Genetic Variability, Population Differentiation, and Correlations for Thermal Tolerance Indices in the Minute Wasp, Trichogramma cacoeciae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Terminology
2.2. Field Collection and Laboratory Rearing
- Although there was an intense sampling effort [37] locations, and more than 9000 patches of the sentinel eggs of Ephestia kuehniella Zeller (Lepidoptera: Pyradidae) exposed], Trichogramma individuals were difficult to collect. On average, only 2% of hosts’ patches were actually parasitized.
- Among the eight recovered Trichogramma species, T. cacoeciae was the most abundant one and T. evanescens was the only species present all along the altitudinal cline.
2.3. Molecular Characterization
2.4. Thermal Tolerance Indices Phenotypic Characterization
- Critical thermal minimum (CTmin): temperature at which the last individual lost its ability to walk;
- Chill coma temperature (CCT): temperature at which the first individual toppled with no more movement;
- Activity recovery (AR): temperature at which the first individual recovered its ability to walk.
2.5. Climatic Data
- Tmean varied between +6.3 °C and +9.3 °C in the southern-meso, +2.2 °C and +4.8 °C in the southern-supra, and +1 °C and +6.6 °C in the northwestern.
- Tmini varied between +2.8 °C and +6.7 °C in the southern-meso, −0.5 °C and +1.5 °C in the Southern-Supra, and −4.7 °C and +2.1 °C in the northwestern.
2.6. Statistical Analyses
- The first set of variables (hereafter, the hypothesis test approach) included the “origin” (qualitative variable with three modalities: southern-meso, southern-supra, and northwestern) as the only fixed effect. The sampling location and the COI haplotype were concatenated into a single qualitative variable and used as a random effect. This was to prevent any pseudo-replication linked to the use of strains deriving from the same “natural population” (see Field Collection and Laboratory Rearing).
- The second set of variables (hereafter, the model comparison approach) considered the two climatic variables (Tmean and Tmini—see previous section) as well as three geographic ones (altitude, latitude, and longitude) as fixed effects. These quantitative variables thus substituted the qualitative variable “origin” used in the first analysis. As for the first analysis, the concatenated information about the sampling location and the COI haplotype was used as a first random effect (intercept). Insofar as several strains are linked to the same meteorological station, this information was used as a second random effect (intercept).
3. Results
3.1. Molecular Characterization Using COI
3.2. Behavior of the Wasps at Cold Temperatures
3.3. Genetic Differentiation between Geographic Origins
3.4. Pairwise and Multivariate Correlations between Thermal Tolerance Indices
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huey, R.B.; Kingsolver, J.G. Variation in universal temperature dependence of biological rates. Proc. Natl. Acad. Sci. USA 2011, 108, 10377–10378. [Google Scholar] [CrossRef] [Green Version]
- Kawecki, T.J.; Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 2004, 7, 1225–1241. [Google Scholar] [CrossRef] [Green Version]
