Evaluation of Two Formulations of Chlorantraniliprole as Maize Protectants for the Management of Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect, Commodity and Insecticidal Formulations
2.2. Bioassays
2.3. Data Analysis
3. Results
3.1. Mortality of P. truncatus Adults
3.2. Progeny Production of P. truncatus Adults
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lahm, G.P.; Selby, T.P.; Freudenberger, J.H.; Stevenson, T.M.; Myers, B.J.; Seburyamo, G.; Smith, B.K.; Flexner, L.; Clark, C.E.; Cordova, D. Insecticidal anthranilic diamides: A new class of potent ryanodine receptor activators. Bioorg. Med. Chem. Lett. 2005, 15, 4898–4906. [Google Scholar] [CrossRef]
- Cordova, D.; Benner, E.; Sacher, M.; Rauh, J.; Sopa, J.; Lahm, G.; Selby, T.; Stevenson, T.; Flexner, L.; Gutteridge, S.; et al. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Physiol. 2006, 84, 196–214. [Google Scholar] [CrossRef]
- Lahm, G.P.; Stevenson, T.M.; Selby, T.P.; Freudenberger, J.H.; Cordova, D.; Flexner, L.; Bellin, C.A.; Dubas, C.M.; Smith, B.K.; Hughes, K.A.; et al. RynaxypyrTM: A new insecticidal anthranilic diamide that acts as a potent and selective receptor activator. Bioorg. Med. Chem. Lett. 2007, 17, 6274–6279. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, X.; Gui, Q.Q.; Xu, Q.J. Sublethal effects of four insecticides on Anagrus nilaparvatae (Hymenoptera: Mymaridae), an important egg parasitoid of the rice planthopper Nilaparvata lugens (Homoptera: Delphacidae). Crop. Prot. 2012, 37, 13–19. [Google Scholar] [CrossRef]
- Nawaz, M.; Cai, W.; Jing, Z.; Zhou, X.; Mabubu, J.I.; Hua, H. Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Chemosphere 2017, 178, 496–503. [Google Scholar] [CrossRef]
- Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem. 2009, 17, 4127–4133. [Google Scholar] [CrossRef]
- Sattelle, D.B.; Cordova, D.; Cheek, T.R. Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invertebr. Neurosci. 2008, 8, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Hummel, N.A.; Mészáros, A.; Ring, D.R.; Beuzelin, J.M.; Stout, M.J. Evaluation of seed treatment insecticides for management of the rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), in commercial rice fields in Louisiana. Crop Prot. 2014, 65, 37–42. [Google Scholar] [CrossRef]
- Plata Rueda, A.; Martínez, L.C.; Costa, N.C.R.; Zanuncio, J.C.; Fernandes, M.E.D.S.; Serrão, J.E.; Guedes, R.N.C.; Fernandes, F.L. Chlorantraniliprole–mediated effects on survival, walking abilities, and respiration in the coffee berry borer, Hypothenemus hampei. Ecotoxicol. Environ. Saf. 2019, 172, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.A.F.; Gut, L.J.; Wise, J.C.; Isaacs, R. Lethal and sublethal effects of chlorantraniliprole on three species of Rhagoletis fruit flies (Diptera: Tephritidae). Pest Manag. Sci. 2008, 65, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Yang, X.; Chen, X.; Wu, J.C. Suppression of fecundity, Nlvg gene expression and vitellin content in Nilaparvata lugens Stål (Hemiptera: Delphacidae) adult females exposed to indoxacarb and chlorantraniliprole. Pestic. Biochem. Physiol. 2012, 104, 206–211. [Google Scholar] [CrossRef]
