Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Materials
2.2. Total RNA Extraction
2.3. Scanning Electron Microscopy (SEM)
2.4. Gene Identification and Phylogenetic Analysis
2.5. Quantitative RT-PCR (qRT-PCR)
3. Results
3.1. Antennae and Sensilla
3.2. Identification of TpreOBPs and TpreORs
3.3. Bioinformatics and Phylogenetic Analysis of TpreOBPs
3.4. Phylogenetic Analysis of T. pretiosum ORs
3.5. Expression Profiles of T. pretiosum OBPs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leal, W.S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 2013, 58, 373–391. [Google Scholar] [CrossRef]
- Keil, T.A. Reconstruction and morphometry of the silkmoth olfactory hairs: A comparative study of sensilla trichodea on the antennae of male Antheraea polyphemus and A. pernyi (Insecta: Lepidoptera). Zoomorphologie 1984, 104, 8. [Google Scholar] [CrossRef]
- Keil, T.A. Surface coats of pore tubules and olfactory sensory dendrites of a silkmoth revealed by cationic markers. Tissue Cell 1984, 16, 705–717. [Google Scholar] [CrossRef]
- Larsson, M.C.; Hallberg, E.; Kozlov, M.V.; Francke, W.; Hansson, B.S.; Lofstedt, C. Specialized olfactory receptor neurons mediating intra- and interspecific chemical communication in leafminer moths Eriocrania spp. (Lepidoptera: Eriocraniidae). J. Exp. Biol. 2002, 205, 989–998. [Google Scholar] [CrossRef]
- Vogt, R.G.; Riddiford, L.M.; Prestwich, G.D. Kinetic properties of a sex pheromone-degrading enzyme: The sensillar esterase of Antheraea polyphemus. Proc. Natl. Acad. Sci. USA 1985, 82, 8827–8831. [Google Scholar] [CrossRef] [Green Version]
- Clyne, P.J.; Warr, C.G.; Freeman, M.R.; Lessing, D.; Kim, J.; Carlson, J.R. A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 1999, 22, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Vosshall, L.B.; Amrein, H.; Morozov, P.S.; Rzhetsky, A.; Axel, R. A spatial map of olfactory receptor expression in the Drosophila antennae. Cell 1999, 96, 725–736. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.-Y.; Xu, W.; Dong, S.-L.; Zhu, J.-Y.; Xu, Y.-X.; Anderson, A. Genome-wide analysis of ionotropic receptor gene repertoire in Lepidoptera with an emphasis on its functions of Helicoverpa armigera. Insect Biochem. Mol. Biol. 2018, 99, 37–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.-J.; Xu, W.; Chen, Q.-m.; Sun, L.-N.; Anderson, A.; Xia, Q.-Y.; Papanicolaou, A. A phylogenomics approach to characterising sensory neuron membrane proteins (SNMPs) in Lepidoptera. Insect Biochem. Mol. Biol. 2020, 118, 103313. [Google Scholar] [CrossRef]
- Vogt, R.G.; Riddiford, L.M. Pheromone binding and inactivation by moth antennae. Nature 1981, 293, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Leal, W.S. Proteins that make sense. In Insect Pheromone Biochemistry and Molecular Biology, the Biosynthesis and Detection of Pheromone and Plant Volatiles; Blomquist, G.J., Vogt, R.G., Eds.; Elsevier Academic Press: Cham, Switzerland, 2003. [Google Scholar]
- Pelosi, P.; Iovinella, I.; Zhu, J.; Wang, G.R.; Dani, F.R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biol. Rev. 2018, 93, 184–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleischer, J.; Pregitzer, P.; Breer, H.; Krieger, J. Access to the odor world: Olfactory receptors and their role for signal transduction in insects. Cell. Mol. Life Sci. 2018, 75, 485–508. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Leal, W.S. Rapid inactivation of a moth pheromone. Proc. Natl. Acad. Sci. USA 2005, 102, 14075–14079. [Google Scholar] [CrossRef] [Green Version]
- Vinson, S.B. Host Selection by Insect Parasitoids. Annu. Rev. Entomol. 1976, 21, 109–133. [Google Scholar] [CrossRef]
- Turlings, T.C.J.; Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef]
- Pereira, F.; Reigada, C.; Diniz, A.; Parra, J. Potential of Two Trichogrammatidae species for Helicoverpa armigera control. Neotrop. Entomol. 2019, 48, 966–973. [Google Scholar] [CrossRef]