- Bishop, T.R.; Robertson, M.P.; Van Rensburg, B.J.; Parr, C.L. Coping with the cold: Minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecol. Entomol. 2017, 42, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Sanford, E.; Kelly, M.W. Local adaptation in marine invertebrates. Annu. Rev. Mar. Sci. 2011, 3, 509–535. [Google Scholar] [CrossRef]
- Ayrinhac, A.; Debat, V.; Gibert, P.; Kister, A.-G.; Legout, H.; Moreteau, B.; Vergilino, R.; David, J.R. Cold adaptation in geographical populations of Drosophila melanogaster: Phenotypic plasticity is more important than genetic variability. Funct. Ecol. 2004, 18, 700–706. [Google Scholar] [CrossRef]
- Körner, C. The use of “altitude” in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Addo-Bediako, A.; Chown, S.L.; Gaston, K.J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B Biol. Sci. 2000, 267, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, B.J.; Addo-Bediako, A.; Chown, S.L. Climatic variability and the evolution of insect freeze tolerance. Biol. Rev. Camb. Philos. Soc. 2003, 78, 181–195. [Google Scholar] [CrossRef]
- Andersen, J.L.; Manenti, T.; Sørensen, J.G.; Macmillan, H.A.; Loeschcke, V.; Overgaard, J. How to assess drosophila cold tolerance: Chill Coma Temperature and Lower Lethal Temperature are the best predictors of cold distribution limits. Funct. Ecol. 2015, 29, 55–65. [Google Scholar] [CrossRef]
- Castañeda, L.E.; Lardies, M.A.; Bozinovic, F. Interpopulational variation in recovery time from Chill Coma along a geographic gradient: A study in the common woodlouse Porcellio Laevis. J. Insect Physiol. 2005, 51, 1349–1351. [Google Scholar] [CrossRef]
- Gibert, P.; Moreteau, B.; Tavy, G.P.; Karan, D.; David, J.R. Chill-Coma tolerance, a major climatic adaptation among drosophila species. Brief Commun. Evol. 2001, 55, 1063–1068. [Google Scholar]
- Hoffmann, A.A.; Sørensen, J.G.; Loeschcke, V. Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches. J. Therm. Biol. 2003, 8, 175–216. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Williams, C.M.; Terblanche, J.S. Variation in thermal performance among insect populations. Physiol. Biochem. Zool. 2012, 85, 594–606. [Google Scholar] [CrossRef]
- Wu, L.H.; Hoffmann, A.A.; Thomson, L.J. Trichogramma parasitoids for control of lepidopteran borers in Taiwan: Species, life-history traits and Wolbachia infections. J. Appl. Entomol. 2015, 140, 1–11. [Google Scholar]
- Angiletta, M.J. Thermal Sensitivity, in Thermal Adaptation: A Theoretical and Empirical Synthesis; Oxford University Press: New York, NY, USA, 2009; pp. 35–87. [Google Scholar]
- Eilenberg, J.; Hajek, A.; Lomer, C. Suggestions for unifying the terminology in biological control. BioControl 2001, 46, 387–400. [Google Scholar] [CrossRef]
- Hoelmer, K.A.; Kirk, A.A. Selecting arthropod biological control agents against arthropod pests: Can the science be improved to decrease the risk of releasing ineffective agents? Biol. Control 2005, 34, 255–264. [Google Scholar] [CrossRef]
- Robertson, M.P.; Kriticos, D.J.; Zachariades, C. Climate matching techniques to narrow the search for biological control agents. Biol. Control 2008, 46, 442–452. [Google Scholar] [CrossRef]