- Neoh, K.B.; Hu, J.; Yeoh, B.H.; Lee, C.Y. Toxicity and horizontal transfer of chlorantraniliprole against the Asian subterranean termite Coptotermes gestroi (Wasmann): Effects of donor: Recipient ratio, exposure duration and soil type. Pest Manag. Sci. 2012, 68, 749–756. [Google Scholar] [CrossRef]
- Munhoz, R.E.F.; Bignotto, T.S.; Pereira, N.C.; Saez, C.R.D.N.; Bespalhuk, R.; Fassina, V.A.; Pessini, G.M.; Baggio, M.P.D.; Ribeiro, L.D.F.C.; Brancalhão, R.M.C.; et al. Evaluation of the toxic effect of insecticide chlorantraniliprole on the silkworm Bombyx mori (Lepidoptera: Bombycidae). Open J. Anim. Sci. 2013, 3, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gao, Y.; Liang, G.; Lu, Y. Chlorantraniliprole as a candidate pesticide used in combination with the attracticides for lepidopteran moths. PLoS ONE 2017, 12, e0180255. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Sun, S.; Tan, H.; Sun, X.; Qin, C.; Ji, S.; Li, X.; Zhang, J.; Jiang, X. Chlorantraniliprole against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): From biochemical/physiological to demographic responses. Sci. Rep. 2019, 9, 10328. [Google Scholar] [CrossRef] [PubMed]
- Dale, A.G.; Borden, M.A. Evaluation of reduced-risk insecticides to control chilli thrips (Thysanoptera: Thripidae) and conserve natural enemies on ornamental plants. Fla. Entomol. 2018, 101, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Saglam, O.; Athanassiou, C.G.; Vassilakos, T.N. Comparison of spinetoram, imidacloprid, thiamethoxam and chlorantraniliprole against life stages of Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) on concrete. Crop Prot. 2013, 53, 85–95. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Boukouvala, M.C. Insecticidal effect of chlorantraniliprole against major stored-product insect pests in different grain commodities under laboratory tests. Pest Manag. Sci. 2013, 69, 1141–1154. [Google Scholar] [CrossRef]
- Schäfer, K.; Gorgen, G.; Borgemeister, C. An illustrated identification key to four different species of adult Dinoderus (Coleoptera: Bostrichidae), commonly attacking dried cassava chips in West Africa. J. Stored Prod. Res. 2000, 36, 245–252. [Google Scholar] [CrossRef]
- Gnonlonfin, G.; Hell, K.; Siame, A.B.; Fandohan, P. Infestation and population dynamics of insects on stored cassava and yams chips in Benin, West Africa. J. Econ. Entomol. 2008, 101, 1967–1973. [Google Scholar] [CrossRef] [PubMed]
- Giliomee, J.H. Recent establishment of many alien Insects in South Africa—A cause for concern. Afr. Entomol. 2011, 19, 151–155. [Google Scholar] [CrossRef]
- Muatinte, B.L.; Van den Berg, J.; Santos, L.A. Prostephanus truncatus in Africa: A review of biological trends and perspectives on future pest management strategies. Afr. Crop Sci. J. 2014, 22, 237–256. [Google Scholar]
- Muatinte, B.L.; Kavallieratos, N.G.; Boukouvala, M.C.; García Lara, S.; Margarita López Castillo, L.M.; Mvumi, B.M. The threat of the larger grain borer, Prostephanus truncatus (Coleoptera: Bostrichidae) and practical control options for the pest. CAB Rev. 2019, 14, 1–25. [Google Scholar] [CrossRef]
- Scholz, D.; Tchabi, A.; Borgemeister, C.; Markham, R.H.; Poehling, H.M.; Lawson, A. Host-finding behaviour of Prostephanus truncatus (Horn) (Col.: Bostricidae): Primary attraction or random attack? J. Appl. Entomol. 1997, 121, 261–269. [Google Scholar] [CrossRef]
