Reducing Pesticides and Increasing Crop Diversification Offer Ecological and Economic Benefits for Farmers—A Case Study in Cambodian Rice Fields
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Gender-Informed Survey and Bund Plants
2.3. Benefit–Cost Ratio of Treatments
2.4. Arthropod Sampling and Analysis
- Predators: consist of all predatory arthropods that actively or passively hunt for other arthropods. This includes, among others, active and passive hunting spiders, predatory bugs, flies and beetles.
- Parasitoids: all endo- and ectoparasitoids were assigned to the functional group of parasitoids. Parasitoids consist mostly of hymenopteran wasp as well as flies and Strepsipterans (twisted-wing parasites).
- Herbivores: arthropods feeding on rice plants as sap sucker, defoliators, miners, root feeders or stem borers were categorized as herbivores.
- Detritivores: arthropods consuming dead organic material were assigned to the functional groups of detritivores.
- Pollinators: flower-visiting arthropods, which in our case refers to the plants growing on the bunds.
3. Results
3.1. Gender-Informed Survey and Bund Plants
3.2. Benefit–Cost Ratio of Treatments
3.3. Arthropod Abundance and Richness during Dry Season
3.4. Arthropod Abundance and Richness during Wet Season
4. Discussion
4.1. Gender-Informed Survey and Bund Plants
4.2. Benefit–Cost Ratio of Treatments
4.3. Arthropod Abundance and Richness
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evenson, R.E.; Gollin, D. Assessing the Impact of the Green Revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Moya, P.F.; Dawe, D.; Pabale, D.; Tiongco, M.; Chien, N.V.; Devarajan, S.; Djatiharti, A.; Lai, N.X.; Niyomvit, L.; Ping, H.X.; et al. The economics of intensively irrigated rice in Asia. In Increasing Productivity of Intensive Rice Systems through Site-Specific Nutrient Management; Dobermann, A., Witt, C., Dawe, D., Eds.; Science Publisher: Enfield, NH, USA; IRRI: Los Baños, Philippines, 2004; pp. 29–58. ISBN 9712201872. [Google Scholar]
- FAOSTAT Production—Crops. Available online: http://www.fao.org/faostat/en/#compare (accessed on 11 March 2019).
- Horgan, F.G.; Ramal, A.F.; Bernal, C.C.; Villegas, J.M.; Stuart, A.M.; Almazan, M.L.P. Applying Ecological Engineering for Sustainable and Resilient Rice Production Systems. Procedia Food Sci. 2016, 6, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Sattler, C.; Schrader, J.; Farkas, V.M.; Settele, J.; Franzén, M. Pesticide diversity in rice growing areas of Northern Vietnam. Paddy Water Environ. 2018, 16, 339–352. [Google Scholar] [CrossRef]
- Normile, D. Vietnam Turns Back a ‘Tsunami of Pesticides’. Science 2013, 341, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Flor, R.J.; Chhay, K.; Sorn, V.; Maat, H.; Hadi, B.A.R. The Technological Trajectory of Integrated Pest Management for Rice in Cambodia. Sustainability 2018, 10, 1732. [Google Scholar] [CrossRef] [Green Version]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annu. Rev. Èntomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Meisnera, C.; Wheeler, D.; Xuyenb, K.; Lam, N.T. Pesticide poisoning of farm workers–implications of blood test results from Vietnam. Int. J. Hyg. Environ. Health 2007, 210, 121–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flor, R.J.; Maat, H.; Hadi, B.A.R.; Kumar, V.; Castilla, N. Do field-level practices of Cambodian farmers prompt a pesticide lock-in? Field Crop. Res. 2019, 235, 68–78. [Google Scholar] [CrossRef]
