Bacterial Composition and Diversity of the Digestive Tract of Odontomachus monticola Emery and Ectomomyrmex javanus Mayr
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ant Collection and Dissection
2.2. Genomic DNA Extraction
2.3. DNA Library Construction, PCR and Illumina Hiseq Sequencing
2.4. Bioinformatic Analysis
3. Results
3.1. Characteristics of Sequence Data
3.2. Bacterial Communities at the Phylum Level
3.3. Bacterial Communities at the Genus Level
3.4. The Diversity and Similarity Analyses of Bacterial Communities
3.5. Differences in the Relative Abundance of Bacterial Genera
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hölldobler, B.; Wilson, E.O. The Ants; Press of Harvard University: Cambridge, MA, USA, 1990. [Google Scholar]
- Zientz, E.; Feldhaar, H.; Stoll, S.; Gross, R. Insights into the microbial world associated with ants. Arch. Microbiol. 2005, 184, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.E.; Russell, J.A.; Moreau, C.S.; Kautz, S.; Sullam, K.E.; Hu, Y.; Basinger, U.; Mott, B.M.; Buck, N.; Wheeler, D.E. Highly similar microbial communities are shared among related and trophically similar ant species. Mol. Ecol. 2012, 21, 2282–2296. [Google Scholar] [CrossRef]
- Poulsen, M.; Sapountzis, P. Behind every great ant, there is a great gut. Mol. Ecol. 2012, 21, 2054–2057. [Google Scholar] [CrossRef]
- Russell, J.A.; Moreau, C.S.; Goldman-Huertas, B.; Fujiwara, M.; Lohman, D.J.; Pierce, N.E. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc. Natl. Acad. Sci. USA 2009, 106, 21236–21241. [Google Scholar] [CrossRef] [Green Version]
- Lanan, M.C.; Rodrigues, P.A.P.; Agellon, A.; Jansma, P.; Wheeler, D.E. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016, 10, 1866–1876. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Sanders, J.G.; Łukasik, P.; D’Amelio, C.L.; Millar, J.S.; Vann, D.R.; Lan, Y.; Newton, J.A.; Schotanus, M.; Kronauer, D.J.C.; et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat. Commun. 2018, 9, 964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoll, S.; Gadau, J.; Gross, R.; Feldhaar, H. Bacterial microbiota associated with ants of the genus Tetraponera. Biol. J. Linn. Soc. 2007, 90, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Van Borm, S.; Buschinger, A.; Boomsma, J.J.; Billen, J. Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc. R. Soc. B Biol. Sci. 2002, 269, 2023–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, H.K.; Goffredi, S.K.; Parra, E.L.; Vargas, O.; Pinto-Tomas, A.A.; McGlynn, T.P. Distribution and dietary regulation of an associated facultative Rhizobiales-related bacterium in the omnivorous giant tropical ant, Paraponera clavata. Naturwissenschaften 2014, 101, 397–406. [Google Scholar] [CrossRef]
- Schröder, D.; Deppisch, H.; Obermayer, M.; Krohne, G.; Stackebrandt, E.; Hölldobler, B.; Goebel, W.; Gross, R. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): Systematics, evolution and ultrastructural characterization. Mol. Microbiol. 1996, 21, 479–489. [Google Scholar] [CrossRef]
- Feldhaar, H.; Straka, J.; Krischke, M.; Berthold, K.; Stoll, S.; Müeller, M.J.; Gross, R. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 2007, 5, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, J. Lessons from digestive-tract symbioses between bacteria and invertebrates. Annu. Rev. Microbiol. 2016, 8, 375–393. [Google Scholar] [CrossRef] [PubMed]
- Eisner, T. A comparative morphological study of the proventriculus of ants (Hymenoptera: Formicidae). Bull. Mus. Comp. Zool. 1957, 116, 439–490. [Google Scholar]
- Schmidt, C.A.; Shattuck, S.O. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa 2014, 3817, 1–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caetano, F.H.; Bution, M.L.; Zara, F.J. First report of endocytobionts in the digestive tract of ponerine ants. Micron 2009, 40, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Caetano, F.H.; Zara, F.J.; Bution, M.L. A new strategy of endosymbiont midgut bacteria in ant (Ponerinae). Micron 2010, 41, 183–186. [Google Scholar] [CrossRef]