- Nansen, C.; Meikle, W.G.; Tigar, B.; Harding, S.; Tchabi, A. Nonagricultural hosts of Prostephanus truncatus (Coleoptera: Bostrichidae) in a West African Forest. Ann. Entomol. Soc. Am. 2004, 97, 481–491. [Google Scholar] [CrossRef]
- Hoppe, T. Storage insects of basic food grains in Honduras. Trop. Sci. 1986, 26, 25–28. [Google Scholar]
- Dunstan, W.R.; Magazini, I.A. Outbreaks and new records, United Republic of Tanzania. The larger grain borer on stored products. FAO Plant Prot. Bull. 1981, 29, 80–81. [Google Scholar]
- Hodges, R.J.; Dunstan, W.R.; Magazini, I.; Golob, P. An outbreak of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in East Africa. Prot. Ecol. 1983, 5, 183–194. [Google Scholar]
- Markham, R.H.; Wright, V.F.; Rios Ibarra, R.M. A selective review of research on Prostephanus truncatus (Col: Bostrichidae) with an annotated and updated bibliography. Ceiba 1991, 32, 1–90. [Google Scholar]
- Meikle, W.G.; Holst, N.; Scholz, D.; Markham, R.H. Simulation model of Prostephanus truncatus (Coleoptera: Bostrichidae) in rural maize stores in the Republic of Benin. Environ. Entomol. 1998, 27, 59–69. [Google Scholar] [CrossRef]
- Addo, S.; Birkinshaw, L.A.; Hodges, R.J. Ten years after the arrival in Ghana of larger grain borer: Farmers’ responses and adoption of IPM strategies. Int. J. Pest Manag. 2002, 48, 315–325. [Google Scholar] [CrossRef]
- Farrell, G.; Schulten, G. Larger grain borer in Africa; A history of efforts to limit its impact. Integr. Pest Manag. Rev. 2002, 7, 67–84. [Google Scholar] [CrossRef]
- Nansen, C.; Meikle, W.G.; Korie, S. Spatial analysis of Prostephanus truncatus (Bostrichidae: Coleoptera) flight activity near maize stores and in different forest types in southern Benin, West Africa. Ann. Entomol. Soc. Am. 2002, 95, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Athanassiou, C.G.; Kavallieratos, N.G.; Boukouvala, M.C.; Nika, E.P. Influence of commodity on the population growth of the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae). J. Stored Prod. Res. 2017, 73, 129–134. [Google Scholar] [CrossRef]
- Hill, M.G.; Borgemeister, C.; Nansen, C. Ecological studies on the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and their implications for integrated pest management. Int. Pest Manag. Rev. 2002, 7, 201–221. [Google Scholar] [CrossRef]
- Borgemeister, C.; Adda, C.; Djomamou, B.; Degbey, P.; Agbaka, A.; Djossou, F.; Meikle, W.G.; Markham, R.H. The effect of maize cob selection and the impact of field infestation on stored maize losses by larger grain borer (Prostephanus truncatus (Horn) Coleoptera: Bostrichidae) and associated storage pests. In Proceedings of the 6th International Working Conference on Stored-Product Protection, Canberra, Australia, 17–23 April 1994; Highley, E., Wright, E.J., Banks, H.J., Champ, B.R., Eds.; CAB International: Wallingford, UK, 1994; pp. 906–909. [Google Scholar]
