Seasonal Variations of Pollinator Assemblages among Urban and Rural Habitats: A Comparative Approach Using a Standardized Plant Community
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Pollinator Diversity
3.2. Wild Bees’ Functional Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | Coordinates | Continuous Urban Landscape (%) | Discontinuous Suburban Landscape (%) | Urban Green Spaces (%) | Permanent Grassland (%) | Forests (%) |
---|---|---|---|---|---|---|
RURAL | ||||||
CEREEP A (2017) | 48.2867° N, 2.6781° E | 8 | 26 | 0 | 2 | 64 |
CEREEP B (2017–2018) | 48.2831° N, 2.6657° E | 0 | 0 | 0 | 49 | 51 |
SEF (2017–2018) | 48.4206° N, 2.7289° E | 0 | 43 | 0 | 0 | 57 |
URBAN | ||||||
CIUP (2017) | 48.8189° N, 2.3353° E | 48 | 16 | 36 | 0 | 0 |
JDP (2017–2018) | 48.8440° N, 2.3611° E | 63 | 3 | 34 | 0 | 0 |
SU (2017–2018) | 48.8465° N, 2.3587° E | 68 | 0 | 32 | 0 | 0 |
Index | Plant | Mean ± SE (Across Sites and Years) | Estimator of Habitat Type | Tukey Post Hoc Test | |||
---|---|---|---|---|---|---|---|
Rural | Urban | Estimate ± SE | p | Direction | p | ||
Species richness (GLMM, Poisson family) | L. corniculatus | 6.29 ± 0.87 | 7.19 ± 0.97 | 0.13 ± 0.12 | 0.25 | 0.27 | |
S. alba | 22.29 ± 2.00 | 25.47 ± 2.16 | 0.13 ± 0.12 | 0.25 | 0.27 | ||
Simpson’s index (LMM) | L. corniculatus | 0.747 ± 0.029 | 0.636 ± 0.029 | −0.112 ± 0.041 | 0.0064 | Rur. > Urb. | 0.017 |
S. alba | 0.910 ± 0.029 | 0.894 ± 0.029 | −0.017 ± 0.041 | 0.69 | 0.69 | ||
Rao’s quadratic entropy (LMM) | L. corniculatus | 0.0394 ± 0.0072 | 0.0218 ± 0.0072 | −0.018 ± 0.010 | 0.084 | 0.11 | |
S. alba | 0.0334 ± 0.0072 | 0.0328 ± 0.0072 | −0.001 ± 0.010 | 0.95 | 0.95 |
References
- Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 2015, 30, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, M.S.; Rossetti, M.R.; Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 2020, 29, 1412–1429. [Google Scholar] [CrossRef]
- Harrison, T.; Winfree, R. Urban drivers of plant-pollinator interactions. Funct. Ecol. 2015, 29, 879–888. [Google Scholar] [CrossRef]
- Deguines, N.; Julliard, R.; De Flores, M.; Fontaine, C. The Whereabouts of Flower Visitors: Contrasting Land-Use Preferences Revealed by a Country-Wide Survey Based on Citizen Science. PLoS ONE 2012, 7, e45822. [Google Scholar] [CrossRef] [PubMed]
- Bates, A.J.; Sadler, J.P.; Fairbrass, A.J.; Falk, S.J.; Hale, J.D.; Matthews, T.J. Changing Bee and Hoverfly Pollinator Assemblages along an Urban-Rural Gradient. PLoS ONE 2011, 6, e23459. [Google Scholar] [CrossRef]
- Baldock, K.C.R.; Goddard, M.A.; Hicks, D.M.; Kunin, W.E.; Mitschunas, N.; Osgathorpe, L.M.; Potts, S.G.; Robertson, K.M.; Scott, A.V.; Stone, G.N.; et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B Boil. Sci. 2015, 282, 20142849. [Google Scholar] [CrossRef] [Green Version]
- Geslin, B.; Le Féon, V.; Folschweiller, M.; Flacher, F.; Carmignac, D.; Motard, E.; Perret, S.; Dajoz, I. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecol. Evol. 2016, 6, 6599–6615. [Google Scholar] [CrossRef]
- Fortel, L.; Henry, M.; Guilbaud, L.; Guirao, A.L.; Kuhlmann, M.; Mouret, H.; Rollin, O.; Vaissière, B.E. Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community (Hymenoptera: Anthophila) along an Urbanization Gradient. PLoS ONE 2014, 9, e104679. [Google Scholar] [CrossRef] [PubMed]