- Fischbein, D.; Lantschner, M.V.; Corley, J.C. Modelling the distribution of forest pest natural enemies across invaded areas: Towards understanding the influence of climate on parasitoid establishment success. Biol. Control 2019, 132, 177–188. [Google Scholar] [CrossRef]
- Reddy, A.M.; Pratt, P.D.; Hopper, J.V.; Cibils-Stewart, X.; Walsh, G.C.; Mc Kay, F. Variation in cool temperature performance between populations of Neochetina Eichhorniae (Coleoptera: Curculionidae) and Implications for the Biological Control of Water Hyacinth, Eichhornia crassipes, in a Temperate Climate. Biol. Control 2019, 128, 85–93. [Google Scholar] [CrossRef]
- Boulard, T.; Mermier, M.; Fargues, J.; Smits, N.; Rougier, M.; Roy, J.C. Tomato leaf boundary layer climate: Implications for microbiological whitefly control in greenhouses. Agric. For. Meteorol. 2002, 110, 159–176. [Google Scholar] [CrossRef]
- Pincebourde, S.; Woods, H.A. Climate Uncertainty on Leaf Surfaces: The Biophysics of Leaf Microclimates and Their Consequences for Leaf-Dwelling Organisms. Funct. Ecol. 2012, 26, 844–853. [Google Scholar] [CrossRef]
- Fatnassi, H.; Brun, R.; Pizzol, J.; Kortam, M.; Métay, C.; Poncet, C.; Arnaouty, S.A.E. Dispersal and maintenance of Neoseiulus cucumeris Oudemans and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) to control thrips in greenhouse crops as influenced by micro habitat environment. Egypt. J. Biol. Pest Control 2015, 25, 703–707. [Google Scholar]
- Ehlers, R.U.; Oestergaard, J.; Hollmer, S.; Wingen, M.; Strauch, O. Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode-bacterium complex Heterorhabditis Bacteriophora—Photorhabdus Luminescens. BioControl 2005, 50, 699–716. [Google Scholar] [CrossRef]
- Nimkingrat, P.; Khanam, S.; Strauch, O.; Ehlers, R.U. Hybridisation and selective breeding for improvement of low temperature activity of the entomopathogenic nematode Steinernema feltiae. BioControl 2013, 58, 417–426. [Google Scholar] [CrossRef]
- Hu, H.; Wisniewski, M.E.; Abdelfattah, A.; Zheng, X. Biocontrol Activity of a Cold-Adapted Yeast from Tibet against Gray Mold in Cherry Tomato and Its Action Mechanism. Extremophiles 2017, 21, 789–803. [Google Scholar] [CrossRef]
- Consoli, F.R.; Parra, J.R.P.; Zucchi, R.A. Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma; Springer: New York, NY, USA, 2010. [Google Scholar]
- Vavre, F.; Jong, J.H.D.; Stouthamer, R. Cytogenetic Mechanism and genetic consequences of thelytoky in the wasp Trichogramma cacoeciae. Heredity 2004, 93, 592–596. [Google Scholar] [CrossRef] [Green Version]
- Stouthamer, R. The use of sexual versus asexual wasp in biological control. Entomophaga 1993, 38, 3–6. [Google Scholar] [CrossRef]
- Cherif, A.; Kaouthar, L.G. Trichogramma cacoeciae as a biological control agent of the tomato pinworm Tuta absoluta in Northeastern Tunisia. Entomol. Ellenica 2013, 22, 35–42. [Google Scholar] [CrossRef]
- Thiéry, D.; Desneux, N. Host plants of the polyphagous grapevine moth Lobesia botrana during larval stage modulate moth egg quality and subsequent parasitism by the parasitoid Trichogramma cacoeciae. Entomol. Gen. 2018, 38, 47–59. [Google Scholar] [CrossRef]