- De Oliveira, T.B.; Ferro, M.; Bacci Junior, M.; de Souza, D.J.; Fontana, R.; Delabie, J.H.C.; Silva, A. Bacterial communities in the midgut of ponerine ants (Hymenoptera: Formicidae: Ponerinae). Sociobiology 2016, 63, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, C. The Ants of China; China Forestry Publishing House: Beijing, China, 1995; pp. 31–45. [Google Scholar]
- Zhang, R.Z. The second revision of zoogeographical regions of China. Acta Entomol. Sin. 1988, 23, 207–222. [Google Scholar]
- Chen, L.; Song, Y.; Xu, S. The boundary of palaearctic and oriental realms in western China. Prog. Nat. Sci. Mater. 2008, 18, 833–841. [Google Scholar] [CrossRef]
- Liu, M.; Wei, J.; Wei, C.; He, H. Studies of ant fauna in Shaanxi province. J. Northwest For. Coll. 1999, 14, 39–44. [Google Scholar]
- Zhang, K.; Wei, C.; Nan, X.; Wang, Y.; He, H. Composition and diversity of microbes in the infrabuccal pocket of Camponotus japonicus (Hymenoptera: Formicidae). Acta Entomol. Sin. 2018, 61, 686–697. [Google Scholar] [CrossRef]
- He, H.; Wei, C.; Wheeler, D.E. The gut bacterial communities associated with lab-raised and field-collected ants of Camponotus fragilis (Formicidae: Formicinae). Curr. Microbiol. 2014, 69, 292–302. [Google Scholar] [CrossRef]
- Rubin, B.E.R.; Sanders, J.G.; Hampton-Marcell, J.; Owens, S.M.; Gilbert, J.A.; Moreau, C.S. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure. Microbiologyopen 2014, 3, 910–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segers, F.; Kaltenpoth, M.; Foitzik, S. Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecol. Evol. 2019, 9, 13450–13467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Gloeckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhariwal, A.; Chong, J.; Habib, S.; King, I.L.; Agellon, L.B.; Xia, J.G. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017, 45, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Blüthgen, N.; Gebauer, G.; Fiedler, K. Disentangling a rainforest food web using stable isotopes: Dietary diversity in a species-rich ant community. Oecologia 2003, 137, 426–435. [Google Scholar] [CrossRef]
- Davidson, D.W.; Cook, S.C.; Snelling, R.R.; Chua, T.H. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 2003, 300, 969–972. [Google Scholar] [CrossRef] [Green Version]
- Ishak, H.D.; Plowes, R.; Sen, R.; Kellner, K.; Meyer, E.; Estrada, D.A.; Dowd, S.E.; Müeller, U.G. Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb. Ecol. 2011, 61, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, M.O.; Bueno, O.C.; Moreau, C.S. Species-specific signatures of the microbiome from Camponotus and Colobopsis ants across developmental stages. PLoS ONE 2017, 12, e0187461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Nan, X.; Guo, X.; He, H. Foraging activity rhythms of Ectomomyrmex javanus (Mayr). J. Northwest For. Univ. 2019, 34, 147–151. [Google Scholar] [CrossRef]
- Hu, Y.; Łukasik, P.; Moreau, C.S.; Russell, J.A. Correlates of gut community composition across an ant species (Cephalotes varians) elucidate causes and consequences of symbiotic variability. Mol. Ecol. 2014, 23, 1284–1300. [Google Scholar] [CrossRef]
- Łukasik, P.; Newton, J.A.; Sanders, J.G.; Hu, Y.; Moreau, C.S.; Kronauer, D.J.C.; O’Donnell, S.; Koga, R.; Russell, J.A. The structured diversity of specialized gut symbionts of the New World army ants. Mol. Ecol. 2017, 26, 3808–3825. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, M.O.; Duplais, C.; Orivel, J.; Dejean, A.; Gibson, J.C.; Suarez, A.V.; Moreau, C.S. Development but not diet alters microbial communities in the Neotropical arboreal trap jaw ant Daceton armigerum: An exploratory study. Sci. Rep. 2020b, 10, 1–12. [Google Scholar] [CrossRef]