- Desaegher, J.; Nadot, S.; Fontaine, C.; Colas, B. Floral morphology as the main driver of flower-feeding insect occurrences in the Paris region. Urban Ecosyst. 2018, 21, 585–598. [Google Scholar] [CrossRef]
- Buchholz, S.; Egerer, M.H. Functional ecology of wild bees in cities: Towards a better understanding of trait-urbanization relationships. Biodivers. Conserv. 2020, 29, 2779–2801. [Google Scholar] [CrossRef]
- Antonini, Y.; Martins, R.P.; Aguiar, L.M.; Loyola, R.D. Richness, composition and trophic niche of stingless bee assemblages in urban forest remnants. Urban Ecosyst. 2012, 16, 527–541. [Google Scholar] [CrossRef]
- Hung, K.J.; Ascher, J.S.; Davids, J.A.; Holway, D.A. Ecological filtering in scrub fragments restructures the taxonomic and functional composition of native bee assemblages. Ecology 2019, 100, e02654. [Google Scholar] [CrossRef]
- Deguines, N.; Julliard, R.; De Flores, M.; Fontaine, C. Functional homogenization of flower visitor communities with urbanization. Ecol. Evol. 2016, 6, 1967–1976. [Google Scholar] [CrossRef] [Green Version]
- Banaszak-Cibicka, W.; Żmihorski, M. Wild bees along an urban gradient: Winners and losers. J. Insect Conserv. 2012, 16, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Hinners, S.J.; Kearns, C.A.; Wessman, C.A. Roles of scale, matrix, and native habitat in supporting a diverse suburban pollinator assemblage. Ecol. Appl. 2012, 22, 1923–1935. [Google Scholar] [CrossRef]
- Threlfall, C.G.; Walker, K.; Williams, N.S.; Hahs, A.K.; Mata, L.; Stork, N.; Livesley, S.J. The conservation value of urban green space habitats for Australian native bee communities. Biol. Conserv. 2015, 187, 240–248. [Google Scholar] [CrossRef]
- Wray, J.C.; Elle, E. Flowering phenology and nesting resources influence pollinator community composition in a fragmented ecosystem. Landsc. Ecol. 2014, 30, 261–272. [Google Scholar] [CrossRef]
- Cardoso, M.C.; Gonçalves, R.B. Reduction by half: The impact on bees of 34 years of urbanization. Urban Ecosyst. 2018, 21, 943–949. [Google Scholar] [CrossRef]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef] [PubMed]
- Greenleaf, S.S.; Williams, N.M.; Winfree, R.; Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 2007, 153, 589–596. [Google Scholar] [CrossRef]
- Warzecha, D.; Diekötter, T.; Wolters, V.; Jauker, F. Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landsc. Ecol. 2016, 31, 1449–1455. [Google Scholar] [CrossRef]
- Wenzel, A.; Grass, I.; Belavadi, V.V.; Tscharntke, T. How urbanization is driving pollinator diversity and pollination—A systematic review. Biol. Conserv. 2020, 241, 108321. [Google Scholar] [CrossRef]
- Eggenberger, H.; Frey, D.; Pellissier, L.; Ghazoul, J.; Fontana, S.; Moretti, M. Urban bumblebees are smaller and more phenotypically diverse than their rural counterparts. J. Anim. Ecol. 2019, 88, 1522–1533. [Google Scholar] [CrossRef]
- Banaszak-Cibicka, W.; Twerd, L.; Fliszkiewicz, M.; Giejdasz, K.; Langowska, A. City parks vs. natural areas-is it possible to preserve a natural level of bee richness and abundance in a city park? Urban Ecosyst. 2018, 21, 599–613. [Google Scholar] [CrossRef] [Green Version]
