Functional Variation in Dipteran Gut Bacterial Communities in Relation to Their Diet, Life Cycle Stage and Habitat
Abstract
:Simple Summary
Abstract
1. Introduction
2. GBCs Are Supporting Diptera to Exploit Specific Niches and Food Sources
3. Effects of Diet on Differences in Gut Microbial Community Composition among Dipteran Species
4. Additional Sources of Variation in Dipteran GBC
4.1. Variations in GBCs during the Life Cycle
4.2. Effect of Environment on Dipteran GBCs
4.3. Interactions with Other Microorganisms
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kastinger, C.; Weber, A. Bee-flies (Bombylius spp., Bombyliidae, Diptera) and the pollination of flowers. Flora 2001, 196, 3–25. [Google Scholar] [CrossRef]
- Bates, A.J.; Sadler, J.P.; Fairbrass, A.J.; Falk, S.J.; Hale, J.D.; Matthews, T.J. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 2011, 6, e23459. [Google Scholar] [CrossRef] [PubMed]
- White, I.M.; Elson-Harris, M.M. Fruit Flies of Economic Significance: Their Identification and Bionomics; CAB International: Wallingford, UK, 1992. [Google Scholar]
- Alam, U.; Medlock, J.; Brelsfoard, C.; Pais, R.; Lohs, C.; Balmand, S.; Carnogursky, J.; Heddi, A.; Takac, P.; Galvani, A.; et al. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog. 2011, 7, e1002415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stork, N.E. How many species of insects and other terrestrial arthropods are there on earth? Annu. Rev. Entomol. 2018, 63, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Postma, J.F.; VanNugteren, P.; De Jong, M.B.B. Increased cadmium excretion in metal-adapted populations of the midge Chironomus riparius (Diptera). Environ. Toxicol. Chem. 1996, 15, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Wunder, C.; Reuss, E.; Toennes, S.W.; Mebs, D. Evading plant defence: Infestation of poisonous milkweed fruits (Asclepiadaceae) by the fruit fly Dacus siliqualactis (Diptera: Tephritidae). Toxicon 2017, 139, 13–19. [Google Scholar] [CrossRef]
- Rosenberg, E.; Koren, O.; Reshef, L.; Efrony, R.; Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 2007, 5, 355. [Google Scholar] [CrossRef]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef]
- Rosenberg, E.; Zilber-Rosenberg, I. Symbiosis and development: The hologenome concept. Birth Defects Res. Part C Embryo Today Rev. 2011, 93, 56–66. [Google Scholar] [CrossRef]
- Ceja-Navarro, J.A.; Vega, F.E.; Karaoz, U.; Hao, Z.; Jenkins, S.; Lim, H.C.; Kosina, P.; Infante, F.; Northen, T.R.; Brodie, E.L. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 2015, 6, 7618. [Google Scholar] [CrossRef] [Green Version]
- Hagen, K.S. Dependence of the olive fly, Dacus oleae, larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. Nature 1966, 209, 423–424. [Google Scholar] [CrossRef]
- Akman, L.; Yamashita, A.; Watanabe, H.; Oshima, K.; Shiba, T.; Hattori, M.; Aksoy, S. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat. Genet. 2002, 32, 402. [Google Scholar] [CrossRef] [PubMed]
- Cazemier, A.E.; Op den Camp, H.J.; Hackstein, J.H.; Vogels, G.D. Fibre digestion in arthropods. Comp. Biochem. Physiol. Part A Physiol. 1997, 118, 101–109. [Google Scholar] [CrossRef]
- Bosch, T.J.; Welte, C.U. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 2017, 10, 531–540. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, K.; Burkot, T.R.; Oscar, J.; Beebe, N.W.; Russell, T.L. Defining the larval habitat: Abiotic and biotic parameters associated with Anopheles aarauti productivity. Malar. J. 2019, 18, 7. [Google Scholar] [CrossRef] [Green Version]
- Tirados, I.; Costantini, C.; Gibson, G.; Torr, S.J. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: Implications for vector control. Med. Vet. Entomol. 2006, 20, 425–437. [Google Scholar] [CrossRef]
- Zheng, L.; Crippen, T.L.; Singh, B.; Tarone, A.M.; Dowd, S.; Yu, Z.; Wood, T.K.; Tomberlin, J.K. A survey of bacterial diversity from successive life stages of black soldier fly (Diptera: Stratiomyidae) by using 16s rdna pyrosequencing. J. Med. Entomol. 2013, 50, 647–658. [Google Scholar] [CrossRef]
