Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems
Introduction
Funding
Conflicts of Interest
References
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Stoate, C.; Boatman, N.D.; Borralho, R.J.; Rio Carvalho, C.; de Snoo, G.R.; Eden, P. Ecological impacts of arable intensification in Europe. J. Environ. Mana. 2001, 63, 337–365. [Google Scholar] [CrossRef]
- Robinson, R.A.; Sutherland, W.J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 2002, 39, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Tillman, D.; Gassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Carvell, C.; Roy, D.B.; Smart, S.M.; Pywell, R.F.; Preston, C.D.; Goulson, D. Declines in forage availability for bumblebees at a national scale. Biol. Cons. 2006, 132, 481–489. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. [Biol.] 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Wade, M.R.; Gurr, G.M.; Wratten, S.D. Ecological restoration of farmland: Progress and prospects. Phil. Trans. R. Soc. B 2008, 363, 831–847. [Google Scholar] [CrossRef] [Green Version]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Bretagnolle, V.; Gaba, S. Weeds for bees? A review. Agron. Sustain. 2015, 35, 891–909. [Google Scholar] [CrossRef] [Green Version]
- Carvell, C.; Meek, W.R.; Pywell, R.F.; Nowakowski, M. The response of foraging bumblebees to successional change in newly created arable field margins. Biol. Cons. 2004, 118, 327–339. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Altieri, M.A. Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods; CSIRO publishing: Collingwood, VI, Australia, 2004. [Google Scholar]
- Pywell, R.F.; James, K.L.; Herbert, I.; Meek, W.R.; Carvell, C.; Bell, D.; Sparks, T.H. Determinants of overwintering habitat quality for beetles and spiders on arable farmland. Biol. Conserv. 2005, 123, 79–90. [Google Scholar] [CrossRef]
- Pywell, R.F.; Warman, E.A.; Carvel, C.; Sparks, T.H.; Dicks, L.V.; Bennet, D.; Wright, A.; Chritchley, C.N.R.; Sherwood, A. Providing foraging resources for bumblebees in intensively farmed landscapes. Biol. Conserv. 2005, 121, 479–494. [Google Scholar] [CrossRef]
- Heimpel, G.E.; Jervis, M.A. Does floral nectar improve biological control by parasitoids? In Plant-Provided Food for Carnivorous Insects. A Protective Mutualism and Its Applications; Wäckers, F.L., van Rijn, P.C.J., Bruin, J., Eds.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Tscharntke, T.; Bommarco, R.; Clough, Y.; Crist, T.O.; Kleijn, D.; Rand, T.A.; Tylianakis, J.M.; Nouhuys, S.V.; Vidal, S. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 2007, 43, 294–309. [Google Scholar] [CrossRef]
- Cullen, R.; Warner, K.D.; Jonsson, M.; Wratten, S.D. Economics and adoption of conservation biological control. Biol. Control 2008, 45, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Thomson, L.J.; McKenzie, J.; Sharley, D.J.; Nash, M.A.; Tsitsilas, A.; Hoffmann, A.A. Effect of woody vegetation at the landscape scale on the abundance of natural enemies in Australian vineyards. Biol. Control 2010, 54, 248–254. [Google Scholar] [CrossRef]
- Wäckers, F.L.; van Rijn, P.C.J. Pick and mix: Selecting flowering plants to meet the requirements of target biological control insects. In Biodiversity and Insect Pests: Key Issues for Sustainable Management; Gurr, G.M., Wratten, S.D., Snyder, W., Read, D.M.Y., Eds.; Wiley Blackwell: Oxford, UK, 2012; pp. 139–165. [Google Scholar]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2014, 33, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.-X.; Zhu, P.-Y.; Gurr, G.M.; Zheng, X.-S.; Read, D.M.Y.; Heong, K.-L.; Yang, Y.-J.; Xu, H.-X. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: Prospects for enhanced use in agriculture. Insect Sci. 2014, 21, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.J.; Wilby, A.; Sutton, P.; Wäckers, F.L. Do sown flower strips boost wild pollinators abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agric. Ecosyst. Environ. 2017, 239, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Carvell, C.; Meek, W.R.; Pywell, R.F.; Goulson, D.; Nowakowski, M. Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. J. Appl. Ecol. 2007, 44, 29–40. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Straub, C.S.; Snyder, W.E. Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 2006, 87, 277–282. [Google Scholar] [CrossRef]
- Moreno, C.R.; Lewins, S.A.; Barbosa, P. Influence of relative abundance and taxonomic identity on the effectiveness of generalist predators as biological control agents. Biol. Control 2010, 52, 96–103. [Google Scholar] [CrossRef]
- Stephens, M.J.; France, C.M.; Wratten, S.D.; Frampton, C. Enchancing biological control of leafrollers (Lepidoptera: Tortricidae) by sowing buckwheat (Fagopyrum esculentum) in an orchard. Biocontrol Sci. Technol. 1998, 8, 547–558. [Google Scholar] [CrossRef]
- Goulson, D.; Ollerton, J.; Sluman, C. Foraging strategies in the small skipper butterfly, Thymelicus flavus: When to switch? Anim. Behav. 1997, 53, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Goulson, D.; Wright, N.P. Flower constancy in the hoverflies Episyrphus balteatus (Degeer) and Syrphus ribesii (L.) (Syrphidae). Behav. Ecol. 1998, 9, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Gegear, R.J.; Laverty, T.M. Flower constancy in bumblebees: A test of the trait variability hypothesis. Anim. Behav. 2005, 69, 939–949. [Google Scholar] [CrossRef]