- Angilletta, J.M.J.; Dunham, A.E. The Temperature-Size Rule in Ectotherms: Simple Evolutionary Explanations May Not Be General. Am. Nat. 2003, 162, 332–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angilletta, M.J.; Steury, T.D.; Ears, M.W.S. Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle. Integr. Comp. Biol. 2004, 44, 498–509. [Google Scholar] [CrossRef]
- Shelomi, M. Where Are We Now? Bergmann’s Rule Sensu Lato in Insects. Am. Nat. 2012, 180, 511–519. [Google Scholar] [CrossRef]
- Gérard, M.; Vanderplanck, M.; Franzen, M.; Kuhlmann, M.; Potts, S.G.; Rasmont, P.; Schweiger, O.; Michez, D. Patterns of size variation in bees at a continental scale: Does Bergmann’s rule apply? Oikos 2018, 127, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Osorio-Canadas, S.; Arnan, X.; Rodrigo, A.; Torné-Noguera, A.; Molowny, R.; Bosch, J. Body size phenology in a regional bee fauna: A temporal extension of Bergmann’s rule. Ecol. Lett. 2016, 19, 1395–1402. [Google Scholar] [CrossRef]
- Stelzer, R.J.; Chittka, L.; Carlton, M.; Ings, T.C. Winter Active Bumblebees (Bombus terrestris) Achieve High Foraging Rates in Urban Britain. PLoS ONE 2010, 5, e9559. [Google Scholar] [CrossRef] [Green Version]
- Staab, M.; Pereira-Peixoto, M.H.; Klein, A.-M. Exotic garden plants partly substitute for native plants as resources for pollinators when native plants become seasonally scarce. Oecologia 2020, 194, 465–480. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, P.; Radzevičiūtė, R.; Lentendu, G.; Kahnt, B.; Husemann, M.; Bleidorn, C.; Settele, J.; Schweiger, O.; Grosse, I.; Wubet, T.; et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Luder, K.; Knop, E.; Menz, M.H.M. Contrasting responses in community structure and phenology of migratory and non-migratory pollinators to urbanization. Divers. Distrib. 2018, 24, 919–927. [Google Scholar] [CrossRef] [Green Version]
- Persson, A.S.; Ekroos, J.; Olsson, P.; Smith, H.G. Wild bees and hoverflies respond differently to urbanisation, human population density and urban form. Landsc. Urban Plan. 2020, 204, 103901. [Google Scholar] [CrossRef]
- Pereira, R.H.M.; Nadalin, V.; Monasterio, L.; Albuquerque, P.H.M. Urban Centrality: A Simple Index. Geogr. Anal. 2012, 45, 77–89. [Google Scholar] [CrossRef]
- Institut National de la Statistique et des études économiques Comparateur de Territoire: Paris, Saint-Pierre-lès-Nemours, Fontainebleau. Available online: https://www.insee.fr/fr/statistiques/1405599?geo=DEP-75+COM-77431+COM-77186 (accessed on 22 December 2020).
- European Environment Agency (EEA) Corine Land Cover (CLC). Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine (accessed on 10 November 2020).
- Roulston, T.H.; Smith, S.A.; Brewster, A.L. A Comparison of Pan Trap and Intensive Net Sampling Techniques for Documenting a Bee (Hymenoptera: Apiformes) Fauna. J. Kans. Èntomol. Soc. 2007, 80, 179–181. [Google Scholar] [CrossRef]
- Lombard, A. Sinapis alba L. 1753. Muséum National d’Histoire Naturelle [Ed]. 2006. Conservatoire botanique national du Bassin parisien. Available online: http://www.mnhn.fr/cbnbp (accessed on 13 November 2020).
