Conservation Wildflower Plantings Do Not Enhance On-Farm Abundance of Amblyomma americanum (Ixodida: Ixodidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Environmental Variables
2.4. Statistical Analysis
2.5. Data Availability
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Semtner, P.J.; Howell, D.E.; Hair, J.A. The ecology and behavior of the lone star tick (Acarina: Ixodidae) I. The relationship between vegetative habitat type and tick abundance and distribution in Cherokee Co., Oklahoma. J. Med. Entomol. 1971, 8, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J.; Varela-Stokes, A.S. Role of the lone star tick, Amblyomma americanum (L.), in human and animal diseases. Vet. Parasitol. 2009, 160, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Savage, H.M.; Godsey, M.S.; Panella, N.A.; Burkhalter, K.L.; Ashley, D.C.; Lash, R.R.; Ramsay, B.; Patterson, T.; Nicholson, W.L. Surveillance for Heartland virus (Bunyaviridae: Phlebovirus) in Missouri during 2013: First detection of virus in adults of Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 2016, 53, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Commins, S.P.; James, H.R.; Kelly, L.A.; Pochan, S.L.; Workman, L.J.; Perzanowski, M.S.; Kocan, K.M.; Fahy, J.V.; Nganga, L.W.; Ronmark, E.; et al. The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-α-1,3-galactose. J. Allergy Clin. Immunol. 2011, 127, 1286–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, Y.P.; Eisen, L.; Beati, L.; James, A.M.; Eisen, R.J. Spatial distribution of counties in the continental United States with records of occurrence of Amblyomma americanum (Ixodida: Ixodidae). J. Med. Entomol. 2014, 51, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Springer, Y.P.; Jarnevich, C.S.; Monaghan, A.J.; Eisen, R.J.; Barnett, D.T. Modeling the present and future geographic distribution of the lone star tick, Amblyomma americanum (Ixodida: Ixodidae), in the continental United States. Am. J. Trop. Med. Hyg. 2015, 93, 875–890. [Google Scholar] [CrossRef]
- Nadolny, R.M.; Wright, C.L.; Sonenshine, D.E.; Hynes, W.L.; Gaff, H.D. Ticks and spotted fever group rickettsiae of southeastern Virginia. Ticks Tick Borne Dis. 2014, 5, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Sonenshine, D.E.; Levy, G.F. The ecology of the lone star tick, Amblyomma americanum (L.), In two contrasting habitats in Virginia (Acarina: Ixodidae). J. Med. Entomol. 1971, 8, 623–635. [Google Scholar] [CrossRef]
- Kollars, T.M.; Oliver, J.H.; Durden, L.A.; Kollars, P.G. Host associations and seasonal activity of Amblyomma americanum (Acari: Ixodidae) in Missouri. J. Parasitol. 2000, 86, 1156–1159. [Google Scholar] [CrossRef]
- Paddock, C.D.; Yabsley, M.J. Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States. In Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission; Childs, S.R.S.J.E., Mackenzie, P.J.S., Richt, V.M.O.J.A., Eds.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 289–324. ISBN 978-3-540-70961-9. [Google Scholar]
- Kensinger, B.J.; Allan, B.F. Efficacy of dry ice-baited traps for sampling Amblyomma americanum (Acari: Ixodidae) varies with life stage but not habitat. J. Med. Entomol. 2011, 48, 708–711. [Google Scholar] [CrossRef] [Green Version]
- Semtner, P.J.; Hair, J.A. The ecology and behavior of the lone star tick (Acarina: Ixodidae) V. Abundance and seasonal distribution in different habitat types. J. Med. Entomol. 1973, 10, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Needham, G.R.; Teel, P.D. Off-host physiological ecology of ixodid ticks. Annu. Rev. Entomol. 1991, 36, 659–681. [Google Scholar] [CrossRef] [PubMed]
- Yoder, J.A.; Selim, M.E.; Needham, G.R. Impact of feeding, molting and relative humidity on cuticular wax deposition and water loss in the lone star tick, Amblyomma americanum. J. Insect Physiol. 1997, 43, 547–551. [Google Scholar] [CrossRef]