- Sigsgaard, L.; Herz, A.; Korsgaard, M.; Wührer, B. Mass release of Trichogramma evanescens and T. cacoeciae can reduce damage by the apple codling moth Cydia pomonella in organic orchards under pheromone disruption. Insects 2017, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Pintureau, B. Les Espèces Européennes de Trichogrammes, ILV; InLibroVeritas: Villeurbanne, Francce, 2008. [Google Scholar]
- Ion Scotta, M. Distributions des espèces du genre Trichogramma le Long d’un Gradient Altitudinal et Adaptations Locales Aux Basses Températures Chez l’espèce Trichogramma cacoeciae. Ph.D. Thesis, Université côte d’Azur, Nice, France, 2019. [Google Scholar]
- Benvenuto, C.; Tabone, E.; Vercken, E.; Sorbier, N.; Colombel, E.; Warot, S.; Fauvergue, X.; Ris, N. Intraspecific variability in the parasitoid wasp Trichogramma chilonis: Can we predict the outcome of hybridization? Evol. Appl. 2012, 5, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Blondel, J.; Aronson, J. Biodiversity and Ecosystem Function in the Mediterranean Basin: Human and Non-Human Determinants, 2nd ed.; Oxford University Press: New York, NY, USA, 2011; pp. 43–119. [Google Scholar]
- Batalha, H.; Waldschmidt, A.M.; Campos, L.A.O.; Tavares, M.G.; Fernandes-Salomao, T.M. Phylogeography and historical demography of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): Incongruence between morphology and mitochondrial DNA. APID 2010, 41, 534–547. [Google Scholar] [CrossRef] [Green Version]
- Al Khatib, F.; Fusu, L.; Cruaud, A.; Gibson, G.; Borowiec, N.; Rasplus, J.Y.; Ris, N.; Delvare, G. An Integrative approach to species discrimination in the Eupelmus urozonus complex (Hymenoptera, Eupelmidae), with the description of 11 new species from the Western Palaearctic. Syst. Entomol. 2014, 39, 806–862. [Google Scholar] [CrossRef]
- Heraty, J.M.; Woolley, J.B.; Hopper, K.R.; Hawks, D.L.; Kim, J.W.; Buffington, M. Molecular phylogenetics and reproductive incompatibility in a complex of cryptic species of aphid parasitoids. Mol. Phyl. Evol. 2007, 45, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Kankare, M.; Stefanescu, C.; van Noouhuys, S.; Shaw, M.R. Host specialization by Cotesia wasps (Hymenoptera: Braconidae) parasitizing species-rich Melitaeini (Lepidoptera: Nymphalidae) communities in north-eastern Spain. Biol. J. Linn. Soc. 2005, 86, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.H.; Brown, M.J.F.; Carolan, J.C.; An, J.D.; Goulson, D.; Aytekin, A.M.; Best, L.R.; Byvaltsev, A.M.; Cederberg, B.; Dawson, R.; et al. Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syst. Biodiv. 2012, 10, 21–56. [Google Scholar] [CrossRef] [Green Version]
- April, J.; Turgeon, J. Phylogeography of the banded killifish (Fundulus diaphanus): Glacial races and secondary contact. J. Fish. Biol. 2006, 69, 212–228. [Google Scholar] [CrossRef]
- De Gelas, K.; De Meester, L. Phylogeography of Daphnia magna in Europe. Mol. Ecol. 2005, 14, 753–764. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Wr, H.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome C Oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Warot, S. Caractérisation Moléculaire et Isolements Reproducteurs Chez des Auxiliaires de Lutte Biologique; EPHE, École Pratique des Hautes Écoles: Montpellier, France, 2018. [Google Scholar]
- Vaida, F.; Blanchard, S. Conditional akaike information for mixed-effects models. Biometrika 2005, 92, 351–370. [Google Scholar] [CrossRef]