- Fatouros, N.E.; Dicke, M.; Mumm, R.; Meiners, T.; Hilker, M. Foraging behavior of egg parasitoids exploiting chemical information. Behav. Ecol. 2008, 19, 677–689. [Google Scholar] [CrossRef]
- Lewis, W.J.; Nordlund, D.A.; Gueldner, R.C.; Teal, P.E.A.; Tumlinson, J.H. Kairomones and their use for management of entomophagous insects.13. Kairomonal Activity for Trichogramma Spp Hymenoptera, Trichogrammatidae of Abdominal Tips, Excretion, and a Synthetic Sex-Pheromone Blend of Heliothis-Zea (Boddie) Lepidoptera, Noctuidae Moths. J. Chem. Ecol. 1982, 8, 1323–1331. [Google Scholar]
- Noldus, L.P.J.J. Response of the egg parasitoid Trichogramma-pretiosum to the sex-pheromone of its host Heliothis-zea. Entomol. Exp. Appl. 1988, 48, 293–300. [Google Scholar] [CrossRef]
- Lindsey, A.R.I.; Kelkar, Y.D.; Wu, X.; Sun, D.; Martinson, E.O.; Yan, Z.; Rugman-Jones, P.F.; Hughes, D.S.T.; Murali, S.C.; Qu, J.; et al. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol. 2018, 16, 54. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Papanicolaou, A.; Liu, N.Y.; Dong, S.L.; Anderson, A. Chemosensory receptor genes in the Oriental tobacco budworm Helicoverpa assulta. Insect Mol. Biol. 2015, 24, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.J.; Zheng, L.S.; Huang, Y.P.; Xu, W.; You, M.S. Identification and characterisation of odorant binding proteins in the diamondback moth, Plutella xylostella. Insect Sci. 2020, 28, 987–1004. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.G.; Foret, S.; He, X.L.; Rozas, J.; Field, L.M.; Zhou, J.J. Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analyses. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Robertson, H.M.; Gadau, J.; Wanner, K.W. The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol. Biol. 2010, 19, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Robertson, H.M.; Wanner, K.W. The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family. Genome Res. 2006, 16, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Tvedte, E.S.; Walden, K.K.O.; McElroy, K.E.; Werren, J.H.; Forbes, A.A.; Hood, G.R.; Logsdon, J.M.; Feder, J.L.; Robertson, H.M. Genome of the parasitoid wasp Diachasma alloeum, an emerging model for ecological speciation and transitions to asexual reproduction. Genome Biol. Evol. 2019, 11, 2767–2773. [Google Scholar] [CrossRef]
- Panina, Y.; Germond, A.; Masui, S.; Watanabe, T.M. Validation of common housekeeping genes as reference for qPCR gene expression analysis during iPS reprogramming process. Sci. Rep. 2018, 8, 8716. [Google Scholar]
- Xu, W.; Zhang, H.; Liao, Y.; Papanicolaou, A. Characterization of sensory neuron membrane proteins (SNMPs) in cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae). Insect Sci. 2020, 28, 769–779. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Amornsak, W.; Cribb, B.; Gordh, G. External morphology of antennal sensilla of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae). Int. J. Insect Morphol. 1998, 27, 67–82. [Google Scholar] [CrossRef]
- Al-Jalely, B.H.; Wang, P.; Liao, Y.; Xu, W. Identification and characterisation of olfactory genes in the parasitoid wasp Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae). Bull. Entomol Res. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Picimbon, J.F.; Ji, S.; Kan, Y.; Chuanling, Q.; Zhou, J.J.; Pelosi, P. Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. Biochem. Biophys. Res. Commun. 2008, 372, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, W.; Zeng, B.; Wang, G.; Hao, D.; Huang, Y. Deletion of the Bombyx mori odorant receptor co-receptor (BmOrco) impairs olfactory sensitivity in silkworms. Insect Biochem. Mol. Biol. 2017, 86, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J. RNAi-induced electrophysiological and behavioral changes reveal two pheromone binding proteins of Helicoverpa armigera involved in the perception of the main sex pheromone component Z11-16:Ald. J. Chem. Ecol. 2017, 43, 207–214. [Google Scholar] [CrossRef]
