ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species and Instars from RGB Images
Abstract
:1. Introduction
2. Data and Methods
2.1. Experimental Datasets
2.2. Differences in Locust Phenotypic Characteristics
2.3. ResNet-Locust-BN Network
2.4. Experimental Process
3. Results
3.1. Optimization of the Experimental Parameters
3.2. Recognition Accuracy of Different CNN Models
4. Discussion
4.1. Comparison Results Summary
4.2. Shortage and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Lecoq, M.; Latchininsky, A.; Hunter, D. Locust and Grasshopper Management. Ann. Rev. Entomol. 2019, 64, 15–34. [Google Scholar] [CrossRef]
- Wang, X.; Fang, X.; Yang, P.; Jiang, X.; Jiang, F.; Zhao, D.; Li, B.; Cui, F.; Wei, J.; Ma, C. The locust genome provides insight into swarm formation and long-distance flight. Nat. Commun. 2014, 5, 2957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Din, Y.Q.; Li, D.M.; Chen, Y.P. Studies on the patterns of distribution of the oriental migratory locust and its pratical sightificance. Acta Entomol. Sin. 1978, 21, 243–259, (In Chinese with English Abstract). [Google Scholar]
- Ye, S.J.; Zhu, D.; Yao, X.; Zhang, N.; Fang, S.; Li, L. Development of a highly flexible mobile GIS-based system for collecting arable land quality data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4432–4441. [Google Scholar] [CrossRef]
- Latchininsky, A. Locusts and remote sensing: A review. J. Appl. Remote Sens. 2013, 7, 75–99. [Google Scholar] [CrossRef] [Green Version]
- Sivanpillai, R.; Latchininsky, A.; Driese, K.; Kambulin, V. Mapping locust habitats in River Ili Delta, Kazakhstan, using Landsat imagery. Agric. Ecosyst. Environ. 2006, 117, 128–134. [Google Scholar] [CrossRef]
- Ye, S.J.; Yan, T.L.; Yue, Y.L.; Lin, W.Y.; Li, L.; Yao, X.C.; Mu, Q.Y.; Li, Y.Q.; Zhu, D.H. Developing a reversible rapid coordinate transformation model for the cylindrical projection. Comput. Geosci. 2016, 89, 44–56. [Google Scholar] [CrossRef]
- Ye, S.J.; Zhang, C.; Wang, Y.; Liu, D.; Du, Z.; Zhu, D. Design and implementation of automatic orthorectification system based on GF-1 big data. Trans. Chinese Soc. Agric. Eng. 2017, 33, 266–273, (In Chinese with English Abstract). [Google Scholar]
- Ye, S.J.; Liu, D.; Yao, X.; Tang, H.; Xiong, Q.; Zhuo, W.; Du, Z.; Huang, J.; Su, W.; Shen, S.; et al. RDCRMG: A raster dataset clean & reconstitution multi-grid architecture for remote sensing monitoring of vegetation dryness. Remote Sens. 2018, 10, 1376. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Werf, W.V.D.; Woldewahid, G.; Huis, A.; Butrous, M.; Sýkora, K.V. Plant communities predict the distribution of solitarious desert locust Schistocerca gregaria. J. Appl. Ecol. 2005, 42, 989–997. [Google Scholar] [CrossRef]
- Bryceson, K.P.; Wright, D.E. An analysis of the 1984 locust plague in Australia using multitemporal landsat multispectral data and a simulation-model of locust development. Agric. Ecosyst. Environ. 1986, 16, 87–102. [Google Scholar] [CrossRef]
- Bryceson, K.P. Digitally processed satellite data as a tool in detecting potential Australian plague locust outbreak areas. J. Environ. Manag. 1990, 30, 191–207. [Google Scholar] [CrossRef]
- Waldner, F.; Ebbe, M.; Cressman, K.; Defourny, P. Operational monitoring of the desert locust habitat with earth observation: An Assessment. ISPRS Int. J. Geo-Inf. 2015, 4, 2379–2400. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Huang, W.; Dong, Y.; Peng, D.; Zheng, Q.; Yang, P. The influence of landscape’s dynamics on the oriental migratory locust habitat change based on the time-series satellite data. J. Environ. Manag. 2018, 218, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, C.; Taratiel, D.; Casanova, L.J. Desert locust detection using Earth observation satellite data in Mauritania. J. Arid Environ. 2019, 164, 29–37. [Google Scholar] [CrossRef]
- Senay, S.; Worner, S. Multi-Scenario Species Distribution Modeling. Insects 2019, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Yao, Q.; Chen, G.; Wang, Z.; Zhang, C.; Yang, B.; Tang, J. Automated detection and identification of white-backed planthoppers in paddy fields using image processing. J. Integr. Agric. 2017, 16, 1547–1557. [Google Scholar] [CrossRef]