- Säfken, B.; Rügamer, D.; Kneib, T.; Greven, S. Conditional Model Selection in Mixed-Effects Models with CAIC4. J. Stat. Soft. 2018, 99, 1–30. [Google Scholar]
- Sinclair, B.J. Field ecology of freeze tolerance: Interannual variation in cooling rates, freeze-thaw and thermal stress in the microhabitat of the alpine cockroach Celatoblatta quinquemaculata. Oikos 2001, 93, 286–293. [Google Scholar] [CrossRef]
- Leather, S.R.; Walters, K.F.A.; Bale, J.S. The Ecology of Insect Overwintering; Cambridge University Press: New York, NY, USA, 2009; pp. 25–74. [Google Scholar]
- Danks, H.V. Key Themes in the study of seasonal adaptations in insects II. Life-Cycle Patterns. Appl. Entomol. Zool. 2006, 41, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gibert, P.; Huey, R.B. Chill-Coma Temperature in Drosophila: Effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 2002, 74, 29–434. [Google Scholar] [CrossRef] [Green Version]
- Le Lann, C.; Roux, O.; Serain, N.; Van Aalphen, J.J.J.M.; Vernon, P.; Van Baaren, J. Thermal tolerance of sympatric hymenopteran parasitoid species: Does it match seasonal activity? Phys. Ent. 2011, 36, 21–28. [Google Scholar] [CrossRef]
- Bennett, A.F.; Lenski, R.E. An Experimental test of evolutionary trade-offs during temperature adaptation. Proc. Natl. Acad. Sci. USA 2007, 104, 8649–8654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ransberry, V.E.; MacMillan, H.A.; Sinclair, B.J. The relationship between Chill-Coma onset and Recovery at the extremes of the thermal window of Drosophila melanogaster. Physiol. Biochem. Zool. 2011, 84, 553–559. [Google Scholar] [CrossRef]
- Klepsatel, P.; Gáliková, M.; Huber, C.D.; Flatt, T. Similarities and differences in altitudinal versus latitudinal variation for morphological traits in Drosophila melanogaster. Evolution 2014, 68, 1385–1398. [Google Scholar] [CrossRef]
- Halbritter, A.H.; Billeter, R.; Edwards, P.J.; Alexander, J.M. Local adaptation at range edges: Comparing elevation and latitudinal gradients. J. Evol. Biol. 2015, 28, 1849–1860. [Google Scholar] [CrossRef]
- Bauerfeind, S.S.; Schäfer, M.A.; Berger, D.; Blanckenhorn, W.U.; Fox, C.W. Replicated latitudinal clines in reproductive traits of European and North American yellow dung flies. Oikos 2018, 127, 1619–1632. [Google Scholar] [CrossRef]
- Günter, F.; Beaulieu, M.; Brunetti, M.; Lange, L.; Ornés, A.S.; Fischer, K. Latitudinal and altitudinal variation in ecologically important traits in a widespread butterfly. Biol. J. Linn. Soc. 2019, 128, 742–755. [Google Scholar] [CrossRef]
- Roff, D.A.; Mousseau, T.A. Quantitative genetics and fitness: Lesson from Drosophila. Heredity 1987, 58, 103–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacMillan, H.A.; Sinclair, B.J. Mechanisms underlying insect Chill-Coma. J. Insect Physiol. 2011, 57, 12–20. [Google Scholar] [CrossRef]
- Babendreier, D.; Kuske, S.; Bigler, F. Overwintering of the egg parasitoid Trichogramma brassicae in Northern Switzerland. BioControl 2003, 48, 261–263. [Google Scholar] [CrossRef]
- Rossi, M.M.; Pizzol, J. Développement automnal et hivernal de Trichogramma cacoeciae et de T. evanescens (Hym., Trichogrammatidae), en conditions naturelles dans Le Midi de La France. J. Appl. Entomol. 2009, 121, 29–36. [Google Scholar] [CrossRef]
