infestation. Environ. Entomol. 1992, 21, 845–853. [Google Scholar] [CrossRef]
- Holmes, N.; Peterson, L. Resistance of Spring Wheats to the Wheat Stem Sawfly, Cephus ductus Nort. (Hymenoptera: Cephidae) II. Resistance to the Larva. Can. Entomol. 1962, 94, 348–365. [Google Scholar] [CrossRef]
- McKenzie, R.I.H.; Lamb, R.J.; Aung, T.; Wise, I.L.; Barker, P.; Olfert, O.O. Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant. Breed. 2002, 121, 383–388. [Google Scholar] [CrossRef]
- Barker, P.S.; McKenzie, R.I.H. Possible sources of resistance to the wheat midge in wheat. Can. J. Plant. Sci. 1996, 76, 689–695. [Google Scholar] [CrossRef]
- Vera, C.L.; Fox, S.L.; DePauw, R.M.; Smith, M.A.H.; Wise, I.L.; Clarke, F.R.; Procunier, J.D.; Lukow, O.M. Relative performance of resistant wheat varietal blends and susceptible wheat cultivars exposed to wheat midge, Sitodiplosis mosellana (Géhin). Can. J. Plant. Sci. 2013, 93, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Givovich, A.; Niemeyer, H.M. Role of hydroxamic acids in the resistance of wheat to the Russian Wheat Aphid, Diuraphis noxia (Mordvilko) (Hom., Aphididae). J. Appl. Entomol. 2009, 120, 537–539. [Google Scholar] [CrossRef]
- Botha, A.; Li, Y.; Lapitan, N.L.V. Cereal host interactions with Russian wheat aphid: A review. J. Plant. Interact. 2005, 1, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Belefant-Miller, H.; Porter, D.R.; Pirce, M.L.; Mort, A.J. An early indicator of resistance in barley to Russian wheat aphid. Plant. Physiol. 1994, 105, 1289–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leszczynski, B.; Dixon, A.F.G. Resistance of cereals to aphids: Interaction between hydroxamic acids and the aphid Sitobion avenae (Homoptera: Aphididae). Ann. Appl. Biol. 2008, 117, 21–30. [Google Scholar] [CrossRef]
- Thackray, D.J.; Wrattent, S.D.; Edwards, P.J.; Niemeyer, H.M. Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in Gramineae in relation to hydroxamic acid levels. Ann. Appl. Biol. 2008, 116, 573–582. [Google Scholar] [CrossRef]
- Leszczynski, B.; Dixon, A.F.G. Resistance of cereals to aphids: The interaction between hydroxamic acids and glutathione S- transferases in the grain aphid Sitobion avenae (F.) (Hom., Aphididae). J. Appl. Entomol. 2009, 113, 61–67. [Google Scholar] [CrossRef]
- Bohidar, K.; Wratten, S.D.; Niemeyer, H.M. Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Ann. Appl. Biol. 1986, 109, 193–198. [Google Scholar] [CrossRef]
- Razmjou, J.; Mohamadi, P.; Golizadeh, A.; Hasanpour, M.; Naseri, B. Resistance of Wheat Lines to Rhopalosiphum padi (Hemiptera: Aphididae) Under Laboratory Conditions. J. Econ. Entomol. 2012, 105, 592–597. [Google Scholar] [CrossRef]
- Porter, D.R.; Burd, J.D.; Shufran, K.A.; Webster, J.A. Efficacy of Pyramiding Greenbug (Homoptera: Aphididae) Resistance Genes in Wheat. J. Econ. Entomol. 2000, 93, 1315–1318. [Google Scholar] [CrossRef]
- Porter, D.R.; Burd, J.D.; Shufran, K.A.; Webster, J.A.; Teetes, G.L. Greenbug (Homoptera: Aphididae) Biotypes: Selected by Resistant Cultivars or Preadapted Opportunists? J. Econ. Entomol. 1997, 90, 1055–1065. [Google Scholar] [CrossRef]
- Debona, D.; Rodrigues, F.A.; Rios, J.A.; Nascimento, K.J.T.; Silva, L.C. The effect of silicon on antioxidant metabolism of wheat leaves infected by Pyricularia oryzae. Plant. Pathol. 2014, 63, 581–589. [Google Scholar] [CrossRef]
- Ozberk, I.; Atlıb, A.; Pfeifferc, W.; Ozberkd, F.; Coskune, Y. The effect of sunn pest (Eurigaster integriceps) damage on durum wheat: Impact in the marketplace. Crop. Prot. 2005, 24, 267–274. [Google Scholar] [CrossRef]
- Pellegrineschi, A.; Brito, R.M.; Velazquez, L.; Noguera, L.M.; Pfeiffer, W.; McLean, S.; Hoisington, D. The effect of pretreatment with mild heat and drought stresses on the explant and biolistic transformation frequency of three durum wheat cultivars. Plant. Cell Rep. 2002, 20, 955–960. [Google Scholar] [CrossRef]
- Cai, Q.N.; Zhang, Q.W.; Cheo, M. Contribution of indole alkaloids to Sitobion avenae (F.) resistance in wheat. JEN 2004, 128. [Google Scholar] [CrossRef]
- SIS. Societa Italiana Sementi. Available online: http://www.sisonweb.com/en/product-detail.php?idProd=226 (accessed on 14 March 2020).