- Sattler, C.; Gianuca, A.T.; Schweiger, O.; Franzén, M.; Settele, J. Pesticides and land cover heterogeneity affect functional group and taxonomic diversity of arthropods in rice agroecosystems. Agric. Ecosyst. Environ. 2020, 297, 106927. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat Management to Conserve Natural Enemies of Arthropod Pests in Agriculture. Annu. Rev. Èntomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Kumar, L.; Yogi, M.; Jagdish, J. Habitat Manipulation for Biological Control of Insect Pests: A Review. Res. J. Agric. For. Sci. 2013, 1, 27–31. [Google Scholar]
- Stuart, A.M.; Prescott, C.V.; Singleton, G.R. Habitat manipulation in lowland rice-coconut cropping systems of the Philippines-an effective rodent pest management strategy? Pest Manag. Sci. 2014, 70, 939–945. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M. Habitat Management to Suppress Pest Populations: Progress and Prospects. Annu. Rev. Èntomol. 2017, 62, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J. What is ecological engineering? Ecol. Eng. 2012, 45, 5–12. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Altieri, M.A. Ecological engineering: A new direction for agricultural pest management. AFBM J. 2004, 1, 28–35. [Google Scholar]
- Ali, M.P.; Bari, M.N.; Haque, S.S.; Kabir, M.M.M.; Afrin, S.; Nowrin, F.; Islam, M.S.; Landis, D.A. Establishing next-generation pest control services in rice fields: Eco-agriculture. Sci. Rep. 2019, 9, 10180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horgan, F.G.; Ramal, A.F.; Villegas, J.M.; Almazan, M.L.P.; Bernal, C.C.; Jamoralin, A.; Pasang, J.M.; Orboc, G.; Agreda, V.; Arroyo, C. Ecological engineering with high diversity vegetation patches enhances bird activity and ecosystem services in Philippine rice fields. Reg. Environ. Chang. 2016, 17, 1355–1367. [Google Scholar] [CrossRef]
- Gurr, G.M. Prospects for ecological engineering for planthoppers and other arthropod pests in rice. In Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia; Heong, K.L., Hardy, B., Eds.; International Rice Research Institute: Los Banos, Philippines, 2009; pp. 371–388. [Google Scholar]
- Lu, Z.-X.; Zhu, P.-Y.; Gurr, G.M.; Zheng, X.-S.; Read, D.M.Y.; Heong, K.L.; Yang, Y.-J.; Xu, H.-X. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: Prospects for enhanced use in agriculture. Insect Sci. 2014, 21, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Horgan, F.G.; Ramal, A.F.; Villegas, J.M.; Jamoralin, A.; Bernal, C.C.; Perez, M.O.; Pasang, J.M.; Naredo, A.I.; Almazan, M.L.P. Effects of bund crops and insecticide treatments on arthropod diversity and herbivore regulation in tropical rice fields. J. Appl. Èntomol. 2017, 141, 587–599. [Google Scholar] [CrossRef]
- Gurr, G.M.; Heong, K.L.; Cheng, J.A.; Catindig, J. Ecological Engineering Strategies to Manage Insect Pests in Rice. In Biodiversity and Insect Pests: Key Issues for Sustainable Management; Gurr, G.M., Wratten, S.D., Snyder, W.E., Read, D.M.Y., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2012; pp. 214–229. ISBN 9780470656860. [Google Scholar]
- Zhu, P.; Zheng, X.; Zhang, F.; Xu, H.; Yang, Y.; Chen, G.; Lu, Z.; Johnson, A.C.; Gurr, G.M. Quantifying the respective and additive effects of nectar plant crop borders and withholding insecticides on biological control of pests in subtropical rice. J. Pest Sci. 2018, 91, 575–584. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, G.; Zheng, X.; Tian, J.; Lu, Z.; Heong, K.L.; Xu, H.; Chen, G.; Yang, Y.; Gurr, G.M. Selective enhancement of parasitoids of rice Lepidoptera pests by sesame (Sesamum indicum) flowers. BioControl 2015, 60, 157–167. [Google Scholar] [CrossRef]
- Zhu, P.; Lu, Z.; Heong, K.; Chen, G.; Zheng, X.; Xu, H.; Yang, Y.; Nicol, H.I.; Gurr, G.M. Selection of Nectar Plants for Use in Ecological Engineering to Promote Biological Control of Rice Pests by the Predatory Bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae). PLoS ONE 2014, 9, 1–12. [Google Scholar] [CrossRef]