- Vogelé, J.; Pizzol, J.; Babi, A. The Overwintering of some Trichogramma species. In Le Colloques de l’INRA; INRAE: Versailles, France, 1986; Volume 43. [Google Scholar]
- Rahimi-Kaldeh, S.; Ashouri, A.; Bandani, A.; Ris, N. Abiotic and biotic factors influence diapause induction in sexual and asexual strains of Trichogramma brassicae (Hym: Trichogrammatidae). Sci. Rep. 2018, 8, 17600. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Desneux, N.; Benelli, G.; Zang, L.-S.; Du, W.-M.; Ruan, C.-C.; Trumble, J. Geographic variation of diapause induction rates in Trichogramma drendrolimi (Hymenoptera: Trichogrammatidae) in China. J. Econ. Entomol. 2017, 110, 386–391. [Google Scholar] [CrossRef]
- Palaima, A. The Fitness Cost of Generalization: Present Limitations and Future Possible Solutions. Biol. J. Linn. Soc. 2007, 90, 583–590. [Google Scholar] [CrossRef]
- Palaima, A.; Spitze, K. Is a jack-of-all-temperatures a master of none? An experimental test with Daphnia pulicaria (Crustacea: Cladocera). Evol. Ecol. Res. 2004, 6, 2015–2225. [Google Scholar]
Site | Reference Strain | Haplotypes | Cluster | Origin | Lat | Long | Alt | Month | Year | Programme | Ctmin | CCT | AR | Code Weather Stations | Code Meteo France Stations |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S01 | ISA14032 | Hap119 | Cluster 2 | southern-meso | 43.77 | 7.18 | 178 | November | 2016 | 1 | −2.1 | −2.1 | 3.9 | H | 6152002 |
S02 | ISA17128 | Hap006 | Cluster 1 | southern-meso | 43.76 | 7.15 | 667 | June | 2016 | 1 & 2 | −0.5 | −3.9 | 10.6 | G | 6118002 |
S05 | ISA19503 | Hap019 | Cluster 2 | southern-meso | 43.74 | 7.19 | 41 | September | 2016 | 1 | −1.5 | −2.1 | NA | I | 6029001 |
S13 | ISA17127 | Hap019 | Cluster 2 | southern-meso | 43.56 | 6.99 | 142 | October | 2016 | 1 | 4.2 | 1.9 | 8.8 | H | 6152002 |
S13 | ISA15034 | Hap020 | Other | southern-meso | 43.56 | 6.99 | 142 | November | 2016 | 1 | −1.3 | 1.7 | 6.3 | H | 6152002 |
S16 | ISA17141 | Hap006 | Cluster 1 | southern-meso | 43.59 | 6.94 | 13 | October | 2016 | 1 | 1.6 | 1.2 | 7.5 | I | 6029001 |
S17 | ISA7271 | Hap006 | Cluster 1 | southern-meso | 43.61 | 6.94 | 59 | June | 2016 | 1 | −1.3 | −1.5 | 8.8 | I | 6029001 |
S19 | ISA15220 | Hap006 | Cluster 1 | southern-meso | 43.61 | 6.94 | 68 | November | 2016 | 1 | 2.8 | −1.1 | 7.4 | I | 6029001 |
S20 | ISA4561 | Hap120 | Cluster 2 | southern-meso | 43.62 | 6.90 | 201 | April | 2016 | 1 | 0.4 | 0.8 | 10.4 | H | 6152002 |
S21 | ISA17138 | Hap019 | Cluster 2 | southern-meso | 43.67 | 6.93 | 564 | october | 2016 | 1 | 0.6 | −0.5 | 8.2 | G | 6118002 |
S21 | ISA13580 | Hap119 | Cluster 2 | southern-meso | 43.67 | 6.93 | 564 | October | 2016 | 1 | 3.6 | 3.5 | 2.9 | G | 6118002 |
S22 | ISA6064 | Hap006 | Cluster 1 | southern-meso | 43.71 | 6.97 | 261 | May | 2016 | 1 | 2.7 | −0.2 | 9.4 | H | 6152002 |
S23 | ISA17658 | Hap019 | Cluster 2 | southern-meso | 43.73 | 6.99 | 684 | April | 2017 | 1 | −1.9 | 0 | 7.9 | G | 6118002 |
S24 | ISA17135 | Hap019 | Cluster 2 | southern-meso | 43.73 | 6.96 | 848 | April | 2016 | 1 | 5.4 | 4.9 | 7.6 | G | 6118002 |
S26 | ISA17130 | Hap006 | Cluster 1 | southern- supra | 43.74 | 6.95 | 1089 | April | 2016 | 1 | −1.7 | 1 | 7.3 | F | 6050002 |