- Tabatabeefar, A. Moisture-dependent physical properties of wheat. Int. Agrophysics 2003, 17, 207–211. [Google Scholar]
- Dinuţă, A.; Bunescu, H.; Bodis, I. Contributions to the Knowledge of Morphology of the Granary Weevil. (Sitophilus granarius L.), Major Pest of the Stored Cereals. Bull. Uasvm Agric. 2009, 66, 59–66. [Google Scholar]
- Trematerra, P.; Sciarreta, A.; Tamasi, E. Behavioural responses of Oryzaephilus surinamensis, Tribolium castaneum and Tribolium confusum to naturally and artificially damaged durum wheat kernels. Entomol. Exp. Appl. 2000, 94, 195–200. [Google Scholar] [CrossRef]
- Trematerra, P.; Colacci, M. Preliminary results on impact of nitrogen fertilisation on Sitophilus zeamais wheat-food preferences and progeny production. Bull. Insectol. 2015, 68, 281–286. [Google Scholar]
- Ouellette, E.; Raghavan, G.S.V.; Reeleder, R.D. Volatile profiles for diseases detection in stored carrots. Can. Agric. Eng. 1990, 32, 255–261. [Google Scholar]
- Waterer, D.R.; Pritchard, M.K. Monitoring of volatiles: A technique for detection of soft rot (Erwinia carotovora) i potato tubers. Can. J. Plant Pathol. 1984, 6, 165–171. [Google Scholar] [CrossRef]
- Waterer, D.R.; Pritchard, M.K. Volatile monitoring as a technique for differentiating between E. carotovora and C. sepedonium infections in stored potatoes. Am. Potato J. 1984, 61, 345–353. [Google Scholar] [CrossRef]
- Varns, J.L.; Glynn, M.T. Detection of disease in stored potatoes by volatile monitoring. Am. Potato J. 1979, 56, 185–197. [Google Scholar] [CrossRef]
- Gylling Data Management Inc. ARM 2019® GDM Software, Revision 2019.4, August 5, 2019 (B = 25105); Gylling Data Management Inc.: Brookings, SD, USA, 2019 5 August. [Google Scholar]
- Nawrot, J.; Warchalewski, J.R.; Piasecka-Kwiatkowska, D.; Niewiada, A.; Gawlak, M.; Grundas, S.T.; Fornal, J. The effect of some biochemical and technological properties of wheat grain on granary weevil (Sitophilus granarius L.) development. In Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Săo Paulo, Brazil, 15–18 October 2006; pp. 400–407. [Google Scholar]
- Kučerova, Z.; Aulicky, R.; Stejskal, V. Sitophilus granarius (Curculionidae): Outdoor occurrence in vicinity of a grain store. Res. Inst. Crop. Prod. 2007, 30, 167–171. [Google Scholar]
- Mazzeo, M.F.; Di Stasio, L.; D’Ambrosio, C.; Arena, S.; Scaloni, A.; Corneti, S.; Ceriotti, A.; Tuberosa, R.; Siciliano, R.A.; Picariello, G.; et al. Identification of early represented gluten proteins during durum wheat grain development. J. Agric. Food Chem. 2017, 65, 3242–3250. [Google Scholar] [CrossRef] [PubMed]