- Golob, P. Chemical, physical and cultural control of Prostephanus truncatus. Integr. Pest Manag. Rev. 2002, 7, 245–277. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Korunic, Z.; Kavallieratos, N.G.; Peteinatos, C.G.; Boukouvala, M.C.; Mikeli, N.H. New trends in the use of diatomaceous earth against stored-grain insects. In Proceedings of the 9th International Working Conference on Stored-Product Protection, Campinas, Brazil, 15–18 October 2006; Lorini, I., Bacaltchuk, B., Beckel, H., Deckers, D., Sundfeld, E., dos Santos, J.P., Biagi, J.D., Celaro, J.C., Faroni, L.R.D., de Bortolini, L.O.F., et al., Eds.; ABRAPOS: Passo Fundo, Brazil, 2006; pp. 730–740. [Google Scholar]
- Athanassiou, C.G.; Kavallieratos, N.G.; Peteinatos, G.G.; Petrou, S.E.; Boukouvala, M.C.; Tomanović, Ž. Influence of temperature and humidity on insecticidal effect of three diatomaceous earth formulations against larger grain borer (Coleoptera: Bostrychidae). J. Econ. Entomol. 2007, 100, 599–603. [Google Scholar] [CrossRef]
- Papanikolaou, N.E.; Kavallieratos, N.G.; Boukouvala, M.C.; Malesios, C. Do temperature, relative humidity and interspecific competition alter the population size and the damage potential of stored-product insect pests? A hierarchical multilevel modeling approach. J. Therm. Biol. 2018, 78, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Zar, J.H. Biostatistical Analysis; Pearson Education Limited: Essex, UK, 2014. [Google Scholar]
- Andrić, G.; Kljajić, P.; Golić, M.P.; Trdan, S.; Bohinc, T.; Solarov, M.B. Effectiveness of spinosad and spinetoram against three Sitophilus species: Influence of wheat endosperm vitreousness. J. Stored Prod. Res. 2019, 83, 209–217. [Google Scholar] [CrossRef]
- Sall, J.; Lehman, A.; Creighton, L. JMP start statistics. In A Guide to Statistics and Data Analysis Using JMP and JMP IN Software; Duxbury Press: Belmont, ON, Canada, 2001. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry; Freeman & Company: New York, NY, USA, 1995. [Google Scholar]
- SAS Institute Inc. Using JMP 14; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Thompson, G.D.; Michel, K.H.; Yao, R.C.; Mynderse, J.S.; Mosburg, C.T.; Worden, T.V.; Chio, E.H.; Sparks, T.C.; Hutchins, S.H. The discovery of Saccharopolyspora spinosa and a new class of insect control products. Down Earth 1997, 52, 1–5. [Google Scholar]
- Hertlein, M.B.; Thompson, G.D.; Subramanyam, B.; Athanassiou, C.G. Spinosad: A new natural product for stored grain protection. J. Stored Prod. Res. 2011, 47, 131–146. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Yiatilis, A.E.; Vayias, B.J.; Mavrotas, C.S.; Tomanović, Ž. Influence of temperature and humidity on the efficacy of spinosad against four stored-grain beetle species. J. Insect Sci. 2008, 8, 1–9. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Hatzikonstantinou, A.N.; Kavallieratou, H.N. Abiotic and biotic factors affect efficacy of chlorfenapyr for control of stored-product insect pests. J. Food Prot. 2011, 74, 1288–1299. [Google Scholar] [CrossRef] [PubMed]
- Pozidi Metaxa, E.; Athanassiou, C.G. Comparison of spinosad with three traditional grain protectants against Prostephanus truncatus (Horn) and Ephestia kuehniella (Zeller) at different temperatures. J. Pest Sci. 2012, 86, 203–210. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Peteinatos, G.G.; Boukouvala, M.C.; Benelli, G. Insecticidal effect and impact of fitness of three diatomaceous earths on different maize hybrids for the eco-friendly control of the invasive stored-product pest Prostephanus truncatus (Horn). Environ. Sci. Pollut. Res. 2018, 25, 10407–10417. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Korunic, Z.; Mikeli, N.H. Evaluation of three novel diatomaceous earths against three stored-grain beetle species on wheat and maize. Crop. Prot. 2015, 75, 132–138. [Google Scholar] [CrossRef]