- Schulze, T.L.; Jordan, R.A.; Hung, R.W. Effects of selected meteorological factors on diurnal questing of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 2001, 38, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Schulze, T.L.; Jordan, R.A. Meteorologically mediated diurnal questing of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J. Med. Entomol. 2003, 40, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S. Ecology of Non-nidicolous Ticks. In Biology of Ticks; Oxford University Press: New York, NY, USA, 2013; Volume 2, pp. 3–38. [Google Scholar]
- Stein, K.J.; Waterman, M.; Waldon, J.L. The effects of vegetation density and habitat disturbance on the spatial distribution of ixodid ticks (Acari: Ixodidae). Geospat. Health 2008, 2, 241–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangan, M.J.; Foré, S.A.; Kim, H.-J. Ecological modeling over seven years to describe the number of host-seeking Amblyomma americanum in each life stage in northeast Missouri. J. Vector Ecol. 2018, 43, 15. [Google Scholar] [CrossRef] [Green Version]
- Allan, B.F.; Dutra, H.P.; Goessling, L.S.; Barnett, K.; Chase, J.M.; Marquis, R.J.; Pang, G.; Storch, G.A.; Thach, R.E.; Orrock, J.L. Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proc. Natl. Acad. Sci. USA 2010, 107, 18523–18527. [Google Scholar] [CrossRef] [Green Version]
- Noden, B.H.; Dubie, T. Involvement of invasive eastern red cedar (Juniperus virginiana) in the expansion of Amblyomma americanum in Oklahoma. J. Vector Ecol. 2017, 42, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Civitello, D.J.; Flory, S.L.; Clay, K. Exotic grass invasion reduces survival of Amblyomma americanum and Dermacentor variabilis Ticks (Acari: Ixodidae). J. Med. Entomol. 2008, 45, 867–872. [Google Scholar] [CrossRef]
- Williams, S.C.; Ward, J.S. Effects of Japanese barberry (Ranunculales: Berberidaceae) removal and resulting microclimatic changes on Ixodes scapularis (Acari: Ixodidae) abundances in Connecticut, USA. Environ. Entomol. 2010, 39, 1911–1921. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Venturini, E.M.; Drummond, F.A.; Hoshide, A.K.; Dibble, A.C.; Stack, L.B. Pollination reservoirs for wild bee habitat enhancement in cropping systems: A review. Agroecol. Sustain. Food Syst. 2017, 41, 101–142. [Google Scholar] [CrossRef]
- Blaauw, B.R.; Isaacs, R. Wildflower plantings enhance the abundance of natural enemies and their services in adjacent blueberry fields. Biol. Control 2015, 91, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, M.; Skinner, M. Using 2014 Farm. Bill Programs for Pollinator Conservation, 2nd ed.; United States Department of Agriculture: Washington, DC, USA, 2015; pp. 1–14.
- USDA Environmental Quality Incentives Program (EQIP)|Farm Bill Report (FY 2009 through FY 2018)|NRCS. Available online: https://www.nrcs.usda.gov/Internet/NRCS_RCA/reports/fb08_cp_eqip.html (accessed on 18 February 2020).
- Ginsberg, H.S.; Bargar, T.A.; Hladik, M.L.; Lubelczyk, C. Management of arthropod pathogen vectors in North America: Minimizing adverse effects on pollinators. J. Med. Entomol. 2017, 54, 1463–1475. [Google Scholar] [CrossRef] [Green Version]
- Glennon, R. Habitat Establishment and Mangement Recommendations for Pollinator Habitat on Well-Drained Soil; USDA Natural Resources Conservation Service: Smithfield, VA, USA, 2015.
- Angelella, G.M.; O’Rourke, M.E. Pollinator habitat establishment after organic and no-till seedbed preparation methods. HortScience 2017, 52, 1349–1355. [Google Scholar] [CrossRef]
- Smith, M.A. Robel Pole Technique and Data Interpretation; University of Wyoming Extension: Laramie, WY, USA, 2008; p. 2. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Skaug, H.; Fournier, D.; Nielsen, A.; Magnusson, A.; Bolker, B. Generalized Linear Mixed Models Using AD Model Builder. 2016. Available online: https://glmmadmb.r-forge.r-project.org/ (accessed on 8 September 2020).
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2018. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 8 September 2020).
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 6, e4794. [Google Scholar] [CrossRef] [Green Version]
- Barton, K. MuMIn: Multi-Model. Inference. 2018. Available online: https://cran.r-project.org/web/packages/MuMIn/index.html (accessed on 8 September 2020).