- Pinto-Tomás, A.A.; Sittenfeld, A.; Uribe-Lorío, L.; Chavarría, F.; Mora, M.; Janzen, D.H.; Goodman, R.M.; Simon, H.M. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets. Environ. Entomol. 2011, 40, 1111–1122. [Google Scholar] [CrossRef]
- Whitaker, M.R.L.; Salzman, S.; Sanders, J.; Kaltenpothz, M.; Pierce, N.E. Microbial communities of Lycaenid butterflies do not correlate with larval diet. Front. Microbiol. 2016, 7, 13. [Google Scholar] [CrossRef]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H. A global map of dominant malaria vectors. Parasites Vectors 2012, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Waterman, S.H.; Gubler, D.J. Dengue fever. Clin. Dermatol. 1989, 7, 117–122. [Google Scholar] [CrossRef]
- Diaz-Albiter, H.; Sant’Anna, M.R.; Genta, F.A.; Dillon, R.J. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the phlebotomine sand fly Lutzomyia longipalpis. J. Biol. Chem. 2012, 287, 23995–24003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torsvik, V.; Øvreås, L. Microbial diversity, life strategies, and adaptation to life in extreme soils. In Microbiology of Extreme Soils; Springer: Berlin/Heidelberg, Germany, 2008; pp. 15–43. [Google Scholar]
- Pais, R.; Lohs, C.; Wu, Y.; Wang, J.; Aksoy, S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl. Environ. Microbiol. 2008, 74, 5965–5974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riegler, M.; Stauffer, C. Wolbachia infections and superinfections in cytoplasmically incompatible populations of the european cherry fruit fly Rhagoletis rerasi (Diptera, Tephritidae). Mol. Ecol. 2002, 11, 2425–2434. [Google Scholar] [CrossRef] [PubMed]
- Ricci, I.; Cancrini, G.; Gabrielli, S.; D’amelio, S.; Favia, G. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): Large polymerase chain reaction survey and new identifications. J. Med. Entomol. 2002, 39, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Braig, H.R.; Munstermann, L.E.; Ferro, C.; O’NeilL, S.L. Wolbachia infections of phlebotomine sand flies (Diptera: Psychodidae). J. Med. Entomol. 2001, 38, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Snyder, A.K.; Deberry, J.W.; Runyen-Janecky, L.; Rio, R.V. Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc. R. Soc. B Biol. Sci. 2010, 277, 2389–2397. [Google Scholar] [CrossRef] [Green Version]
- Werren, J.H.; Zhang, W.; Guo, L.R. Evolution and phylogeny of Wolbachia: Reproductive parasites of arthropods. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1995, 261, 55–63. [Google Scholar]
- Douglas, A.E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 2009, 23, 38–47. [Google Scholar] [CrossRef]
- Daane, K.M.; Johnson, M.W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 2010, 55, 151–169. [Google Scholar] [CrossRef]
- Ben-Yosef, M.; Pasternak, Z.; Jurkevitch, E.; Yuval, B. Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J. Evol. Biol. 2014, 27, 2695–2705. [Google Scholar] [CrossRef] [PubMed]
- Behar, A.; Yuval, B.; Jurkevitch, E. Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol. Ecol. 2005, 14, 2637–2643. [Google Scholar] [CrossRef] [PubMed]
- Somparn, A.; Iwai, C.; Noller, B. Potential use of acetylcholinesterase, glutathione-s-transferase and metallothionein for assessment of contaminated sediment in tropical chironomid, Chironomus javanus. J. Environ. Biol. 2015, 36, 1355. [Google Scholar]
- Amiard, J.-C.; Amiard-Triquet, C.; Barka, S.; Pellerin, J.; Rainbow, P. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 2006, 76, 160–202. [Google Scholar] [CrossRef] [PubMed]
- Senderovich, Y.; Halpern, M. The protective role of endogenous bacterial communities in chironomid egg masses and larvae. ISME J. 2013, 7, 2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Bosch, T.J.; Niemi, O.; Welte, C.U. Single gene enables plant pathogenic pectobacterium to overcome host-specific chemical defence. Mol. Plant. Pathol. 2019, 21, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Lo Scalzo, R.; Scarpati, M.L.; Verzegnassi, B.; Vita, G. Olea europaea chemicals repellent Todacus oleae females. J. Chem. Ecol. 1994, 20, 1813–1823. [Google Scholar] [CrossRef]