- Jones, D.A.; Turkington, R. Lotus Corniculatus L. J. Ecol. 1986, 74, 1185. [Google Scholar] [CrossRef]
- Jauzein, P.; Nawrot, O. Flore d’Ile-de-France; Editions Quae: Versailles, France, 2011. [Google Scholar]
- CBNBP. Lotus corniculatus L., 1753. Conservatoire Botanique National du Bassin Parisien. Available online: http://cbnbp.mnhn.fr/cbnbp/ (accessed on 13 November 2020).
- Fontaine, C.; Dajoz, I.; Meriguet, J.; Loreau, M. Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities. PLoS Biol. 2005, 4, e1. [Google Scholar] [CrossRef] [PubMed]
- Geslin, B.; Gauzens, B.; Thébault, E.; Dajoz, I. Plant Pollinator Networks along a Gradient of Urbanisation. PLoS ONE 2013, 8, e63421. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 22 January 2020).
- Dormann, C.F.; Frund, J.; Bluthgen, N.; Gruber, B. Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks. Open Ecol. J. 2009, 2, 7–24. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R package version 2.5-7. 2020. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 30 November 2020).
- Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecol. 2010, 91, 299–305. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Villéger, S.; Mason, N.W.H.; Mouillot, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 2010, 24, 867–876. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Nieto, A.; Roberts, S.P.M.; Kemp, J.; Rasmont, P.; Kuhlmann, M.; García Criado, M.; Biesmeijer, J.C.; Bogusch, P.; Dathe, H.H.; De la Rúa, P.; et al. European Red List of Bees. Luxemb. Publ. Off. Eur. Union. 2014. Available online: https://www.iucn.org/fr/content/european-red-list-bees (accessed on 3 November 2020).
- Dufrêne, E.; Gadoum, S.; Genoud, D.; Rasmont, P.; Pauly, A.; Lair, X.; Aubert, M.; Monsavoir, A. Liste desEspèces d’abeilles Déterminantes de Znieff en Région Île-de- France. DRIEE Île-de-France–CSRPN Île-de-France—Opie 2020, 1:10. Available online: http://www.driee.ile-de-france.developpement-durable.gouv.fr/IMG/pdf/2020_opie_liste-des-determinantes-znieff_abeilles.pdf (accessed on 3 November 2020).
- Gadoum, S.; Houard, X.; Vanappelghem, C.; Monsavoir, A. Liste des Espèces de Syrphes Déterminantes de Znieff en Région Île-de-France. DRIEE Île-de-France—CSRPN Île-de-France—Opie. 2020. Available online: http://www.driee.ile-de-france.developpement-durable.gouv.fr/IMG/pdf/2020_opie_liste-des-determinantes-znieff_syrphes.pdf (accessed on 3 November 2020).
- Kocher, S.D.; Paxton, R.J. Comparative methods offer powerful insights into social evolution in bees. Apidologie 2014, 45, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Gavini, S.S.; Quintero, C.; Tadey, M. Intraspecific variation in body size of bumblebee workers influences anti-predator behaviour. J. Anim. Ecol. 2020, 89, 658–669. [Google Scholar] [CrossRef] [PubMed]
- Gérard, M.; Martinet, B.; Maebe, K.; Marshall, L.; Smagghe, G.; Vereecken, N.J.; Vray, S.; Rasmont, P.; Michez, D. Shift in size of bumblebee queens over the last century. Glob. Chang. Biol. 2020, 26, 1185–1195. [Google Scholar] [CrossRef]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R Package Version 0.2.7. 2020. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 14 November 2020).
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https//socialsciences.mcmaster.ca/jfox/Books/Companion/2019 (accessed on 14 November 2020).
- Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. 2020. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 3 November 2020).