- Franco, O.L.; Rigden, D.J.; Melo, F.R.; Grossi de Sa, M.F. Plant—Amylase inhibitors and their interaction with insects amylases. Structure, function and potential for crop protection. Eur. J. Biochem. 2002, 269, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, J. The susceptibility of grain of various wheat varieties and cultivars to the post-harvest infestation by granary weevil (Sitophilus granarius L.). Pr. Nauk. Inst. Ochr. Roœlin 1981, 23, 133–141. [Google Scholar]
- Keskin, S.; Ozkaya, H. Effect of storage and insect infestation on the technological properties of wheat. J. Food 2015, 13, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Keskin, S.; Yalcin, E.; Ozkaya, H. Effects of Storage and Granary Weevil Infestation on Gel Electrophoresis and Protein Solubility Properties of Hard and Soft Wheat Flours. J. Econ. Entomol. 2018, 111, 1454–1460. [Google Scholar] [CrossRef]
- Baker, J.E. Amylase/proteinase ratios in larval midguts of ten stored product insects. Entomol. Exp. Appl. 1986, 40, 41–46. [Google Scholar] [CrossRef]
- Warchalewski, J.R.; Piasecka-Kwiatkowska, D.; Madaj, D. Extraction from cereal grain soluble proteins with the high inhibitory activities against insects -amylases. Sci. Pap. Agric. Univ. Poznañ. Food Sci. Technol. 1997, 1, 69–75. [Google Scholar]
- Warchalewski, J.R.; Tkachuk, R. Durum wheat alpha-amylases: Isolation and purification. Cereal Chem. 1978, 55, 146–156. [Google Scholar]
- Oppert, B.; Morgan, T.D.; Kramer, K.J. Inhibitor strategies to control coleopteran pests. Int. Congr. Ser. 2004, 1275, 149–156. [Google Scholar] [CrossRef]
- Ritz, J. Uskladištavanje Ratarskih Proizvoda. Knjiga I; Prehrambeno Tehnološki Inženjering: Zagreb, Croatia, 1997. [Google Scholar]
Morpho-physiological Characteristics | Durum Wheat Cultivars | |||
---|---|---|---|---|
Tito Flavio | Marco Aurelio | Cesar | Primadur | |
Earing time | Medium-Late | Medium | Medium-late | Medium |
Plant size | Medium | Medium | Medium | Medium |
Resistance | ||||
Lodging | Excellent | Good | Excellent | Excellent |
Cold | Excellent | Good | Good | Good |
Powdery mildew | Good | Good | Good | Excellent |
Brown rust | Excellent | Good | Good | Good |
Septoria | Excellent | Excellent | Medium | Excellent |
Fusariumspp. | Good | Good | Excellent | Medium |
Quality characteristics | ||||
Thousand kernel weight | 50–57 g | 53–58 g | 45–50 g | 46–50 g |
Hectoliter weight | High | High | Excellent | High |
Yellow index | Good | High | Excellent | High |
Protein content | Good | Excellent | High | High |
Gluten tenacity | Medium | High | Good | High |
Evaluation Period | Durum Wheat Cultivars | HSD 1 p = 0.05 *** | |||
---|---|---|---|---|---|