- Leroux, S.J. On the prevalence of uninformative parameters in statistical models applying model selection in applied ecology. PLoS ONE 2019, 14, e0206711. [Google Scholar] [CrossRef] [Green Version]
- Van Horn, T.R.; Adalsteinsson, S.A.; Westby, K.M.; Biro, E.; Myers, J.A.; Spasojevic, M.J.; Walton, M.; Medley, K.A. Landscape physiognomy influences abundance of the lone star tick, Amblyomma americanum (Ixodida: Ixodidae), in Ozark Forests. J. Med. Entomol. 2018, 55, 982–988. [Google Scholar] [CrossRef]
- Beier, P.; McCullough, D.R. Factors influencing white-tailed deer activity patterns and habitat use. Wildl. Monogr. 1990, 3–51. [Google Scholar] [CrossRef]
- Curtis, T.R.; Shi, M.; Qiao, X. Patience is not always a virtue: Effects of terrain complexity on the host-seeking behaviour of adult blacklegged ticks, Ixodes scapularis, in the presence of a stationary host. Med. Vet. Entomol. 2020, 34, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.T.; Lee, X.; Zembsch, T.; Bron, G.M.; Paskewitz, S.M. Immature Ixodes scapularis (Acari: Ixodidae) collected from Peromyscus leucopus (Rodentia: Cricetidae) and Peromyscus maniculatus (Rodentia: Cricetidae) nests in northern Wisconsin. J. Med. Entomol. 2020, 57, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.A.; Sauer, J.R.; Durham, K.A. Water balance and humidity preference in three species of ticks. J. Med. Entomol. 1975, 12, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Schulze, T.L.; Jordan, R.A.; Hung, R.W. Effects of microscale habitat physiognomy on the focal distribution of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) Nymphs. Environ. Entomol. 2002, 31, 1085–1090. [Google Scholar] [CrossRef]
- DeGroote, L.W.; Ober, H.K.; Aldrich, J.H.; Norcini, J.G.; Knox, G.W. Susceptibility of cultivated native wildflowers to deer damage. Southeast. Nat. 2011, 10, 761–771. [Google Scholar] [CrossRef]
- Machtinger, E.T.; Li, A.Y. Tick control bait box use by Peromyscus spp. influenced by habitat placement but raises questions on disease ecology. Ecosphere 2019, 10, e02972. [Google Scholar] [CrossRef] [Green Version]
Common Name | Scientific Name | Mix Used in |
---|---|---|
Narrowleaf mountain mint | Pycnanthemum tenuifolium | WD |
Plains coreopsis | Coreopsis tinctoria | WD, WDr, PD |
Partridge pea | Chamaecrista fasciculata | WD, WDr, PD |
Black-eyed Susan | Rudbeckia hirta | WD, WDr |
Bergamot, spotted | Monarda fistulosa | WD |
Lanceleaf coreopsis | Coreopsis lanceolata | WD, WDr |
Maximilian sunflower | Helianthus maximilianii | WD, WDr |
Indian blanket | Gaillardia pulchella | WD, WDr |
Purple coneflower | Echinacea purpurea | WD |
Spotted beebalm | Monarda punctate | WDr |
Tickseed sunflower | Bidens aristosa | WDr |
Showy evening primrose | Oenothera speciosa | WDr |
Purple-stemmed aster | Symphyotrichum puniceum var. puniceum | PD |
Common sneezeweed | Helenium autumnale | PD |
Wrinkleleaf goldenrod | Solidago rugosa | PD |
Spotted Joe Pye weed | Eupatoriadelphus fistulosus | PD |
Rattlesnake master | Eryngium yuccifolium | PD |
Rosemallow | Hibiscus moscheutos | PD |
Narrowleaf sunflower | Helianthus angustifolius | PD |
Year | Habitat | Vegetation Height (dm) | Duff Depth (cm) | RH | Temp. Standard Deviation (°C) |
---|---|---|---|---|---|
2018 | Wildflower | 4.5 ± 0.5 | 0.62 ± 0.1 | 86.1 ± 1.0 | 5.8 ± 0.3 |
Weedy margin | 4.2 ± 0.4 | 1.56 ± 0.1 | 85.4 ± 1.1 | 6.1 ± 0.3 | |
Forest | 2.2 ± 0.4 | 3.38 ± 0.2 | 85.7 ± 1.3 | 3.4 ± 0.2 | |