- Ramalho, M.d.O.; Martins, C.; Morini, M.S.C.; Bueno, O.C. What can the bacterial community of Atta sexdens (Linnaeus, 1758) tell us about the habitats in which this ant species evolves? Insects 2020, 11, 332. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.O.; Eisner, T. Quantitative studies of liquid food transmission in ants. Insec. Soc. 1957, 4, 157–166. [Google Scholar] [CrossRef]
- Hölldobler, B. Liquid food transmission and antennation signals in ponerine ants. Isr. J. Entom. 1985, 19, 89–99. [Google Scholar]
- Lachaud, J.; Dejean, A. Food sharing in Odontomachus troglodytes (Santschi): A behavioral intermediate stage in the evolution of social food exchange in ants. Anal. Biol. 1991, 17, 53–61. [Google Scholar]
- Eisner, T.; Happ, G. The infrabuccal pocket of a formicine ant: A social filtration device. Psyche 1962, 69, 107–116. [Google Scholar] [CrossRef]
- Wang, C.; Billen, J.; Pan, X.; He, H. Morphology and ultrastructure of the infrabuccal pocket and its lining epithelium in workers of Ectomomyrmex javanus (Hymenoptera: Formicidae). Micron 2018, 115, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Billen, J.; Wei, C.; He, H. Morphology and ultrastructure of the infrabuccal pocket in Camponotus japonicus Mayr (Hymenoptera: Formicidae). Insects Soc. 2019, 66, 637–646. [Google Scholar] [CrossRef]
- Little, A.E.F.; Murakami, T.; Müeller, U.G.; Currie, C.R. The infrabuccal pellet piles of fungus-growing ants. Naturwissenschaften 2003, 90, 558–562. [Google Scholar] [CrossRef]
- Zhang, J.; Nan, X.N.; Wei, C.; Wang, Y.G.; Hong, H.E.; Aamp, N.; University, F. Bacterial composition of the infrabuccal pocket of Camponotus japonicus Mayr. Chin. J. Appl. Entomol. 2016, 53, 164–173. [Google Scholar]
- Villet, M.; Hanrahan, S.; Walther, C. Larval structures associated with larva-to-adult trophallaxis in Platythyrea (Hymenoptera: Formicidae). Int. J. Insect Morphol. Embryol. 1990, 19, 243–256. [Google Scholar] [CrossRef]
- Wheeler, W.M.; Bailey, I.W. The feeding habits of Pseudomyrmine and other ants. Trans. Am. Philos. Soc. 1920, 22, 235–279. [Google Scholar] [CrossRef] [Green Version]
- Glancey, B.M.; Meer, R.K.V.; Glover, A.; Lofgren, C.S.; Vinson, S.B. Filtration of microparticles from liquids ingested by the red imported fire ant Solenopsis invicta Buren. Insects Soc. 1981, 28, 395–401. [Google Scholar] [CrossRef]
- Rubin, B.E.R.; Kautz, S.; Wray, B.D.; Moreau, C.S. Dietary specialization in mutualistic acacia-ants affects relative abundance but not identity of host-associated bacteria. Mol. Ecol. 2019, 28, 900–916. [Google Scholar] [CrossRef] [PubMed]
- Funaro, C.F.; Kronauer, D.J.C.; Moreau, C.S.; Goldman-Huertas, B.; Pierce, N.E.; Russell, J.A. Army ants harbor a host-specific clade of Entomoplasmatales bacteria. Appl. Environ. Microbiol. 2011, 77, 346–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, M.E.; Anderson, C.L.; Cande, J.; Karr, T.L. Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research. Genetics 2005, 170, 1667–1675. [Google Scholar] [CrossRef] [Green Version]
- Espino, C.I.; Gomez, T.; Gonzalez, G.; do Santos, M.F.B.; Solano, J.; Sousa, O.; Moreno, N.; Windsor, D.; Ying, A.; Vilchez, S.; et al. Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl. Environ. Microbiol. 2009, 75, 547–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.B.; Boye, M.; Nash, D.R.; Boomsma, J.J. Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: Potential for a nutritional symbiosis. J. Evol. Biol. 2012, 25, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Albertson, R.; Tan, V.; Leads, R.R.; Reyes, M.; Sullivan, W.; Casper-Lindley, C. Mapping Wolbachia distributions in the adult Drosophila brain. Cell. Microbiol. 2013, 15, 1527–1544. [Google Scholar] [CrossRef]
- Pietri, J.E.; DeBruhl, H.; Sullivan, W. The rich somatic life of Wolbachia. Microbiologyopen 2016, 5, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A. The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts. Myrmecol. News 2012, 16, 7–23. [Google Scholar]