- Martineau, M.; Conte, D.; Raveaux, R.; Arnault, I.; Munier, D.; Venturini, G. A survey on image-based insect classification. Pattern Recogn 2017, 65, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Goto, A.; Liu, X.; Robinson, C.A.; Ridgway, N.D. Multisite phosphorylation of oxysterol-binding protein regulates sterol binding and activation of sphingomyelin synthesis. Mol. Boil. Cell 2012, 23, 3624–3635. [Google Scholar] [CrossRef]
- Drake, M.; Yoichi, H.; Watanabe, T. Real-time insect monitoring system by using field server. World Conf. Agric. Inf. IT 2008, 17, 277–282. [Google Scholar]
- Solis-Sánchez, L.O.; Juan, J.; Torres-Pacheco, I.; Guevara-González, R.G.; Castañeda-Miranda, C.L.; Alaniz-Lumbreras, P.D. Scale invariant feature approach for insect monitoring. Comput. Electron. Agric. 2011, 75, 92–99. [Google Scholar] [CrossRef]
- Cai, Q.; He, D.J. Identification of vegetable leaf-eating pests based on image analysis. J. Comput. Appl. 2010, 30, 1870–1872. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, F.Q. Machine Vision and Wavelet Analysis-Based Farmland Pest Identification System; Zhengzhou University: Henan, China, 2003; (In Chinese with English Abstract). [Google Scholar]
- Zhen, Y.J.; Wu, G.; Wang, Y.M.; Mao, W. Locust images detection based on fuzzy pattern recognition. Trans. Chin. Soc. Agric. Eng. 2010, 26, 21–25, (In Chinese with English abstract). [Google Scholar]
- Xiong, X.M.; Wang, Y.M.; Zhang, X.C. Detection of Locusts Using Near-Infrared Spectroscopy and Cluster Analysis; Actual Tasks on Agricultural Engineering, International Symposium on Agricultural Engineering: Opatija, Croatia, 2007. [Google Scholar]
- Zhang, Y.; Wu, L.; Wei, G.; Wu, H. Improved split-merge segmentation used for locust image. Comput. Eng. Appl. 2009, 14, 34–38. [Google Scholar]
- Zhang, J. Research and Application of Diagnosis Technologies for Crop Pests based on Image Recognition. Ph.D. Thesis, University of Science and Technology of China, Anhui, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Chen, T.; Zeng, J.; Xie, C.; Wang, R.; Liu, W.; Zhang, J.; Li, R.; Chen, H.; Hu, H.; Dong, W. Intelligent identification system of disease and insect pests based on deep learning. China Plant Prot. 2019, 39, 26–34. (In Chinese) [Google Scholar]
- Thenmozhi, K.; Srinivasulu, R. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 2019, 164, 104906. [Google Scholar] [CrossRef]
- Xie, C.; Wang, R.; Zhang, J.; Chen, P.; Dong, W.; Li, R.; Chen, T.; Chen, H. Multi-level learning features for automatic classification of field crop pests. Comput. Electron. Agric. 2018, 152, 233–241. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, J.; Li, R.; Li, J.; Hong, P.; Xia, J.; Chen, P. Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning. Comput. Electron. Agric. 2015, 119, 123–132. [Google Scholar] [CrossRef]
- Li, L.; Zhu, D.; Ye, S.J.; Yao, X.; Li, J.; Zhang, N.; Han, Y.; Zhang, L. Design and implementation of geographic information systems, remote sensing, and global positioning system-based information platform for locust control. J. Appl. Remote Sens. 2014, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.C.; Yang, Y.; Wang, J.; Xu, W.; Yuille, A.L. Attention to scale: Scale-aware semantic image segmentation. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Dou, Z.; Zhang, B.; Yu, X. A new alternating minimization algorithm for image segmentation. In Proceedings of the International Conference on Wireless, Mobile and Multi-Media, Beijing, China, 21–23 April 2016. [Google Scholar]
- Ponttuset, J.; Arbelaez, P.; Barron, J.; Marques, F.; Malik, J. Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 128–140. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on International Conference on Machine Learning, Stockholm, Sweden, 6–11 July 2015. [Google Scholar]
- Shang, W.; Chiu, J.; Sohn, K. Exploring Normalization in Deep Residual Networks with Concatenated Rectified Linear Units. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 1509–1516. [Google Scholar]