- Fleming, H.; Walter, W.; Etchells, J. Antimicrobial properties of oleuropein and products of its hydrolysis from green olives. Appl. Environ. Microbiol. 1973, 26, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Báidez, A.; Gómez, P.; Del Río, J.; Ortuño, A. Antifungal capacity of major phenolic compounds of Olea europaea l. Against Phytophthora megasperma drechsler and Cylindrocarpon destructans (Zinssm.) scholten. Physiol. Mol. Plant. Pathol. 2006, 69, 224–229. [Google Scholar]
- Finch, S.; Ackley, C.M. Cultivated and wild host plants supporting populations of the cabbage root fly. Ann. Appl. Biol. 1977, 85, 13–22. [Google Scholar] [CrossRef]
- Hopkins, R.J.; van Dam, N.M.; van Loon, J.J. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol. 2009, 54, 57–83. [Google Scholar] [CrossRef]
- Bones, A.M.; Rossiter, J.T. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 2006, 67, 1053–1067. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, N.M.; Tytgat, T.O.; Kirkegaard, J.A. Root and shoot glucosinolates: A comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem. Rev. 2009, 8, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Crespo, E.; Hordijk, C.A.; de Graaf, R.M.; Samudrala, D.; Cristescu, S.M.; Harren, F.J.; van Dam, N.M. On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum l. Root fly larvae. Phytochemistry 2012, 84, 68–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dam, N.M.; Samudrala, D.; Harren, F.J.; Cristescu, S.M. Real-time analysis of sulfur-containing volatiles in Brassica plants infested with root-feeding Delia radicum larvae using proton-transfer reaction mass spectrometry. Aob Plants 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Welte, C.U.; Rosengarten, J.F.; de Graaf, R.M.; Jetten, M.S. Saxa-mediated isothiocyanate metabolism in phytopathogenic pectobacteria. Appl. Environ. Microbiol. 2016, 82, 2372–2379. [Google Scholar] [CrossRef] [Green Version]
- Van den Bosch, T.J.; Tan, K.; Joachimiak, A.; Welte, C.U. Functional profiling and crystal structures of isothiocyanate hydrolases found in gut-associated and plant-pathogenic bacteria. Appl. Environ. Microbiol. 2018, 84, 00478-18. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gilbreath, T.M., III; Kukutla, P.; Yan, G.; Xu, J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE 2011, 6, e24767. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yu, Y.; Zhan, S.; Tomberlin, J.K.; Huang, D.; Cai, M.; Zheng, L.; Yu, Z.; Zhang, J. Dual oxidase duox and toll-like receptor 3 tlr3 in the toll pathway suppress zoonotic pathogens through regulating the intestinal bacterial community homeostasis in Hermetia illucens L. PLoS ONE 2020, 15, e0225873. [Google Scholar] [CrossRef]
- Gaio, A.d.O.; Gusmão, D.S.; Santos, A.V.; Berbert-Molina, M.A.; Pimenta, P.F.P.; Lemos, F.J.A. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (l.). Parasites Vect. 2011, 4, 105. [Google Scholar] [CrossRef] [Green Version]
- Houk, E.; Obie, F.; Hardy, J. Peritrophic membrane formation and the midgut barrier to arboviral infection in the mosquito, Culex tarsalis coquillett (Insecta, Diptera). Acta Trop. 1979, 36, 39–45. [Google Scholar] [PubMed]
- Freyvogel, T.A.; Stäubli, W. The formation of the peritrophic membrane in Culicidae. Acta Trop. 1965, 22, 118–147. [Google Scholar] [PubMed]
- Schmidtmann, E.; Martin, P. Relationship between selected bacteria and the growth of immature house flies, Musca domestica, in an axenic test system. J. Med. Entomol. 1992, 29, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Zurek, L.; Schal, C.; Watson, D. Diversity and contribution of the intestinal bacterial community to the development of Musca domestica (Diptera: Muscidae) larvae. J. Med. Entomol. 2000, 37, 924–928. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.-H.; Roh, S.W.; Whon, T.W.; Jung, M.-J.; Kim, M.-S.; Park, D.-S.; Yoon, C.; Nam, Y.-D.; Kim, Y.-J.; Choi, J.-H. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 2014, 80, 5254–5264. [Google Scholar] [CrossRef] [Green Version]