- Reeves, D.D.; Price, S.L.; Ramalho, M.O.; Moreau, C.S. The diversity and distribution of Wolbachia, Rhizobiales, and Ophiocordyceps within the widespread Neotropical turtle ant, Cephalotes atratus (Hymenoptera: Formicidae). Neotrop. Entomol. 2020, 49, 52–60. [Google Scholar] [CrossRef]
- Ramalho, M.O.; Martins, C.; Silva, L.M.R.; Martins, V.G.; Bueno, O.C. Intracellular symbiotic bacteria of Camponotus textor, Forel (Hymenoptera, Formicidae). Curr. Microbiol. 2017, 74, 589–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, M.; Price, S.L.; Ramalho, M.d.O.; Moreau, C.S. Diversity of Wolbachia associated with the giant turtle ant, Cephalotes atratus. Curr. Microbiol. 2019, 76, 1330–1337. [Google Scholar] [CrossRef]
- Pontieri, L.; Schmidt, A.M.; Singh, R.; Pedersen, J.S.; Linksvayer, T.A. Artificial selection on ant female caste ratio uncovers a link between female-biased sex ratios and infection by Wolbachia endosymbionts. J. Evol. Biol. 2017, 30, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Van Borm, S.; Billen, J.; Boomsma, J.J. The diversity of microorganisms associated with Acromyrmex leafcutter ants. BMC Evol. Biol. 2002, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Sapountzis, P.; Zhukova, M.; Hansen, L.H.; Sørensen, S.J.; Schiøtt, M.; Boomsma, J.J. Acromyrmex leaf-cutting ants have simple gut microbiota with nitrogen-fixing potential. Appl. Environ. Microbiol. 2015, 81, 5527–5537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meirelles, L.A.; McFrederick, Q.S.; Rodrigues, A.; Mantovani, J.D.; Rodovalho, C.d.M.; Ferreira, H.; Bacci, M., Jr.; Müeller, U.G. Bacterial microbiomes from vertically transmitted fungal inocula of the leaf-cutting ant Atta texana. Environ. Microbiol. Rep. 2016, 8, 630–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapountzis, P.; Zhukova, M.; Shik, J.Z.; Schiott, M.; Boomsma, J.J. Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. eLife 2018, 7, e39209. [Google Scholar] [CrossRef] [PubMed]
- Kautz, S.; Rubin, B.E.R.; Moreau, C.S. Bacterial infections across the ants: Frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche 2013, 2013, 936341. [Google Scholar] [CrossRef] [Green Version]
Ant Species | Colony IDs | Samples | Collection Sites and Nesting Habits | GPS Location |
---|---|---|---|---|
Odontomachus monticola Emery | O1 | O1WI (infrabuccal pockets), O1WC (crops); O1WM (midguts), O1WH (hindguts), O1L (larvae) | Fengxiang County, nesting in soil | 34°54′60.4″ N 107°53′36.8″ E |
O2 | O2WI (infrabuccal pockets), O2WC (crops), O2WM (midguts), O2WH (hindguts), O2L (larvae) | Linyou County, nesting in soil | 34°68′35.3″ N 107°79′52.6″ E | |
O3 | O3WC (crops), O3WM (midguts), O3WH (hindguts) | Ningshan County, nesting in rotting wood | 33°40′36.4″ N 108°38′08.1″ E | |
Ectomomyrmex javanus Mayr | E1 | E1WI (infrabuccal pockets), E1WC (crops), E1WM (midguts), E1WH (hindguts) | Yangling County, nesting in soil | 34°28′86.4″ N 108°07′77.4″ E |
E2 | E2WI (infrabuccal pockets), E2WC (crops), E2WM (midguts), E2WH (hindguts) | 34°26′38.2″ N 108°07′83.2″ E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Hu, X.; Xu, Y.; Wei, C.; He, H. Bacterial Composition and Diversity of the Digestive Tract of Odontomachus monticola Emery and Ectomomyrmex javanus Mayr. Insects 2021, 12, 176. https://doi.org/10.3390/insects12020176
Zheng Z, Hu X, Xu Y, Wei C, He H. Bacterial Composition and Diversity of the Digestive Tract of Odontomachus monticola Emery and Ectomomyrmex javanus Mayr. Insects. 2021; 12(2):176. https://doi.org/10.3390/insects12020176
Chicago/Turabian StyleZheng, Zhou, Xin Hu, Yang Xu, Cong Wei, and Hong He. 2021. "Bacterial Composition and Diversity of the Digestive Tract of Odontomachus monticola Emery and Ectomomyrmex javanus Mayr" Insects 12, no. 2: 176. https://doi.org/10.3390/insects12020176
APA StyleZheng, Z., Hu, X., Xu, Y., Wei, C., & He, H. (2021). Bacterial Composition and Diversity of the Digestive Tract of Odontomachus monticola Emery and Ectomomyrmex javanus Mayr. Insects, 12(2), 176. https://doi.org/10.3390/insects12020176