- Machekano, H.; Mvumi, B.M.; Chinwada, P.; Richardson Kageler, S.J.; Rwafa, R. Efficacy of diatomaceous earths and their low-dose combinations with spinosad or deltamethrin against three beetle pests of stored-maize. J. Stored Prod. Res. 2017, 72, 128–137. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G.; Athanassiou, C.G.; Hadjiarapoglou, L.P. Biological activity of two new pyrrole derivatives against stored-product species: Influence of temperature and relative humidity. Bull. Entomol. Res. 2016, 106, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Boukouvala, M.C.; Kavallieratos, N.G.; Athanassiou, C.G.; Losic, D.; Hadjiarapoglou, L.P.; Elemes, Y. Laboratory evaluation of five novel pyrrole derivatives as grain protectants against Tribolium confusum and Ephestia kuehniella larvae. J. Pest Sci. 2017, 90, 569–585. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C. Efficacy of d-tetramethrin and acetamiprid for control of Trogoderma granarium Everts (Coleoptera: Dermestidae) adults and larvae on concrete. J. Stored Prod. Res. 2019, 80, 79–84. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Papanikolaou, N.E.; Kazani, A.N.; Boukouvala, M.C.; Malesios, C. Using multilevel models to explore the impact of abiotic and biotic conditions on the efficacy of pirimiphos-methyl against Tenebrio molitor L. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Athanassiou, C.G.; Kavallieratos, N.G. Evaluation of spinetoram and spinosad for control of Prostephanus truncatus, Rhyzopertha dominica, Sitophilus oryzae and Tribolium confusum on stored grains under laboratory tests. J. Pest Sci. 2014, 87, 469–483. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Vayias, B.J.; Betsi, P.C.C. Insecticidal efficacy of fipronil against four stored-product insect pests: Influence of commodity, dose, exposure interval, relative humidity and temperature. Pest Manag. Sci. 2010, 66, 640–649. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.D. Insecticides Action and Metabolism; Academic Press Inc.: Ney York, NY, USA, 1967. [Google Scholar]
- Donarski, W.J.; Dumas, D.P.; Heitmeyer, D.P.; Lewis, V.E.; Raushel, F.M. Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry 1989, 28, 4650–4655. [Google Scholar] [CrossRef]
- Cole, L.M.; Nicholson, R.A.; Casida, J.E. Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestic. Biochem. Physiol. 1993, 46, 47–54. [Google Scholar] [CrossRef]
- Hunt, D.A. 2-Arylpyrroles: A new class of insecticide. Structure, activity and mode of action. Pestic. Sci. 1996, 47, 201–202. [Google Scholar] [CrossRef]
- Salgado, V.L. Studies on the mode of action of spinosad: Insect symptoms and physiological correlates. Pestic. Biochem. Physiol. 1998, 60, 91–102. [Google Scholar] [CrossRef]
- Tomlin, C.D.S. The Pesticide Manual; BCPC Publications: London, UK, 2000. [Google Scholar]