- Lüdecke, D.; Makowski, D.; Waggoner, P. Performance: Assessment of Regression Models Performance. R Package Version 0.4.3. 2020. Available online: https://easystats.github.io/performance/ (accessed on 14 November 2020).
- Ministère de L’agriculture et de L’alimentation Déclarer des Ruches Available online:. Available online: https://www.mesdemarches.agriculture.gouv.fr/demarches/particulier/effectuer-une-declaration-55/article/declarer-des-ruches (accessed on 22 December 2020).
- Ropars, L.; Dajoz, I.; Fontaine, C.; Muratet, A.; Geslin, B. Wild pollinator activity negatively related to honey bee colony densities in urban context. PLoS ONE 2019, 14, e0222316. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, A.E.; Gill, R.J.; Brown, M.J.F.; Leadbeater, E. Lower bumblebee colony reproductive success in agricultural compared with urban environments. Proc. R. Soc. B: Boil. Sci. 2018, 285, 20180807. [Google Scholar] [CrossRef]
- Neame, L.A.; Griswold, T.L.; Elle, E. Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conserv. Divers. 2012, 6, 57–66. [Google Scholar] [CrossRef]
- Pereira, F.W.; Carneiro, L.; Gonçalves, R.B. More losses than gains in ground-nesting bees over 60 years of urbanization. Urban Ecosyst. 2020, 1–10. [Google Scholar] [CrossRef]
- Matteson, K.C.; Ascher, J.S.; Langellotto, G.A. Bee Richness and Abundance in New York City Urban Gardens. Ann. Èntomol. Soc. Am. 2008, 101, 140–150. [Google Scholar] [CrossRef]
- Pardee, G.L.; Philpott, S.M. Native plants are the bee’s knees: Local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst. 2014, 17, 641–659. [Google Scholar] [CrossRef] [Green Version]
- Goulson, D. Bumblebees: Behaviour, Ecology, and Conservation, 2nd ed.; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Dicks, L.V.; Baude, M.; Roberts, S.P.M.; Phillips, J.; Green, M.R.; Carvell, C. How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. Ecol. Èntomol. 2015, 40, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.; Brady, S.G.; Kanda, K.; Danforth, B.N. Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Mol. Phylogenetics Evol. 2012, 65, 926–939. [Google Scholar] [CrossRef]
- Sevenello, M.; Sargent, R.D.; Forrest, J.R.K. Spring wildflower phenology and pollinator activity respond similarly to climatic variation in an eastern hardwood forest. Oecologia 2020, 193, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Geslin, B.; Le Féon, V.; Kuhlmann, M.; Vaissière, B.E.; Dajoz, I. The bee fauna of large parks in downtown Paris, France. Annales de la Société entomologique de France (N.S.) 2015, 51, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Harrison, T.; Gibbs, J.; Winfree, R. Forest bees are replaced in agricultural and urban landscapes by native species with different phenologies and life-history traits. Glob. Chang. Biol. 2017, 24, 287–296. [Google Scholar] [CrossRef]