Marco Aurelio | Cesare | Primadur | Tito Flavio | ||
1 | 20 * | 20 | 20 | 20 | - |
2 | 1.5 ± 1.5 | 9.3 ± 3.5 | 9.5 ± 3.6 | 5.3 ± 3.9 BC | 13.33 |
3 | 3.5 ± 3.5 | 6.3 ± 2.8 | 9.5 ± 3.4 | 4.0 ± 2.0 C | 12.60 |
4 | 21.3 ± 20.6 | 55.5 ± 35.8 | 11.3 ± 9.1 | 102.3 ± 31.2 ABC 2 | 114.40 |
5 | 35.5 ± 33.2 | 67.5 ± 45.0 | 11.3 ± 9.7 | 108.3 ± 26.8 ABC | 137.41 |
6 | 4.9 ± 0.5 ab 1,** | 32.3 ± 0.3 ab | 1.9 ± 0.3 b | 92.4 ± 0.01 a, ABC | 90.33 |
7 | 61.8 ± 47.4 | 68.8 ± 44.0 | 4.3 ± 2.4 | 147.8 ± 62.5 A | 169.47 |
8 | 75.0 ± 59.5 ab | 97.0 ± 47.8 ab | 0.0 ± 0.0 b | 133.8 ± 44.5 a, AB | 131.65 |
9 | 60.3 ± 47.6 ab | 107.0 ± 34.7 ab | 0.0 ± 0.0 b | 121.3 ± 51.4 a, ABC | 194.2 |
HSD2p=0.05 *** | 35.75 | 50.72 | 21.34 | 118.31 |
EvaluationPeriod | Durum Wheat Cultivars | HSD 1 p = 0.05 ** | |||
---|---|---|---|---|---|
Marco Aurelio | Cesare | Primadur | Tito Flavio | ||
1¥ | 170.43 ± 2.3 C 2 | 177.23 ± 2.3 | 179.6 ± 3.4 | 175.08 ± 2.6 B | 11.59 |
2 | 167.18 ± 0.6 b 1,*, A | 177.95 ± 1.4 ab | 179.4. ± 1.2 a | 169.88 ± 3.3 b, A | 4.19 |
3 | 166.78 ± 2.1 b, AB | 176.6 ± 0.8 a | 175.4 ± 2.9 a | 169.65 ± 1.4 ab, A | 8.56 |
4 | 156.88 ± 1.9 ABC | 175.58 ± 2.4 | 173.0 ± 2.1 | 168.8 ± 2.9 AB | 9.83 |
5 | 156.93 ± 2.1 ABC | 178.68 ± 4.7 | 175.15 ± 7.6 | 158.2 ± 8.2 A | 27.09 |
6 | 156.08 ± 0.0 ABC | 174.78 ± 0.0 | 177.62 ± 0.0 | 154.96 ± 0.0 A | 28.04 |
7 | 155.78 ± 4.8 ABC | 171.18 ± 8.3 | 177.6 ± 6.2 | 154.73 ± 9.6 A | 30.98 |
8 | 145.58 ± 7.6 b, BC | 171.9 ± 1.2 ab | 177.6 ± 6.2 a | 134.38 ± 12.9 b, A | 40.61 |
9 | 143.34 ± 9.2 b, ABC | 165.65 ± 5.2 ab | 177.5 ± 6.0 a | 131.65 ± 14.8 b, A | 55.53 |
HSD2p=0.05 ** | 21.23 | 22.03 | 20.48 | 37.17 |
Evaluation Period | Durum Wheat Cultivars | HSD 1 p = 0.05 ** | |||
---|---|---|---|---|---|
Marco Aurelio | Cesare | Primadur | Tito Flavio | ||
1¥ | 13.5 ± 0.0 c 1,* | 13.78 ± 0.0 ab, A 2 | 13.6 ± 0.1 bc, A | 13.9 ± 0.0 a, B | 0.22 |
2 | 11.85 ± 0.1 c | 12.6 ± 0.0 a, AB | 12.33 ± 0.1 b, AB | 12.78 ± 0.2 a, B | 0.08 |
3 | 11.68 ± 0.2 | 12.38 ± 0.2 AB | 11.88 ± 0.1 B | 12.53 ± 0.3 B | 0.99 |
4 | 11.68 ± 0.3 | 12.3 ± 0.1 AB | 11.85 ± 0.2 B | 12.58 ± 0.4 B | 1.35 |
5 | 11.65 ± 0.2 | 11.6 ± 0.4 AB | 11.53 ± 0.4 B | 13.18 ± 0.7 B | 2.24 |
6 | 11.72 ± 0.0 | 11.82 ± 0.0 AB | 11.16 ± 0.0 B | 12.8 ± 0.0 B | 3.53 |
7 | 12.00 ± 0.6 | 12.15 ± 1.3 AB | 10.95 ± 0.5 B | 15.08 ± 2.4 B | 4.06 |
8 | 13.45 ± 1.3 b | 11.10 ± 0.0 b, B | 10.95 ± 0.5 b, B | 24.50 ± 0.9 a, A | 3.05 |
9 | 13.8 ± 2.8 b | 11.6 ± 0.6 b, AB | 10.95 ± 0.5 b, B | 25.25 ± 0.6 a, A | 6.18 |
HSD2p=0.05 ** | 4.45 | 2.31 | 1.42 | 4.34 |
Evaluation Period | Durum Wheat Cultivars | HSD 1 p = 0.05 ** | |||
---|---|---|---|---|---|