S26 | ISA17129 | Hap119 | Cluster 2 | southern- supra | 43.74 | 6.95 | 1089 | April | 2016 | 1 | −0.2 | 1.7 | 11.4 | F | 6050002 |
S29 | ISA10488 | Hap006 | Cluster 1 | southern- supra | 43.74 | 6.88 | 1139 | August | 2016 | 1 & 2 | −1.7 | −2 | 10.5 | D | 6037002 |
S29 | ISA17139 | Hap119 | Cluster 2 | southern- supra | 43.74 | 6.88 | 1139 | August | 2016 | 1 | −2 | 1.9 | 9 | D | 6037002 |
S29 | ISA17140 | Hap119 | Cluster 2 | southern- supra | 43.74 | 6.88 | 1139 | August | 2016 | 1 | −2.1 | 0.6 | 12.1 | D | 6037002 |
S31 | ISA11754 | Hap006 | Cluster 1 | southern- supra | 43.76 | 6.86 | 1094 | September | 2016 | 1 | 2.9 | 0.2 | 8 | F | 6050002 |
S32 | ISA19505 | Hap019 | Cluster 2 | southern- supra | 43.77 | 6.97 | 700 | October | 2016 | 1 | 0 | 1 | 9.7 | F | 6050002 |
S34 | ISA11785 | Hap006 | Cluster 1 | southern- supra | 43.78 | 6.84 | 985 | September | 2016 | 1 | 1.1 | 0.5 | 8.6 | F | 6050002 |
S34 | ISA19192 | Hap006 | Cluster 1 | southern- supra | 43.78 | 6.84 | 985 | May | 2016 | 1 & 2 | 0.4 | 3.8 | 9.5 | F | 6050002 |
S35 | ISA14786 | Hap006 | Cluster 1 | southern- supra | 43.79 | 6.85 | 1187 | November | 2016 | 1 | 4.7 | 3.9 | 12.1 | D | 6037002 |
S35 | ISA18282 | Hap006 | Cluster 1 | southern- supra | 43.79 | 6.85 | 1187 | October | 2016 | 1 | 4.4 | 1.5 | 7.2 | D | 6037002 |
S35 | ISA13744 | Hap019 | Cluster 2 | southern- supra | 43.79 | 6.85 | 1187 | October | 2016 | 1 | 2.6 | 1.2 | 6.1 | D | 6037002 |
S37 | ISA17124 | Hap006 | Cluster 1 | southern- supra | 43.80 | 6.94 | 878 | June | 2016 | 1 | 2.3 | 1.3 | 7.6 | F | 6050002 |
S37 | ISA17125 | Hap006 | Cluster 1 | southern- supra | 43.80 | 6.94 | 878 | June | 2016 | 1 | 1.3 | 0.3 | 12.1 | F | 6050002 |
S37 | ISA17954 | Hap006 | Cluster 1 | southern- supra | 43.80 | 6.94 | 878 | April | 2017 | 1 | 2.9 | −1.5 | 8.2 | F | 6050002 |
S37 | ISA17940 | Hap019 | Cluster 2 | southern- supra | 43.80 | 6.94 | 878 | April | 2017 | 1 | 6.8 | 2 | 5.7 | F | 6050002 |
S51 | ACJYR0144 | Hap006 | Cluster 1 | northwestern | 45.55 | 6.63 | 735 | July | 2015 | 2 | −0.1 | −0.1 | 6.4 | A | 91184001 |
S52 | ACJYR0031 | Hap006 | Cluster 1 | northwestern | 48.46 | 2.49 | 75 | June | 2015 | 1 & 2 | −2.1 | 0.7 | 7.6 | A | 91184001 |
S53 | FLO0064 | Hap006 | Cluster 1 | northwestern | 44.39 | 3.58 | 1225 | June | 2016 | 2 | −1 | −1.4 | 4.8 | B | 48186001 |
S54 | FLO239 | Hap006 | Cluster 1 | northwestern | 44.38 | 3.63 | 1074 | June | 2016 | 2 | −0.9 | −0.9 | 6.9 | B | 48186001 |
S55 | GOT113A | Hap076 | Other | northwestern | 44.97 | 4.93 | 171 | May | 2016 | 2 | 1.3 | −3.8 | 9.6 | C | 26064001 |
S56 | ISA1067 | Hap006 | Cluster 1 | northwestern | 45.95 | 4.88 | 290 | Unknown | 2015 | 2 | 3 | −1.4 | 10.8 | E | 1027003 |
S57 | ISA1075 | Hap006 | Cluster 1 | northwestern | 45.83 | 4.98 | 299 | Unknown | 2015 | 2 | 0 | 0.1 | 8.1 | E | 1027003 |
S58 | SALA001 | Hap006 | Cluster 1 | northwestern | 43.96 | 6.50 | 917 | July | 2017 | 2 | 2.2 | −0.3 | 7.8 | L | 4136001 |
S59 | TCMZ | Hap007 | Cluster 1 | northwestern | 44.06 | 5.13 | 151 | Unknown | 1987 | 2 | −2.2 | −4.1 | 9 | M | 84031001 |
S60 | TSM008 | Hap006 | Cluster 1 | northwestern | 45.67 | 3.58 | 592 | July | 2015 | 2 | −1.9 | −3.5 | 9.7 | N | 63125002 |