- Theodorou, P.; Baltz, L.M.; Paxton, R.J.; Soro, A. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol. Appl. 2021, 14, 53–68. [Google Scholar] [CrossRef]
- Hamblin, A.L.; Youngsteadt, E.; Frank, S.D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 2018, 21, 419–428. [Google Scholar] [CrossRef]
- Couvillon, M.J.; Dornhaus, A. Location, location, location: Larvae position inside the nest is correlated with adult body size in worker bumble-bees (Bombus impatiens). Proc. R. Soc. B: Boil. Sci. 2009, 276, 2411–2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shpigler, H.; Tamarkin, M.; Gruber, Y.; Poleg, M.; Siegel, A.J.; Bloch, G. Social influences on body size and developmental time in the bumblebee Bombus terrestris. Behav. Ecol. Sociobiol. 2013, 67, 1601–1612. [Google Scholar] [CrossRef]
- Timberlake, T.P.; Vaughan, I.P.; Memmott, J. Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. J. Appl. Ecol. 2019, 56, 1585–1596. [Google Scholar] [CrossRef]
- Levé, M.; Baudry, E.; Bessa-Gomes, C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total. Environ. 2019, 647, 420–430. [Google Scholar] [CrossRef] [PubMed]
List of Species | Rur. | Urb. | List of Species (Continued) | Rur. | Urb. |
---|---|---|---|---|---|
HYMENOPTERA (BEES) | HYMENOPTERA (OTHERS) | ||||
Andrenidae | Crabronidae | ||||
Andrena apicata (Smith 1847) | 1 | Cerceris sp. | 1 | ||
Andrena bicolor (Fabricius 1775) | 2 | 5 | Pemphredon sp. | 1 | |
Andrena bimaculata (Kirby 1802) | 2 | Vespidae | |||
Andrena cineraria (Linnaeus 1758) | 2 | Vespula germanica (Fabricius 1793) | 1 | ||
Andrena dorsata (Kirby 1802) | 4 | 3 | Tenthredinidae | ||
Andrena flavipes (Panzer 1799) | 4 | 2 | Allantus sp. | 1 | |
Andrena gravida (Imhoff 1832) | 4 | Athalia sp. | 1 | ||
Andrena haemorrhoa (Fabricius 1781) | 1 | Cladius sp. | 1 | ||
Andrena lagopus (Latreille 1809) | 1 | 4 | Tenthredo sp. | 1 | |
Andrena minutula (Kirby 1802) | 5 | 12 | COLEOPTERA | ||
Andrena minutuloides (Perkins 1914) | 3 | Chrysomelidae | |||
Andrena pusilla (Pérez 1903) | 4 | 47 | Cryptocephalus sp. | 1 | |
Andrena sp. | 1 | Psylliodes sp. | 1 | ||
Andrena subopaca (Nylander 1848) | 2 | 1 | Oedemeridae | ||
Andrena tenuistriata (Pérez 1895) | 14 | Oedemera nobilis (Scopoli 1763) | 1 | ||
Apidae | Oedemera sp. | 2 | |||
Anthophora quadrimaculata (Panzer 1789) | 1 | Scarabaeidae | |||
Apis mellifera (Linnaeus 1758) | 2 | 59 | Phyllopertha horticola (Linnaeus 1758) | 2 | |
Bombus lapidarius (Linnaeus 1758) | 4 | DIPTERA | |||
Bombus lucorum (Linnaeus 1760) | 1 | 2 | Bombyliidae | ||
Bombus pascuorum (Scopoli 1763) | 14 | 77 | Bombylius major (Linnaeus 1758) | 3 | 2 |
Bombus terrestris (Linnaeus 1758) | 1 | 3 | Conopidae | ||
Nomada bifasciata (Olivier 1811) | 1 | Myopa sp | 1 | ||
Nomada ferruginata (Linnaeus 1767) | 1 | Muscidae | |||
Nomada flavoguttata (Kirby 1802) | 1 | Phaonia sp. | 2 | ||
Nomada fulvicornis (Fabricius 1793) | 1 | Scathophagidae | |||