Marco Aurelio | Cesare | Primadur | Tito Flavio | ||
1¥ | 81.43 ± 0.2 ab 1,*, A2 | 83.17 ± 0.5 a, A | 85.02 ± 0.6 a, A | 78.68 ± 1.1 b, A | 4.06 |
2 | 81.25 ± 0.3 b, A | 83.1 ± 0.7 ab, A | 84.78 ± 0.6 a, A | 78.18 ± 1.6 b, A | 2.05 |
3 | 79.83 ± 0.3 ab, AB | 82.6 ± 1.1 ab, A | 84.28 ± 1.1 a, AB | 78.23 ± 1.6 b, A | 5.32 |
4 | 76.75 ± 1.3 ABC | 77.6 ± 1.5 AB | 79.23 ± 1.0 C | 76.75 ± 1.2 A | 6.12 |
5 | 78.23 ± 1.0 ABC | 77.95 ± 3.2 AB | 80.7 ± 1.7 BC | 76.9 ± 4.0 A | 15.97 |
6 | 78.3 ± 0.0 ABC | 77.55 ± 0.0 AB | 79.98 ± 0.0 BC | 75.37 ± 0.0 A | 13.12 |
7 | 73.7 ± 1.7 ABC | 76.43 ± 4.6 AB | 80.6 ± 1.3 C | 70.65 ± 4.2 AB | 11.20 |
8 | 71.28 ± 3.3 ab, BC | 74.85 ± 3.4 a, AB | 80.6 ± 1.3 a, C | 60.73 ± 1.6 b, B | 9.62 |
9 | 69.58 ± 4.0 ab, C | 70.28 ± 4.0 ab, B | 80.6 ± 1.3 a, C | 60.7 ± 1.6 b, B | 11.34 |
HSD2p=0.05 ** | 9.18 | 11.41 | 3.64 | 11.93 |
Climate Condition | Durum Wheat Cultivars | HSD p = 0.05 ** | |||
---|---|---|---|---|---|
Marco Aurelio | Cesare | Primadur | Tito Flavio | ||
Temperature | 27 ± 0.4 a * | 26.2 ± 0.2 a | 22.5 ± 0.4 b | 26.2 ± 0.5 a | 2.38 |
Humidity | 53.5 ± 2.5 b | 66 ± 2.7 ab | 28 ± 0.7 c | 72.6 ± 2.7 a | 17.11 |
Indicators | Durum Wheat Cultivars | |||
---|---|---|---|---|
Marco Aurelio | Cesare | Primadur | Tito Flavio | |
Unpleasant odors | ++ | ++ | - | +++ |
Condensation on top | ++ | +++ | - | +++ |
Excessive moisture | ++ | +++ | - | +++ |
Visible molds | + | ++ | - | +++ |
Diseased tissues | + | ++ | - | ++ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemic, D.; Mikac, K.M.; Genda, M.; Jukić, Ž.; Pajač Živković, I. Durum Wheat Cultivars Express Different Level of Resistance to Granary Weevil, Sitophilus granarius (Coleoptera; Curculionidae) Infestation. Insects 2020, 11, 343. https://doi.org/10.3390/insects11060343
Lemic D, Mikac KM, Genda M, Jukić Ž, Pajač Živković I. Durum Wheat Cultivars Express Different Level of Resistance to Granary Weevil, Sitophilus granarius (Coleoptera; Curculionidae) Infestation. Insects. 2020; 11(6):343. https://doi.org/10.3390/insects11060343
Chicago/Turabian StyleLemic, Darija, Katarina M. Mikac, Matej Genda, Željko Jukić, and Ivana Pajač Živković. 2020. "Durum Wheat Cultivars Express Different Level of Resistance to Granary Weevil, Sitophilus granarius (Coleoptera; Curculionidae) Infestation" Insects 11, no. 6: 343. https://doi.org/10.3390/insects11060343
APA StyleLemic, D., Mikac, K. M., Genda, M., Jukić, Ž., & Pajač Živković, I. (2020). Durum Wheat Cultivars Express Different Level of Resistance to Granary Weevil, Sitophilus granarius (Coleoptera; Curculionidae) Infestation. Insects, 11(6), 343. https://doi.org/10.3390/insects11060343