- Warnes, M.G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W. Package ‘gplots’. Various R Programming Tools for Plotting Data. 2016. Available online: https://CRAN.R-project.org/package=gplots (accessed on 1 June 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; Verion 3.6.2; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Bansal, R.; Hulbert, S.H.; Reese, J.C.; Whitworth, R.J.; Stuart, J.J.; Chen, M.-S. Pyrosequencing reveals the predominance of pseudomonadaceae in gut microbiome of a gall midge. Pathogens 2014, 3, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Welte, C.U.; de Graaf, R.M.; van den Bosch, T.J.M.; Op den Camp, H.J.M.; van Dam, N.M.; Jetten, M.S.M. Plasmids from the gut microbiome of cabbage root fly larvae encode saxa that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ. Microbiol. 2016, 18, 1379–1390. [Google Scholar] [CrossRef]
- Hadapad, A.B.; Prabhakar, C.S.; Chandekar, S.C.; Tripathi, J.; Hire, R.S. Diversity of bacterial communities in the midgut of Bactrocera cucurbitae (Diptera: Tephritidae) populations and their potential use as attractants. Pest. Manag. Sci. 2016, 72, 1222–1230. [Google Scholar] [CrossRef]
- Ventura, C.; Briones-Roblero, C.I.; Hernández, E.; Rivera-Orduña, F.N.; Zúñiga, G. Comparative analysis of the gut bacterial community of four Anastrepha fruit flies (Diptera: Tephritidae) based on pyrosequencing. Curr. Microbiol. 2018, 75, 966–976. [Google Scholar] [CrossRef]
- Jeon, H.; Park, S.; Choi, J.; Jeong, G.; Lee, S.-B.; Choi, Y.; Lee, S.-J. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr. Microbiol. 2011, 62, 1390–1399. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, S.; Maurya, R.K.; De, T.D.; Thomas, T.; Lata, S.; Singh, N.; Pandey, K.C.; Valecha, N.; Dixit, R. Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies. Parasites Vectors 2014, 7, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muturi, E.J.; Dunlap, C.; Ramirez, J.L.; Rooney, A.P.; Kim, C.-H. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol. Ecol. 2018, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrndorff, S.; de Jonge, N.; Skovgård, H.; Nielsen, J.L. Bacterial communities associated with houseflies (Musca domestica l.) sampled within and between farms. PLoS ONE 2017, 12, e0169753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.K.; Nayduch, D.; Verma, P.; Shah, B.; Ghate, H.V.; Patole, M.S.; Shouche, Y.S. Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica l.). FEMS Microbiol. Ecol. 2012, 79, 581–593. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Zhu, F.; Wang, X.; Wang, X.; Lei, C. The gut microbiota in larvae of the housefly Musca domestica and their horizontal transfer through feeding. AMB Express 2017, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Adair, K.L.; Wilson, M.; Bost, A.; Douglas, A.E. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J. 2018, 12, 959–972. [Google Scholar] [CrossRef]
- Chandler, J.A.; James, P.M.; Jospin, G.; Lang, J.M. The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2014, 2, e474. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Rastogi, G.; Nayduch, D.; Sawant, S.; Bhonde, R.; Shouche, Y. Molecular phylogenetic profiling of gut-associated bacteria in larvae and adults of flesh flies. Med. Vet. Entomol. 2014, 28, 345–354. [Google Scholar] [CrossRef]
- Scully, E.; Friesen, K.; Wienhold, B.; Durso, L.M. Microbial communities associated with stable fly (Diptera: Muscidae) larvae and their developmental substrates. Ann. Entomol. Soc. Am. 2017, 110, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Crippen, T.L.; Zheng, L.; Fields, A.T.; Yu, Z.; Ma, Q.; Wood, T.K.; Dowd, S.E.; Flores, M.; Tomberlin, J.K. A metagenomic assessment of the bacteria associated with Lucilia sericata and Lucilia cuprina (Diptera: Calliphoridae). Appl. Microbiol. Biotechnol. 2015, 99, 869–883. [Google Scholar] [CrossRef] [Green Version]