Stations | Code Meteo France Stations | Origin | Lat | Long | Altitude | Average T | Minimum T |
---|---|---|---|---|---|---|---|
Cannes | 6029001 | southern—meso | 43.556 | 6.95 | 2 | 8.77 | 4.58 |
Valbonne | 6152002 | southern—meso | 43.623 | 7.028 | 238 | 9.3 | 6.65 |
St. Cezaire sur Siagne | 6118002 | southern—meso | 43.678 | 6.809 | 694 | 6.35 | 2.81 |
Coursegoules | 6050002 | southern-supra | 43.792 | 7.048 | 985 | 3.29 | 0.38 |
Caussol | 6037002 | southern-supra | 43.752 | 6.923 | 1268 | 4.83 | 1.48 |
Les Mas | 6081001 | southern-supra | 43.813 | 6.809 | 1525 | 2.21 | −0.54 |
Aiguines | 83002004 | northwestern | 43.775 | 6.245 | 853 | 5.39 | 1.24 |
La Mure Argens | 4136001 | northwestern | 43.775 | 6.245 | 920 | 1.04 | −4.66 |
Carpentras | 84031001 | northwestern | 43.977 | 6.52 | 109 | 6.56 | 2.07 |
La Salle Prunet | 48186001 | northwestern | 44.075 | 5.059 | 1030 | 3.04 | 0.2 |
Valence—Chabeui | 26064001 | northwestern | 44.914 | 4.971 | 163 | 5.37 | 1.9 |
Bourg St. Maurice | 73054001 | northwestern | 44.315 | 3.65 | 864 | 1.19 | −2.12 |
Balan | 1027003 | northwestern | 45.754 | 3.572 | 194 | 4.19 | 0.73 |
Courpiere | 63125002 | northwestern | 45.612 | 6.763 | 460 | 4.51 | 1.48 |
Courdimance | 91184001 | northwestern | 45.833 | 5.105 | 67 | 4.48 | 1.31 |
A—CTmin | Variable | SS | MS | DF1 | DF2 | f-Value | p-Value |
---|---|---|---|---|---|---|---|
Hypothesis test | Origin | 0.64 | 0.32 | 2 | 32.0 | 1.01 | 0.377 |
B—Chill Coma Temperature | Variable | SS | MS | DF1 | DF2 | f-Value | p-Value |
Hypothesis Test | Origin | 33.51 | 16.75 | 2 | 27.95 | 5.32 | 0.011 * |
Variable | AIC | LRT | p-Value | ||||
Model Comparison | T_mean T_mini Longitude | 176.41 175.24 179.67 | 4.06 2.89 7.31 | 0.044 * 0.089 0.009 ** | |||
C—Activity Recovery Hypothesis Test | Variable Origin | SS 15.07 | MS 7.54 | DF1 2 | DF2 36 | f-Value 1.74 | p-Value 0.190 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ion Scotta, M.; Margris, L.; Sellier, N.; Warot, S.; Gatti, F.; Siccardi, F.; Gibert, P.; Vercken, E.; Ris, N. Genetic Variability, Population Differentiation, and Correlations for Thermal Tolerance Indices in the Minute Wasp, Trichogramma cacoeciae. Insects 2021, 12, 1013. https://doi.org/10.3390/insects12111013
Ion Scotta M, Margris L, Sellier N, Warot S, Gatti F, Siccardi F, Gibert P, Vercken E, Ris N. Genetic Variability, Population Differentiation, and Correlations for Thermal Tolerance Indices in the Minute Wasp, Trichogramma cacoeciae. Insects. 2021; 12(11):1013. https://doi.org/10.3390/insects12111013
Chicago/Turabian StyleIon Scotta, Michela, Lucas Margris, Nadine Sellier, Sylvie Warot, Flavio Gatti, Fabio Siccardi, Patricia Gibert, Elodie Vercken, and Nicolas Ris. 2021. "Genetic Variability, Population Differentiation, and Correlations for Thermal Tolerance Indices in the Minute Wasp, Trichogramma cacoeciae" Insects 12, no. 11: 1013. https://doi.org/10.3390/insects12111013
APA StyleIon Scotta, M., Margris, L., Sellier, N., Warot, S., Gatti, F., Siccardi, F., Gibert, P., Vercken, E., & Ris, N. (2021). Genetic Variability, Population Differentiation, and Correlations for Thermal Tolerance Indices in the Minute Wasp, Trichogramma cacoeciae. Insects, 12(11), 1013. https://doi.org/10.3390/insects12111013