- Michener, C.D. The Bees of the World, 2nd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2007. [Google Scholar]
- Olesen, J.M.; Bascompte, J.; Elberling, H.; Jordano, P. Temporal dynamics of a pollination network. Ecology 2008, 89, 1573–1582. [Google Scholar] [CrossRef]
- Petanidou, T.; Kallimanis, A.S.; Tzanopoulos, J.; Sgardelis, S.P.; Pantis, J.D. Long-term observation of a pollination network, fluctuation in species and interactions, relative invariance of network structure, and implications for estimates of specialization. Ecol. Lett. 2008, 11, 564–575. [Google Scholar] [CrossRef]
- Kallimanis, A.S.; Petanidou, T.; Tzanopoulos, J.; Pantis, J.D.; Sgardelis, S.P. Do plant-pollinator interaction networks result from stochastic processes? Ecol. Model. 2009, 220, 684–693. [Google Scholar] [CrossRef]
- Kunin, W.E. Sex and the single mustard: Population density and pollinator behaviour effects on seed-set. Ecology 1993, 74, 2145–2160. [Google Scholar] [CrossRef]
- Petanidou, T.; DenNijs, J.C.M.; Oostermeijer, J.G.B. Pollination ecology and constraints on seeds of the rare perennial Gentiana cruciata L. in the Netherlands. Acta Botanica Neerlandica 1995, 44, 55–74. [Google Scholar] [CrossRef]
- Shavit, O.; Amots, D.; Ne’eman, G. Competition between honeybess (Apis mellifera) and native solitary bees in the Mediterranean region of Israel—Implications for conservation. Isr. J. Plant Sci. 2009, 57, 171–183. [Google Scholar] [CrossRef]
- Stanghellini, M.S.; Ambrose, J.T.; Schultheis, J.R. The effects of honey bee and bumble bee pollination on fruit set and abortion of cucumber and watermelon. Am. Bee J. 1997, 137, 386–391. [Google Scholar]
- Balzan, M.V.; Bocci, G.; Moonen, A.-C. Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. J. Insect Conserv. 2014, 18, 713–772. [Google Scholar] [CrossRef]
- Balzan, M. Flowering banker plants for the delivery of multiple agroecosystem services. Arthropod. Plant Interact. 2017, 11, 743–754. [Google Scholar] [CrossRef]
- Aguilar-Fenollosa, E.; Pascual-Ruiz, S.; Hurtado, S.; Jacas, J.A. Efficacy and economics of ground cover management as a conservation biological control strategy against Tetranychus urticae in clementine mandarin orchards. Crop Prot. 2011, 30, 1328–1333. [Google Scholar] [CrossRef]
- Paredes, D.; Cayuela, L.; Campos, M. Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric. Ecosys. Environ. 2013, 173, 72–80. [Google Scholar] [CrossRef]
- Karamaouna, F.; Kati, V.; Volakakis, N.; Varikou, K.; Garantonakis, N.; Economou, L.; Birouraki, A.; Markellou, E.; Liberopoulou, S.; Edwards, M. Ground cover management with mixtures of flowering plants to enhance insect pollinators and natural enemies of pests in olive groves. Agric. Ecosyst. Environ 2019, 274, 76–89. [Google Scholar] [CrossRef]
- Jervis, M.A.; Kidd, N.A.C.; Fitton, M.G.; Huddleston, T.; Dawah, H.A. Flower-visiting by hymenopteran parasitoids. J. Nat. Hist. 1993, 27, 67–105. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Wäckers, F.L. Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol. Control 2008, 46, 400–408. [Google Scholar] [CrossRef]
- Kremen, C.; Bugg, R.L.; Nicola, N.; Smith, S.A.; Thorp, R.W.; Williams, N.M. Native bees, native plants and crop pollination in California. Fremontia 2002, 30, 41–49. [Google Scholar]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Nat. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef] [Green Version]
- Winfree, R.; Williams, N.M.; Gaines, H.; Ascher, J.S.; Kremen, C. Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. J. Appl. Ecol. 2007, 45, 793–802. [Google Scholar] [CrossRef]
- Rader, R.; Howlett, B.G.; Cunningham, S.A.; Westcott, D.A.; Edwards, W. Spatial and temporal variation in pollinator effectiveness: Do unmanaged insects provide consistent pollination services to mass flowering crops? J. Appl. Ecol. 2012, 49, 126–134. [Google Scholar] [CrossRef]
- Garantonakis, N.; Varikou, K.; Birouraki, A.; Edwards, M.; Kalliakaki, V.; Andrinopoulos, F. Comparing the pollination services of honey bees and wild bees in a watermelon field. Sci. Hortic. 2016, 204, 138–144. [Google Scholar] [CrossRef]
- Delaplane, K.S.; Mayer, D.F. Crop Pollination by Bees; CABI Publishing: New York, NY, USA, 2000. [Google Scholar]
- Winfree, R.; Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B 2009, 276, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Bartomeus, I.; Park, M.G.; Gibbs, J.; Danforth, B.N.; Lakson, A.N.; Winfree, R. Biodiversity ensures plant–pollinator phenological synchrony against climate change. Ecol. Lett. 2013, 16, 1331–1338. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamaouna, F.; Jaques, J.A.; Kati, V. Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems. Insects 2021, 12, 31. https://doi.org/10.3390/insects12010031
Karamaouna F, Jaques JA, Kati V. Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems. Insects. 2021; 12(1):31. https://doi.org/10.3390/insects12010031
Chicago/Turabian StyleKaramaouna, Filitsa, Josep A. Jaques, and Vaya Kati. 2021. "Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems" Insects 12, no. 1: 31. https://doi.org/10.3390/insects12010031
APA StyleKaramaouna, F., Jaques, J. A., & Kati, V. (2021). Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems. Insects, 12(1), 31. https://doi.org/10.3390/insects12010031