- Toth, E.; Hell, E.; Kovács, G.; Borsodi, A.; Marialigeti, K. Bacteria isolated from the different developmental stages and larval organs of the obligate parasitic fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae). Microb. Ecol. 2006, 51, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.A. Molecular biology of xylan degradation. FEMS Microbiol. Lett. 1993, 104, 65–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, J.; Hu, Q.; Rao, X. Morganella morganii, a non-negligent opportunistic pathogen. Int. J. Infect. Dis. 2016, 50, 10–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaiwong, T.; Srivoramas, T.; Sueabsamran, P.; Sukontason, K.; Sanford, M.; Sukontason, K. The blow fly, Chrysomya megacephala, and the house fly, Musca domestica, as mechanical vectors of pathogenic bacteria in northeast Thailand. Trop Biomed. 2014, 31, 336–346. [Google Scholar]
- Shelomi, M.; Wu, M.-K.; Chen, S.-M.; Huang, J.-J.; Burke, C.G. Microbes associated with black soldier fly (Diptera: Stratiomiidae) degradation of food waste. Environ. Entomol. 2020, 49, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Salas, B.; Conway, H.E.; Schuenzel, E.L.; Hopperstad, K.; Vitek, C.; Vacek, D.C. Morganella morganii (Enterobacteriales: Enterobacteriaceae) is a lethal pathogen of mexican fruit fly (Diptera: Tephritidae) larvae. Fla. Entomol. 2017, 100, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Huang, Y.H.; Liu, S.Z.; Zhang, L.; Li, B.T.; Zhao, X.X.; Fu, Y.; Liu, J.J.; Zhang, X.X. Pseudomonas reactans, a bacterial strain isolated from the intestinal flora of Blattella germanica with anti-Beauveria bassiana activity. Environ. Entomol. 2013, 42, 453–459. [Google Scholar] [CrossRef]
- Indiragandhi, P.; Anandham, R.; Madhaiyan, M.; Poonguzhali, S.; Kim, G.; Saravanan, V.; Sa, T. Cultivable bacteria associated with larval gut of Prothiofos-resistant, Prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. J. Appl. Microbiol. 2007, 103, 2664–2675. [Google Scholar]
- Flyg, C.; Kenne, K.; Boman, H.G. Insect pathogenic properties of Serratia marcescens: Phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila. Microbiology 1980, 120, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.G.; Kaya, H. Bacillus and Serratia species for scarab control. Memórias Do Inst. Oswaldo Cruz 1995, 90, 87–95. [Google Scholar] [CrossRef]
- Oliver, K.M.; Degnan, P.H.; Burke, G.R.; Moran, N.A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 2010, 55, 247–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scrascia, M.; Pazzani, C.; Valentini, F.; Oliva, M.; Russo, V.; D’Addabbo, P.; Porcelli, F. Identification of pigmented Serratia marcescens symbiotically associated with Rhynchophorus ferrugineus olivier (Coleoptera: Curculionidae). MicrobiologyOpen 2016, 5, 883–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brucker, R.M.; Bordenstein, S.R. The hologenomic basis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia. Science 2013, 341, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, G.R.; Bromel, M.; Gassner, G.; Freeman, T.P.; Fischer, A. Antibacterial activity demonstrated by culture filtrates of Proteus mirabilis isolated from screwworm (Cochliomyia hominworax) (Diptera: Calliphoridae) larvae. J. Med. Entomol. 1984, 21, 159–164. [Google Scholar] [CrossRef]
- Kämpfer, P.; Matthews, H.; Glaeser, S.P.; Martin, K.; Lodders, N.; Faye, I. Elizabethkingia anophelis sp. Nov., isolated from the midgut of the mosquito Anopheles gambiae. Int. J. Syst. Evol. Microbiol. 2011, 61, 2670–2675. [Google Scholar]
- Delettre, Y.R.; Morvan, N.; Tre’Hen, P.; Grootaert, P. Local biodiversity and multi-habitat use in empidoid flies (Insecta: Diptera, Empidoidea). Biodivers. Conserv. 1998, 7, 9–25. [Google Scholar] [CrossRef]
- McLachlan, A.; Ladle, R. Life in the puddle: Behavioural and life-cycle adaptations in the Diptera of tropical rain pools. Biol. Rev. 2001, 76, 377–388. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [Green Version]
- Broderick, N.A.; Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 2012, 3, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Schorr, H. Zur verhaltensbiologie und symbiose von Brachypelta aterrima först.(Cydnidae, Heteroptera). Z. Für Morphol. Und Ökologie Der Tiere 1957, 45, 561–602. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hosokawa, T.; Fukatsu, T. Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 2007, 73, 4308–4316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandler, J.A.; Lang, J.M.; Bhatnagar, S.; Eisen, J.; Kopp, A. Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System. PLoS Genet. 2011, 7, e1002272. [Google Scholar] [CrossRef] [PubMed]