- McLeod, P.; Diaz, F.J.; Johnson, D.T. Toxicity, persistence, and efficacy of spinosad, chlorfenapyr, and thiamethoxam on eggplant when applied against the eggplant flea beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2002, 95, 331–335. [Google Scholar] [CrossRef]
- Salgado, V.L.; Sparks, T.C. The spinosyns: Chemistry, biochemistry, mode of action and resistance. In Comprehensive Insect Molecular Science; Gilbert, L.I., Iatrou, K., Gill, S., Eds.; Elsevier: Oxford, UK, 2005; Volume 6, pp. 137–173. [Google Scholar]
- Eleršek, T.; Filipič, M. Organophoshorus pesticides-mechanisms of their toxicity. In Pesticides—The Impacts of Pesticides Exposure; Stoytcheva, M., Ed.; InTech: Rijeka, Croatia, 2011; pp. 243–260. [Google Scholar]
- Freeborn, D.L.; McDaniel, K.L.; Moser, V.C.; Herr, D.W. Use of electroencephalography (EEG) to assess CNS changes produced by pesticides with different modes of action: Effects of permerthrin, deltamethrin, fipronil, imidacloprid, carbaryl, and triadimefon. Toxicol. Appl. Pharmacol. 2015, 282, 184–194. [Google Scholar] [CrossRef]
- Bacci, L.; Lupi, D.; Savoldelli, S.; Rossaro, B. A review of spinosyns, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. J. Entomol. Acarol. Res. 2016, 48, 40. [Google Scholar] [CrossRef] [Green Version]
- Arthur, F.H. Effect of temperature on residual toxicity of cyfluthrin wettable powder. J. Econ. Entomol. 1999, 92, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Arthur, F.H.; Yue, B.; E Wilde, G. Susceptibility of stored-product beetles on wheat and maize treated with thiamethoxam: Effects of concentration, exposure interval, and temperature. J. Stored Prod. Res. 2004, 40, 527–546. [Google Scholar] [CrossRef]
- Fadamiro, H.Y.; Wyatt, T.D. Flight initiation by Prostephanus truncatus in relation to time of day, temperature, relative humidity and starvation. Entomol. Exp. Appl. 1995, 75, 273–277. [Google Scholar] [CrossRef]
Between Exposure Intervals | |||
---|---|---|---|
Source | DF | F | p |
Formulation | 1 | 6.4 | 0.01 |
Temperature | 2 | 131.1 | <0.01 |
Dose | 3 | 232.3 | <0.01 |
Formulation × temperature | 2 | 1.6 | 0.21 |
Formulation × dose | 3 | 5.3 | 0.01 |
Temperature × dose | 6 | 11.4 | <0.01 |
Formulation × temperature × dose | 6 | 1.4 | 0.21 |
Within Exposure Intervals | |||
Source | DF | F | p |
Exposure × formulation | 1 | 9.8 | 0.01 |
Exposure × temperature | 2 | 43.7 | <0.01 |
Exposure × dose | 3 | 187.7 | <0.01 |
Exposure × formulation × temperature | 2 | 1.6 | 0.21 |
Exposure × formulation × dose | 3 | 2.1 | 0.10 |
Exposure × temperature × dose | 6 | 7.4 | <0.01 |
Exposure × formulation × temperature × dose | 6 | 0.5 | 0.91 |
Exposure: 7 Days | |||||
---|---|---|---|---|---|
Temperature | 20 °C | 25 °C | 30 °C | ||
Dose (ppm) | F | p | |||
0.01 | 1.1 ± 0.7 AB | 0.0 ± 0.0 Bb | 6.1 ± 2.5 Ab | 5.3 | 0.01 |
0.1 | 2.2 ± 0.9 B | 4.4 ± 1.6 Bab | 10.6 ± 2.7 Aab | 6.6 | 0.01 |
1 | 2.7 ± 1.2 B | 6.1 ± 2.5 ABab | 11.7 ± 2.2 Aab | 5.5 | 0.01 |
10 | 3.9 ± 1.4 B | 9.4 ± 2.9 ABa | 14.4 ± 1.6 Aa | 6.4 | 0.01 |
F | 0.9 | 4.7 | 4.1 | ||
p | 0.45 | 0.01 | 0.01 | ||
Exposure: 14 Days | |||||
F | p | ||||
0.01 | 7.2 ± 1.7 b | 11.1 ± 4.5 d | 25.0 ± 9.5 b | 2.6 | 0.10 |
0.1 | 12.8 ± 1.2 Bb | 34.4 ± 5.2 Ac | 49.4 ± 7.4 Ab | 13.4 | 0.01 |
1 | 40.0 ± 3.6 Ca | 78.9 ± 3.8 Bb | 92.2 ± 2.1 Aa | 51.9 | <0.01 |