Nomada panzeri (Lepeletier 1841) | 1 | Cordilura sp. | 1 | ||
Colletidae | Scathophaga sp. | 1 | |||
Hylaeus brevicornis (Nylander 1852) | 6 | Syrphidae | |||
Hylaeus communis (Nylander 1852) | 16 | 3 | Brachypalpus valgus (Panzer 1798) | 1 | |
Hylaeus gibbus (Saunders 1850) | 1 | Cheilosia fasciata (Schiner & Egger 1853) | 1 | ||
Hylaeus pictipes (Nylander 1852) | 5 | Cheilosia sp. | 1 | ||
Hylaeus punctatus (Brullé 1832) | 9 | 7 | Episyrphus balteatus (De Geer 1776) | 21 | 22 |
Halictidae | Eristalis arbustorum (Linnaeus 1758) | 3 | 1 | ||
Halictus scabiosae (Rossi 1790) | 1 | Eristalis tenax (Linnaeus 1758) | 10 | 10 | |
Halictus subauratus (Rossi 1792) | 5 | 4 | Eupeodes corollae (Fabricius 1794) | 6 | 1 |
Halictus submediterranea (Pauly 2015) | 1 | Eupeodes luniger (Meigen 1822) | 25 | ||
Halictus tumulorum (Linnaeus 1758) | 5 | 9 | Helophilus pendulus (Linnaeus 1758) | 1 | |
Lasioglossum aeratum (Kirby 1802) | 28 | Melanostoma mellinum (Linnaeus 1758) | 3 | 3 | |
Lasioglossum albipes (Fabricius 1781) | 14 | Melanostoma scalare (Fabricius 1794) | 2 | ||
Lasioglossum calceatum (Scopoli 1763) | 12 | 9 | Meliscaeva auricollis (Meigen 1822) | 4 | |
Lasioglossum glabriusculum (Morawitz 1872) | 1 | Merodon equestris (Fabricius 1794) | 1 | 1 | |
Lasioglossum laevigatum (Kirby 1802) | 1 | Myathropa florea (Linnaeus 1758) | 1 | ||
Lasioglossum laticeps (Schenk 1868) | 4 | 18 | Neoascia podagrica (Fabricius 1775) | 1 | |
Lasioglossum leucozonium (Schrank 1781) | 2 | Paragus haemorrhus (Meigen 1822) | 1 | ||
Lasioglossum limbellum (Morawitz 1876) | 1 | Paragus quadrifasciatus (Meigen 1822) | 1 | ||
Lasioglossum malachurum (Kirby 1802) | 7 | Parasyrphus punctulatus (Verrall 1873) | 1 | ||
Lasioglossum marginatum (Brullé 1832) | 2 | 1 | Platycheirus albimanus (Fabricius 1781) | 1 | 1 |
Lasioglossum minutissimum (Kirby 1802) | 3 | 5 | Platycheirus scutatus (Meigen 1822) | 4 | |
Lasioglossum monstrificum (Morawitz 1891) | 1 | Scaeva pyrastri (Linnaeus 1758) | 1 | ||
Lasioglossum morio (Fabricius 1793) | 17 | 39 | Sphaerophoria scripta (Linnaeus 1758) | 10 | 5 |
Lasioglossum nitidiusculum (Kirby 1802) | 1 | Syritta pipiens (Linnaeus 1758) | 7 | 34 | |
Lasioglossum nitidulum (Fabricius 1804) | 3 | 7 | Syrphus sp. | 1 | |
Lasioglossum pallens (Brullé 1832) | 6 | Syrphus nitidifrons (Becker 1921) | 2 | ||
Lasioglossum pauxillum (Schenck 1853) | 2 | Syrphus torvus (Osten-Sacken 1875) | 17 | ||
Lasioglossum politum (Schenck 1853) | 27 | 7 | Tachinidae | ||
Lasioglossum punctatissimum (Schenck 1853) | 5 | Tachina sp. | 1 | ||
Lasioglossum villosulum (Kirby 1802) | 1 | LEPIDOPTERA | |||
Sphecodes puncticeps (Thomson 1870) | 1 | Lycaenidae | |||
Megachilidae | Aricia agestis (Denis & Schiffermüller 1775) | 2 | |||
Anthidiellum strigatum (Panzer 1805) | 3 | 2 | Pieridae | ||
Anthidium oblongatum (Illiger 1806) | 1 | Gonepteryx rhamni (Linnaeus 1758) | 1 | ||