- Lauzon, C.; McCombs, S.; Potter, S.; Peabody, N. Establishment and vertical passage of enterobacter (Pantoea) agglomerans and Klebsiella pneumoniae through all life stages of the mediterranean fruit fly (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2009, 102, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Coon, K.L.; Vogel, K.J.; Brown, M.R.; Strand, M.R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 2014, 23, 2727–2739. [Google Scholar] [CrossRef] [Green Version]
- Kellner, R.L. The role of microorganisms for eggs and progeny. In Chemoecology of Insect Eggs and Egg Deposition; Blackwell: Berlin, Germany, 2002; pp. 149–167. [Google Scholar]
- Wong, C.N.A.; Ng, P.; Douglas, A.E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 2011, 13, 1889–1900. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gao, Q.; Wang, W.; Wang, X.; Lei, C.; Zhu, F. The gut bacteria across life stages in the synanthropic fly Chrysomya megacephala. BMC Microbiol. 2018, 18, 131. [Google Scholar] [CrossRef]
- Attardo, G.M.; Lohs, C.; Heddi, A.; Alam, U.H.; Yildirim, S.; Aksoy, S. Analysis of milk gland structure and function in Glossina morsitans: Milk protein production, symbiont populations and fecundity. J. Insect Physiol. 2008, 54, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, S.; Chen, X.-A.; Hypsa, V. Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera: Glossinidae). Insect Mol. Biol. 1997, 6, 183–190. [Google Scholar] [CrossRef]
- Blaustein, L.; Chase, J.M. Interactions between mosquito larvae and species that share the same trophic level. Annu. Rev. Entomol. 2007, 52, 489–507. [Google Scholar] [CrossRef]
- Howland, L. The nutrition of mosquito larvae, with special reference to their algal food. Bull. Entomol. Res. 1930, 21, 431–439. [Google Scholar] [CrossRef]
- Capinera, J.L. Encyclopedia of Entomology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Chapman, R.F.; Chapman, R.F. The Insects: Structure and Function; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Bansal, R.; Hulbert, S.; Schemerhorn, B.; Reese, J.C.; Whitworth, R.J.; Stuart, J.J.; Chen, M.-S. Hessian fly-associated bacteria: Transmission, essentiality, and composition. PLoS ONE 2011, 6, e23170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco, P.; Perez-Cobas, A.E.; van de Pol, C.; Baixeras, J.; Moya, A.; Latorre, A. Succession of the gut microbiota in the cockroach Blattella germanica. Int. Microbiol. 2014, 17, 99–109. [Google Scholar] [PubMed]
- Bakula, M. The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J. Invertebr. Pathol. 1969, 14, 365–374. [Google Scholar] [CrossRef]
- Moll, R.M.; Romoser, W.S.; Modrakowski, M.C.; Moncayo, A.C.; Lerdthusnee, K. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J. Med. Entomol. 2001, 38, 29–32. [Google Scholar] [CrossRef]
- Andres, A.J.; Thummel, C.S. Hormones, puffs and flies: The molecular control of metamorphosis by ecdysone. Trends Genet. 1992, 8, 132–138. [Google Scholar] [CrossRef]
- Bakker, K. Feeding period, growth, and pupation in larvae of Drosophila melanogaster. Entomol. Exp. Appl. 1959, 2, 171–186. [Google Scholar] [CrossRef]
- Ždárek, J.; Denlinger, D.L. Changes in temperature, not photoperiod, control the pattern of adult eclosion in the tsetse, Glossina morsitans. Physiol. Entomol. 1995, 20, 362–366. [Google Scholar] [CrossRef]
- Srivastava, U.; Gilbert, L.I. The influence of juvenile hormone on the metamorphosis of Sarcophaga bullata. J. Insect Physiol. 1969, 15, 177–189. [Google Scholar] [CrossRef]
- Pemberton, C.E.; Willard, H.F. A contribution to the biology of fruit-fly parasites in Hawaii. J. Agric. Res 1918, 15, 419–465. [Google Scholar]
- WiUard, H. Opius fletcheri as a parasite of the melon fly in Hawaii. J. Agric. Res. 1920, 20, 423–438. [Google Scholar]