10 | 45.6 ± 2.9 Ba | 92.8 ± 2.8 Aa | 98.9 ± 2.3 Aa | 64.7 | <0.01 |
F | 41.0 | 59.1 | 33.0 | ||
p | <0.01 | <0.01 | <0.01 |
Exposure: 7 Days | |||||
---|---|---|---|---|---|
Temperature | 20 °C | 25 °C | 30 °C | ||
Dose (ppm) | F | p | |||
0.01 | 1.1 ± 0.7 | 1.7 ± 0.8 b | 3.9 ± 1.1 b | 2.4 | 0.11 |
0.1 | 2.2 ± 0.9 | 2.2 ± 0.9 ab | 5.0 ± 1.2 b | 2.0 | 0.16 |
1 | 2.8 ± 0.9 B | 6.1 ± 1.6 Bab | 15.6 ± 2.8 Aa | 10.5 | 0.01 |
10 | 3.3 ± 1.2 B | 7.2 ± 1.5 ABa | 16.7 ± 3.2 Aa | 9.6 | 0.01 |
F | 1.0 | 4.6 | 9.0 | ||
p | 0.43 | 0.01 | 0.01 | ||
Exposure: 14 Days | |||||
F | p | ||||
0.01 | 7.8 ± 1.2 b | 8.9 ± 1.1 b | 12.8 ± 2.5 b | 1.5 | 0.25 |
0.1 | 10.0 ± 1.4 b | 11.1 ± 2.2 b | 17.2 ± 2.2 b | 2.8 | 0.08 |
1 | 36.7 ± 4.2 Ba | 76.7 ± 5.0 Aa | 90.6 ± 1.6 Aa | 35.5 | <0.01 |
10 | 46.1 ± 5.3 Ba | 89.4 ± 3.5 Aa | 96.1 ± 1.4 Aa | 39.9 | <0.01 |
F | 32.5 | 78.9 | 207.7 | ||
p | <0.01 | <0.01 | <0.01 |
Source | DF | F | p |
---|---|---|---|
Formulation | 1 | 0.3 | 0.59 |
Temperature | 2 | 9.0 | 0.01 |
Dose | 4 | 89.7 | <0.01 |
Formulation × temperature | 2 | 0.7 | 0.50 |
Formulation × dose | 4 | 0.5 | 0.72 |
Temperature × dose | 8 | 2.0 | 0.05 |
Formulation × temperature × dose | 8 | 0.6 | 0.81 |
Temperature | 20 °C | 25 °C | 30 °C | ||
---|---|---|---|---|---|
Dose (ppm) | F | p | |||
0 | 8.8 ± 2.2 a | 12.4 ± 2.3 a | 15.0 ± 1.5 a | 3.2 | 0.06 |
0.01 | 7.1 ± 2.1 ab | 7.8± 1.4 ab | 11.2 ± 2.6 a | 0.5 | 0.60 |
0.1 | 2.3 ± 1.3 Bbc | 4.4 ± 1.5 ABbc | 9.6 ± 1.8 Aa | 4.6 | 0.02 |
1 | 0.0 ± 0.0 c | 0.8 ± 0.5 cd | 0.3 ± 0.2 b | 1.2 | 0.31 |
10 | 0.0 ± 0.0 c | 0.2 ± 0.2 d | 0.0 ± 0.0 b | 1.0 | 0.38 |
F | 10.4 | 20.9 | 25.6 | ||
p | <0.01 | <0.01 | <0.01 |
Temperature | 20 °C | 25 °C | 30 °C | ||
---|---|---|---|---|---|
Dose (ppm) | F | p | |||
0 | 8.7 ± 1.8 a | 12.3 ± 3.6 a | 14.8 ± 2.0 a | 2.0 | 0.16 |
0.01 | 5.2 ± 1.5 a | 6.9 ± 2.5 ab | 13.2 ± 2.6 a | 2.0 | 0.15 |
0.1 | 3.2 ± 0.7 ab | 4.3 ± 0.9 ab | 7.8 ± 2.0 a | 1.0 | 0.38 |
1 | 1.8 ± 1.4 bc | 2.4 ± 1.6 bc | 0.4 ± 0.3 b | 0.6 | 0.56 |
10 | 0.0 ± 0.0 c | 0.0 ± 0.0 c | 0.0 ± 0.0 b | - | - |
F | 13.7 | 6.8 | 23.8 | ||
p | <0.01 | 0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukouvala, M.C.; Kavallieratos, N.G. Evaluation of Two Formulations of Chlorantraniliprole as Maize Protectants for the Management of Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae). Insects 2021, 12, 194. https://doi.org/10.3390/insects12030194
Boukouvala MC, Kavallieratos NG. Evaluation of Two Formulations of Chlorantraniliprole as Maize Protectants for the Management of Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae). Insects. 2021; 12(3):194. https://doi.org/10.3390/insects12030194
Chicago/Turabian StyleBoukouvala, Maria C., and Nickolas G. Kavallieratos. 2021. "Evaluation of Two Formulations of Chlorantraniliprole as Maize Protectants for the Management of Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae)" Insects 12, no. 3: 194. https://doi.org/10.3390/insects12030194
APA StyleBoukouvala, M. C., & Kavallieratos, N. G. (2021). Evaluation of Two Formulations of Chlorantraniliprole as Maize Protectants for the Management of Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae). Insects, 12(3), 194. https://doi.org/10.3390/insects12030194