2019 | Wildflower | 6.7 ± 0.6 | 1.09 ± 0.1 | 84.5 ± 1.1 | 6.3 ± 0.4 |
Weedy margin | 5.1 ± 0.5 | 1.27 ± 0.1 | 85.1 ± 1.0 | 6.3 ± 0.4 | |
Forest | 1.2 ± 0.1 | 3.87 ± 0.1 | 82.2 ± 1.4 | 3.7 ± 0.2 |
Model | Number of Parameters (k) | Log Likelihood (logLik) | Akaike Information Criterion, Small Sample (AICc) | Change in AICc (Δ AICc) | Weight |
---|---|---|---|---|---|
Habitat × Vegetation Height | 10 | −346.94 | 714.88 | - | 0.539 † |
Habitat | 7 | −350.89 | 716.29 | 1.407 | 0.266 † |
Habitat × Duff Depth | 10 | −348.75 | 718.51 | 3.628 | 0.088 † |
Duff depth | 6 | −353.46 | 719.3 | 4.416 | 0.059 |
Habitat × Temperature Standard Deviation | 10 | −349.91 | 720.83 | 5.944 | 0.028 |
Habitat × Relative Humidity | 10 | −350.21 | 721.44 | 6.552 | 0.02 |
Vegetation Height | 6 | −373.38 | 759.13 | 44.25 | 0 |
Temperature Standard Deviation | 6 | −377 | 766.39 | 51.504 | 0 |
Relative Humidity | 6 | −382.34 | 777.06 | 62.172 | 0 |
Intercept only | 5 | −383.59 | 777.45 | 62.564 | 0 |
Term | Estimate | Adjusted SE | z Value | p > z |
---|---|---|---|---|
Intercept | −1.93 | 0.64 | 3.00 | 0.003 * |
Weedy Margin | 1.48 | 0.83 | 1.78 | 0.08 |
Forest | 2.25 | 0.69 | 3.28 | 0.001 * |
Vegetation Height | 0.05 | 0.07 | 0.80 | 0.42 |
Vegetation Height × Weedy Margin | −0.26 | 0.11 | 2.35 | 0.019 * |
Vegetation Height × Forest | 0.07 | 0.14 | 0.49 | 0.62 |
Duff depth | −0.26 | 0.42 | 0.63 | 0.53 |
Duff depth × Weedy Margin | 0.63 | 0.55 | 1.16 | 0.25 |
Duff depth × Forest | 0.61 | 0.47 | 1.29 | 0.20 |
Model | k | logLik | AICc | Δ AICc | Weight |
---|---|---|---|---|---|
Habitat × Vegetation Height | 10 | −422.78 | 866.57 | - | 0.985 † |
Habitat | 7 | −430.55 | 875.6 | 9.031 | 0.011 |
Habitat × Duff Depth | 10 | −429.32 | 879.65 | 13.078 | 0.001 |
Habitat × Relative Humidity | 10 | −429.41 | 879.83 | 13.258 | 0.001 |
Habitat × Temperature SD | 10 | −429.42 | 879.84 | 13.272 | 0.001 |
Duff depth | 6 | −436.94 | 886.26 | 19.688 | 0 |
Vegetation Height | 6 | −445.33 | 903.03 | 36.46 | 0 |
Temperature SD | 6 | −448.95 | 910.29 | 43.718 | 0 |
Relative Humidity | 6 | −452.4 | 917.18 | 50.612 | 0 |
Intercept only | 5 | −454.4 | 919.07 | 52.502 | 0 |
Term | Estimate | Std. Error | z Value | p > z |
---|---|---|---|---|
Intercept | −0.55 | 0.77 | −0.71 | 0.48 |
Weedy Margin | 0.70 | 0.58 | 1.22 | 0.22 |
Forest | 0.77 | 0.48 | 1.61 | 0.11 |
Vegetation Height | −0.13 | 0.06 | −2.08 | 0.04 * |
Vegetation Height × Weedy Margin | −0.03 | 0.11 | −0.23 | 0.82 |
Vegetation Height × Forest | 0.54 | 0.16 | 3.37 | 0.001 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCullough, C.; Angelella, G.; O’Rourke, M. Conservation Wildflower Plantings Do Not Enhance On-Farm Abundance of Amblyomma americanum (Ixodida: Ixodidae). Insects 2020, 11, 617. https://doi.org/10.3390/insects11090617
McCullough C, Angelella G, O’Rourke M. Conservation Wildflower Plantings Do Not Enhance On-Farm Abundance of Amblyomma americanum (Ixodida: Ixodidae). Insects. 2020; 11(9):617. https://doi.org/10.3390/insects11090617
Chicago/Turabian StyleMcCullough, Christopher, Gina Angelella, and Megan O’Rourke. 2020. "Conservation Wildflower Plantings Do Not Enhance On-Farm Abundance of Amblyomma americanum (Ixodida: Ixodidae)" Insects 11, no. 9: 617. https://doi.org/10.3390/insects11090617
APA StyleMcCullough, C., Angelella, G., & O’Rourke, M. (2020). Conservation Wildflower Plantings Do Not Enhance On-Farm Abundance of Amblyomma americanum (Ixodida: Ixodidae). Insects, 11(9), 617. https://doi.org/10.3390/insects11090617