- Lindegaard, C. Chironomidae (Diptera) of european cold springs and factors influencing their distribution. J. Kans. Entomol. Soc. 1995, 68, 108–131. [Google Scholar]
- Steffan, A.W. Chironomid (Diptera) biocoenoses in scandinavian glacier brooks. Can. Entomol. 2012, 103, 477–486. [Google Scholar] [CrossRef]
- Lepage, M.; Bourgeois, G.; Brodeur, J.; Boivin, G. Effect of soil temperature and moisture on survival of eggs and first-instar larvae of Delia radicum. Environ. Entomol. 2012, 41, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Merritt, R.; Dadd, R.; Walker, E. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu. Rev. Entomol. 1992, 37, 349–374. [Google Scholar] [CrossRef]
- Bjedov, I.; Toivonen, J.M.; Kerr, F.; Slack, C.; Jacobson, J.; Foley, A.; Partridge, L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010, 11, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, X.; Chen, Z.; Wang, Z.; Lu, Y.; Cheng, D. The divergence in bacterial components associated with bactrocera dorsalis across developmental stages. Front. Microbiol. 2018, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Tarone, A.M.; Picard, C.J.; Spiegelman, C.; Foran, D.R. Population and temperature effects on Lucilia sericata (Diptera: Calliphoridae) body size and minimum development time. J. Med. Entomol. 2011, 48, 1062–1068. [Google Scholar] [CrossRef]
- Moghadam, N.N.; Thorshauge, P.M.; Kristensen, T.N.; de Jonge, N.; Bahrndorff, S.; Kjeldal, H.; Nielsen, J.L. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly 2018, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Ishida, R.; Miyanaga, K.; Tanji, Y. Seasonal variations in bacterial communities and antibiotic-resistant strains associated with green bottle flies (Diptera: Calliphoridae). Appl. Microbiol. Biotechnol. 2014, 98, 4197–4208. [Google Scholar] [CrossRef]
- Classen, A.T.; Sundqvist, M.K.; Henning, J.A.; Newman, G.S.; Moore, J.A.M.; Cregger, M.A.; Moorhead, L.C.; Patterson, C.M. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 2015, 6, 130. [Google Scholar] [CrossRef]
- Puggioli, A.; Balestrino, F.; Damiens, D.; Lees, R.S.; Soliban, S.M.; Madakacherry, O.; Dindo, M.L.; Bellini, R.; Gilles, J.R.L. Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2013, 50, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, C.R.; Gilmore, M.S. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 2007, 75, 1565–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corby-Harris, V.; Pontaroli, A.C.; Shimkets, L.J.; Bennetzen, J.L.; Habel, K.E.; Promislow, D.E.L. Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl. Environ. Microbiol. 2007, 73, 3470–3479. [Google Scholar] [CrossRef] [Green Version]
- Grübel, P.; Hoffman, J.S.; Chong, F.K.; Burstein, N.A.; Mepani, C.; Cave, D.R. Vector potential of houseflies (Musca domestica) for Helicobacter pylori. J. Clin. Microbiol. 1997, 35, 1300–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, K.G.; Campbell-Lendrum, D.H.; Davies, C.R. A continental risk map for malaria mosquito (Diptera: Culicidae) vectors in europe. J. Med. Entomol. 2002, 39, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-M. Aedes (stegomyia) bromeliae (Diptera: Culicidae), the yellow fever virus vector in east africa1. J. Med. Entomol. 1986, 23, 196–200. [Google Scholar] [CrossRef]
- Kelly, P.H.; Bahr, S.M.; Serafim, T.D.; Ajami, N.J.; Petrosino, J.F.; Meneses, C.; Kirby, J.R.; Valenzuela, J.G.; Kamhawi, S.; Wilson, M.E. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. mBio 2017, 8, e01121-16. [Google Scholar] [CrossRef] [Green Version]
- Dennison, N.J.; Jupatanakul, N.; Dimopoulos, G. The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect Sci. 2014, 3, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Pumpuni, C.; Beier, M.; Nataro, J.; Guers, L.D.; Davis, J. Plasmodium falciparum: Inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. Exp. Parasitol. 1993, 77, 195–199. [Google Scholar] [CrossRef]