Anthidium punctatum (Latreille 1809) | 4 | Pieris rapae (Linnaeus 1758) | 1 | 2 | |
Chelostoma campanularum (Kirby 1802) | 1 | ||||
Hoplitis leucomelana (Kirby 1802) | 1 | 1 | |||
Megachile centuncularis (Linnaeus 1758) | 6 | 11 | |||
Megachile willughbiella (Kirby 1802) | 15 | ||||
Osmia bicornis (Linnaeus 1758) | 1 | 1 | |||
Osmia caerulescens (Linnaeus 1758) | 4 | 4 | |||
Osmia cornuta (Latreille 1805) | 1 | ||||
Osmia submicans (Morawitz 1870) | 5 |
Modeled Trait Variable | Plant | Habitat | Equation |
---|---|---|---|
Proportion of eusocial species (GLMM, Binomial family) | L. corniculatus | Rural | −0.25 (0.49, NS) + 5.22 (3.36, NS) × DAY |
Urban | 0.45 (0.47, NS) + 20.61 (3.32) × DAY | ||
S. alba | Rural | −0.61 (0.47, NS) + 5.22 (3.36, NS) × DAY | |
Urban | 0.09 (0.45, NS) + 20.61 (3.32) × DAY | ||
Proportion of ground-nesting species (GLMM, Binomial family) | L. corniculatus | Rural | −0.80 (0.37) + −28.02 (3.20) × DAY |
Urban | −1.80 (0.33) + −28.02 (3.20) × DAY | ||
S. alba | Rural | 1.85 (0.26) + −28.02 (3.20) × DAY | |
Urban | 2.03 (0.25) + −28.02 (3.20) × DAY | ||
ITD (log) genus Bombus (LMM, Gaussian family) | L. corniculatus | Rural | 1.25 (0.03) + −1.12 (0.24) × DAY + 1.31 (0.24) × DAY² |
Urban | 1.22 (0.01) + −0.46 (0.14) × DAY + 0.39 (0.15) × DAY² | ||
S. alba | Rural | 1.10 (0.05) + −1.12 (0.24) × DAY + 1.31 (0.24) × DAY² | |
Urban | 1.29 (0.03) + −0.46 (0.14) × DAY + 0.39 (0.15) × DAY² | ||
ITD (log) Other wild bees (LMM, Gaussian family) | L. corniculatus | Rural | 0.65 (0.05) + 2.81 (0.89) × DAY |
Urban | 0.85 (0.04) + 2.81 (0.89) × DAY | ||
S. alba | Rural | 0.21 (0.02) + −1.56 (0.29) × DAY | |
Urban | 0.24 (0.02) + −1.56 (0.29) × DAY |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaninotto, V.; Perrard, A.; Babiar, O.; Hansart, A.; Hignard, C.; Dajoz, I. Seasonal Variations of Pollinator Assemblages among Urban and Rural Habitats: A Comparative Approach Using a Standardized Plant Community. Insects 2021, 12, 199. https://doi.org/10.3390/insects12030199
Zaninotto V, Perrard A, Babiar O, Hansart A, Hignard C, Dajoz I. Seasonal Variations of Pollinator Assemblages among Urban and Rural Habitats: A Comparative Approach Using a Standardized Plant Community. Insects. 2021; 12(3):199. https://doi.org/10.3390/insects12030199
Chicago/Turabian StyleZaninotto, Vincent, Adrien Perrard, Olivier Babiar, Amandine Hansart, Cécile Hignard, and Isabelle Dajoz. 2021. "Seasonal Variations of Pollinator Assemblages among Urban and Rural Habitats: A Comparative Approach Using a Standardized Plant Community" Insects 12, no. 3: 199. https://doi.org/10.3390/insects12030199
APA StyleZaninotto, V., Perrard, A., Babiar, O., Hansart, A., Hignard, C., & Dajoz, I. (2021). Seasonal Variations of Pollinator Assemblages among Urban and Rural Habitats: A Comparative Approach Using a Standardized Plant Community. Insects, 12(3), 199. https://doi.org/10.3390/insects12030199