- Sohn, K.; Yan, X.; Lee, H. Learning structured output representation using deep conditional generative models. In Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Curran Associates, Inc.: New York, NY, USA, 2015; pp. 3483–3491. [Google Scholar]
- Shang, W.; Sohn, K.; Almeida, D.; Lee, H. Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. In Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Volume 48, pp. 2217–2225. [Google Scholar]
- Lu, S.H.; Ye, S.J. Using an image segmentation and support vector machine method for identifying two locust species and instars. J. Integr. Agric. 2020, 19, 1301–1313. [Google Scholar] [CrossRef]
- Silva, F.; Sella, L.; Francoy, T.; Costa, A. Evaluating classification and feature selection techniques for honeybee subspecies identification using wing images. Comput. Electron. Agric. 2015, 114, 68–77. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest identification via deep residual learning in complex background. learning. Comput. Electron. Agric. 2017, 141, 351–356. [Google Scholar] [CrossRef]
- Wen, C.; Wu, D.; Hu, H.; Pan, W. Pose estimation-dependent identification method for field moth images using deep learning architecture. Biosyst. Eng. 2015, 136, 117–128. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 4700–4708. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 1492–1500. [Google Scholar]
- Ye, S.J.; Song, C.Q.; Shen, S.; Gao, P.C.; Cheng, C.X.; Cheng, F.; Wan, C.J.; Zhu, D.H. Spatial pattern of arable land-use intensity in China. Land Use Policy 2020, 99, 104845. [Google Scholar] [CrossRef]
No. | Species | Instars | Training Set Size | Validation Set Size | Testing Set Size |
---|---|---|---|---|---|
1 | AM Locust | 3 | 4000 | 1000 | 1000 |
2 | AM Locust | 4 | 4000 | 1000 | 1000 |
3 | AM Locust | adult | 4000 | 1000 | 1000 |
4 | Rice Locust | adult | 4000 | 1000 | 1000 |
5 | Cotton Locust | adult | 4000 | 1000 | 1000 |
Species | Instar | Antennae Segments | Length (mm) | Coloring |
---|---|---|---|---|
AM locust | 3 | 20–21 | 10–20 | Gregarious: black; Dispersed: gray-green, brown-green; |
AM locust | 5 | 24–25 | 26–40 | Gregarious: head reddish-brown, back black-brown, back foot diameter node light yellow Dispersed: in the color of the environment; |
AM locust | adult | - | 35–52 | Gregarious: reddish-brown; Dispersed: mostly green, following the environmental color, overall body color is lighter; |
Rice locust | adult | - | - | Green-brown green, or brownish back, side green; |
Cotton locust | adult | - | 45–81 | Yellowish green, hind wings are rose; |
No. | CNN Model | Accuracy | No. | CNN Model | Accuracy |
---|---|---|---|---|---|
1 | AlexNet | 73.68% | 4 | ResNet50 | 80.84% |
2 | GoogLeNet | 69.12% | 5 | VggNet | 80.70% |
3 | ResNet18 | 67.60% | - | - | - |
Hardware Facilities | Software Environment | ||
---|---|---|---|
Server configuration | Intel® Xeon(R) CPU E3-1230 v2@ 3.50 GHz, 32 GB memory | Operating system | Ubuntu 16.04 |
Graphics processing unit model | 11 GB GTX 1080Ti | Plug-ins | Caffe, CUDA 8.0, cuDNN 5.1 |
Image acquisition device | Canon E.O.S. 5D Mark II | Development environment | JetBrains PyCharm, Python |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, S.; Lu, S.; Bai, X.; Gu, J. ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species and Instars from RGB Images. Insects 2020, 11, 458. https://doi.org/10.3390/insects11080458
Ye S, Lu S, Bai X, Gu J. ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species and Instars from RGB Images. Insects. 2020; 11(8):458. https://doi.org/10.3390/insects11080458
Chicago/Turabian StyleYe, Sijing, Shuhan Lu, Xuesong Bai, and Jinfeng Gu. 2020. "ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species and Instars from RGB Images" Insects 11, no. 8: 458. https://doi.org/10.3390/insects11080458
APA StyleYe, S., Lu, S., Bai, X., & Gu, J. (2020). ResNet-Locust-BN Network-Based Automatic Identification of East Asian Migratory Locust Species and Instars from RGB Images. Insects, 11(8), 458. https://doi.org/10.3390/insects11080458