- Gonzalez-Ceron, L.; Santillan, F.; Rodriguez, M.H.; Mendez, D.; Hernandez-Avila, J.E. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J. Med. Entomol. 2003, 40, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Manfredini, F.; Dimopoulos, G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009, 5, e1000423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirimotich, C.M.; Dong, Y.; Clayton, A.M.; Sandiford, S.L.; Souza-Neto, J.A.; Mulenga, M.; Dimopoulos, G. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 2011, 332, 855–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, M.A.; Lizotte-Waniewski, M. Population genomics and the bacterial species concept. Methods Mol. Biol. 2009, 532, 367–377. [Google Scholar] [PubMed] [Green Version]
- O’Banion, B.; O’Neal, L.; Alexandre, G.; Lebeis, S. Bridging the gap between single-strain and community-level plant-microbe chemical interactions. Mol. Plant. Microbe Interact. 2019, 33, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.P.; Marquez, C.; Sterling, E.J. The role of endangered species reintroduction in ecosystem restoration: Tortoise–cactus interactions on Española Island, Galápagos. Restor. Ecol. 2008, 16, 88–93. [Google Scholar] [CrossRef]
- Gagic, V.; Bartomeus, I.; Jonsson, T.; Taylor, A.; Winqvist, C.; Fischer, C.; Slade, E.M.; Steffan-Dewenter, I.; Emmerson, M.; Potts, S.G.; et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142620. [Google Scholar] [CrossRef] [Green Version]
Species | Life Stage | Food Source | Origin | Method | Reference |
---|---|---|---|---|---|
Mayetiola destructor | Adult | Plants (leaves) | Laboratory | 16S rRNA (454-pyrosequencing) | [60] |
Delia radicum | Larvae | Plants (roots) | Laboratory | 16S rRNA (Ion Torrent) | [61] |
Bactrocera cucurbitae | Adult | Plants (fruits) | Natural | 16S rRNA (ABI) | [62] |
Anastrepha serpentina | Adult | Plants (fruits) | Natural | 16S rRNA (454-pyrosequencing) | [63] |
Larvae | Plants (fruits) | Natural | 16S rRNA (454-pyrosequencing) | ||
Hermetia illucens | Larvae | Plants (seeds) | Laboratory | 16S rRNA (454-pyrosequencing) | [64] |
Decomposers (omnivore) | |||||
Decomposers (animal) | |||||
Anopheles gambiae | Adult | Sugar solution | Laboratory | 16S rRNA (454-pyrosequencing) | [50] |
Blood | |||||
Larvae | zooplankton | ||||
Anopheles culicifacies | Adult | Sugar solution | Laboratory | 16S rRNA (454-pyrosequencing) | [65] |
Ades aegypti | Adult | Blood | Laboratory | 16S rRNA (Illumina) | [66] |
Musca domestica | Adult | Decomposers (omnivore) | Natural | 16S rRNA (Illumina, ABI) | [67,68] |
Larvae | Plants (seeds) | Laboratory | 16S rRNA (Illumina) | [69] | |
Drosophila melanogaster | Adult | Decomposers (plants) | Natural | 16S rRNA (Illumina) | [70] |
Drosophila suzukii | Adult | Plant (fruits) | Natural | 16S rRNA (Illumina) | [71] |
Larvae | Plants (fruits) | Natural | 16S rRNA (Illumina) | ||
Sargophaga spp. | Adult | Decomposer (omnivores) | Natural | 16S rRNA (ABI) | [72] |
Larvae | Flesh | ||||
Stomoxys calcitrans | Larvae | Decomposer (omnivore) | Natural | 16S rRNA (454-pyrosequencing) | [73] |
Lucilia cuprina | Adult | Flesh | Laboratory | 16S rRNA (454-pyrosequencing) | [74] |
Larvae | Flesh | ||||
Lucilia sericata | Adult Larvae | Flesh Flesh | Laboratory | 16S rRNA (454-pyrosequencing) | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sontowski, R.; van Dam, N.M. Functional Variation in Dipteran Gut Bacterial Communities in Relation to Their Diet, Life Cycle Stage and Habitat. Insects 2020, 11, 543. https://doi.org/10.3390/insects11080543
Sontowski R, van Dam NM. Functional Variation in Dipteran Gut Bacterial Communities in Relation to Their Diet, Life Cycle Stage and Habitat. Insects. 2020; 11(8):543. https://doi.org/10.3390/insects11080543
Chicago/Turabian StyleSontowski, Rebekka, and Nicole M. van Dam. 2020. "Functional Variation in Dipteran Gut Bacterial Communities in Relation to Their Diet, Life Cycle Stage and Habitat" Insects 11, no. 8: 543. https://doi.org/10.3390/insects11080543
APA StyleSontowski, R., & van Dam, N. M. (2020). Functional Variation in Dipteran Gut Bacterial Communities in Relation to Their Diet, Life Cycle Stage and Habitat. Insects, 11(8), 543. https://doi.org/10.3390/insects11080543