- Leal, W.S.; Barbosa, R.M.; Xu, W.; Ishida, Y.; Syed, Z.; Latte, N.; Chen, A.M.; Morgan, T.I.; Cornel, A.J.; Furtado, A. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS ONE 2008, 3, e3045. [Google Scholar] [CrossRef] [Green Version]
Species | OBP | OR |
---|---|---|
Trichogramma pretiosum | 22 | 105 |
Apis mellifera | 21 | 163 |
Nasonia vitripennis | 90 | 301 |
Diachasma alloeum | 15 | 187 |
Gene Name | Full Length | Signal Peptide | Isoelectric Points PI | Molecular Weight | Mature Amino Acids | Expect Value | Ident | Sequence ID |
---|---|---|---|---|---|---|---|---|
TpreOBP1 | Yes (Y) | Y, 1–22 | 8.71 | 15,032.73 | 132 | 2E-91 | 90% | ANG08491.1 odorant-binding protein 1 [T. dendrolimi] |
TpreOBP2 | Y | Y, 1–25 | 4.83 | 14,599.41 | 127 | 2E-107 | 99% | ANG08492.1 odorant-binding protein 2 [T. dendrolimi] |
TpreOBP3 | Y | Y, 1–22 | 5.96 | 14,983.56 | 130 | 5E-106 | 97% | ASA40277.1 OBP3 [T. japonicum] |
TpreOBP4 | Y | Y, 1–19 | 5.45 | 12,776.75 | 114 | 8E-84 | 90% | ANG08494.1 odorant-binding protein 4 [T. dendrolimi] |
TpreOBP5 | Y | Y, 1–19 | 5.14 | 13,830.53 | 120 | 2E-92 | 93% | ANG08495.1 odorant-binding protein 5 [T. dendrolimi] |
TpreOBP6 | Y | Y, 1–23 | 4.15 | 13,825.72 | 120 | 6E-99 | 96% | ANG08496.1 odorant-binding protein 6 [T. dendrolimi] |
TpreOBP7 | Y | No | 5.56 | 14,358.55 | 131 | 2E-44 | 63% | CCD17854.1, putative odorant binding protein 85 [Nasonia vitripennis] |
TpreOBP8 | Y | Y, 1–22 | 6.46 | 13,407.55 | 122 | 3E-98 | 97% | ANG08498.1, odorant-binding protein 8 [T. dendrolimi] |
TpreOBP9 | Y | Y, 1–27 | 5.36 | 13,361.11 | 119 | 2E-103 | 99% | ANG08499.1, odorant-binding protein 9 [T. dendrolimi] |
TpreOBP10 | Y | Y, 1–18 | 5.63 | 13,547.40 | 119 | 4E-90 | 93% | ANG08500.1, odorant-binding protein 10 [T. dendrolimi] |
TpreOBP11 | Y | Y, 1–17 | 7.48 | 12,666.67 | 119 | 9E-88 | 98% | ANG08501.1, odorant-binding protein 11 [T. dendrolimi] |
TpreOBP12 | Y | Y, 1–18 | 5.27 | 13,426.28 | 119 | 2E-96 | 98% | ANG08502.1, odorant-binding protein 12 [T. dendrolimi] |
TpreOBP13 | Y | Y, 1–17 | 7.8 | 12,279.11 | 109 | 1E-53 | 66% | XP_014219837.1, uncharacterized protein LOC106647812 [Copidosoma floridanum] |
TpreOBP14 | Y | Y, 1–19 | 9.32 | 13,439.53 | 117 | 1E-92 | 97% | ANG08504.1, odorant-binding protein 14 [T. dendrolimi] |
TpreOBP15 | Y | Y, 1–19 | 5.06 | 13,402.08 | 119 | 2E-97 | 97% | ANG08505.1, odorant-binding protein 15 [T. dendrolimi] |
TpreOBP16 | Y | Y, 1–19 | 4.96 | 12,914.79 | 114 | 4E-82 | 92% | ANG08506.1, odorant-binding protein 16 [T. dendrolimi] |
TpreOBP17 | Y | Y, 1–20 | 4.04 | 13,483.34 | 120 | 4E-91 | 93% | ANG08507.1, odorant-binding protein 17 [T. dendrolimi] |
TpreOBP18 | Y | Y, 1–17 | 8.95 | 12,678.93 | 117 | 2E-89 | 0.98 | AZB49386.1, odorant-binding protein 5 [Heortia vitessoides] |
TpreOBP19 | Y | Y, 1–20 | 5.5 | 13,980.46 | 123 | 2E-81 | 0.98 | ANG08509.1, odorant-binding protein 19 [T. dendrolimi] |
TpreOBP20 | Y | Y, 1–16 | 7.75 | 13,005.76 | 118 | 6E-68 | 0.99 | ANG08510.1, odorant-binding protein 20, partial [T. dendrolimi] |
TpreOBP21 | Y | Y, 1–16 | 4.34 | 13,959.62 | 121 | 2E-88 | 0.96 | ANG08512.1, odorant-binding protein 22 [T. dendrolimi] |
TpreOBP22 | Y | Y, 1–23 | 6.53 | 14,056.71 | 123 | 1E-82 | 0.82 | ASA40280.1, OBP6 [T. japonicum] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jalely, B.H.; Xu, W. Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Insects 2021, 12, 998. https://doi.org/10.3390/insects12110998
Al-Jalely BH, Xu W. Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Insects. 2021; 12(11):998. https://doi.org/10.3390/insects12110998
Chicago/Turabian StyleAl-Jalely, Basman H., and Wei Xu. 2021. "Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae)" Insects 12, no. 11: 998. https://doi.org/10.3390/insects12110998
APA StyleAl-Jalely, B. H., & Xu, W. (2021). Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Insects, 12(11), 998. https://doi.org/10.3390/insects12110998