- Zhu, P.; Gurr, G.M.; Lu, Z.; Heong, K.; Chen, G.; Zheng, X.; Xu, H.; Yang, Y. Laboratory screening supports the selection of sesame (Sesamum indicum) to enhance Anagrus spp. parasitoids (Hymenoptera: Mymaridae) of rice planthoppers. Biol. Control. 2013, 64, 83–89. [Google Scholar] [CrossRef]
- Gurr, G.M.; Lu, Z.; Zheng, X.; Xu, H.; Zhu, P.; Chen, G.; Yao, X.; Cheng, J.; Zhu, Z.; Catindig, J.L.A.; et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2016, 2, 1–4. [Google Scholar] [CrossRef]
- Settle, W.H.; Ariawan, H.; Astuti, E.T.; Cahyana, W.; Hakim, A.L.; Hindayana, D.; Lestari, A.S. Managing Tropical Rice Pests Through Conservation of Generalist Natural Enemies and Alternative Prey. Ecology 1996, 77, 1975–1988. [Google Scholar] [CrossRef]
- Gontijo, L.M. Engineering natural enemy shelters to enhance conservation biological control in field crops. Biol. Control 2019, 130, 155–163. [Google Scholar] [CrossRef]
- Haan, N.L.; Zhang, Y.; Landis, D.A. Predicting Landscape Configuration Effects on Agricultural Pest Suppression. Trends Ecol. Evol. 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Try, T.; Chambers, M. Situation Analysis: Stung Treng Province, Cambodia; Mekong Wetlands Biodiversity Conservation and Sustainable Use Programme: Vientiane, Laos, 2006; p. 93. [Google Scholar]
- The World Bank Group Average Monthly Temperature and Rainfall for Cambodia from 1991–2015. Available online: http://sdwebx.worldbank.org/climateportal/index.cfm?page=country_historical_climate&ThisCCode=KHM# (accessed on 6 March 2019).
- Hu, P.; Chen, W.; Chen, S.; Liu, Y.; Huang, R. Extremely Early Summer Monsoon Onset in the South China Sea in 2019 Following an El Niño Event. Mon. Weather. Rev. 2020, 148, 1877–1890. [Google Scholar] [CrossRef]
- Cambodian Research and Development Institute. CARDI Chey Mung Bean Variety; Cambodian Research and Development Institute: Phnom Penh, Cambodia, 2005. [Google Scholar]
- Chhun, S.; Kumar, V.; Martin, R.J.; Srean, P.; Hadi, B.A.R. Weed management practices of smallholder rice farmers in Northwest Cambodia. Crop. Prot. 2019, 135, 104793. [Google Scholar] [CrossRef]
- Cruz-Garcia, G.S.; Struik, P.C. Spatial and Seasonal Diversity of Wild Food Plants in Home Gardens of Northeast Thailand. Econ. Bot. 2015, 69, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Shepard, B.M.; Barrion, A.T.; Litsinger, J.A. Rice-Feeding Insects of Tropical Asia; International Rice Research Institute: Manila, Philippines, 1995. [Google Scholar]
- Shepard, B.M.; Barrion, A.T.; Litsinger, J.A. Friends of the Rice Farmer. Helpful Insects, Spiders, and Pathogens; IRRI: Los Baños, Philippines, 1987; ISBN 9711041626. [Google Scholar]
- Heong, K.L.; Aquino, G.B.; Barrion, A.T. Arthropod community structures of rice ecosystems in the Philippines. Bull. Èntomol. Res. 1991, 81, 407–416. [Google Scholar] [CrossRef]
- Bambaradeniya, C.N.B.; Edirisinghe, J.P.; De Silva, D.N.; Gunatilleke, C.V.S.; Ranawana, K.B.; Wijekoon, S. Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka. Biodivers. Conserv. 2004, 13, 1715–1753. [Google Scholar] [CrossRef]
- Heinrichs, E.A. Biology and Management of Rice Insects; Wiley East. Ltd.: Manila, Philippines; IRRI: New Delhi, India, 1994. [Google Scholar]
- McElreath, R. Social Learning and the Maintenance of Cultural Variation: An Evolutionary Model and Data from East Africa. Am. Anthropol. 2004, 106, 308–321. [Google Scholar] [CrossRef]
- Stone, G.D. Field versus Farm in Warangal: Bt Cotton, Higher Yields, and Larger Questions. World Dev. 2011, 39, 387–398. [Google Scholar] [CrossRef]
- Stone, G.D. Agricultural Deskilling and the Spread of Genetically Modified Cotton in Warangal. Curr. Anthropol. 2007, 48, 67–103. [Google Scholar] [CrossRef] [Green Version]
- Richards, P. Cultivation: Knowledge or performance? In An Anthropological Critique of Development: The Growth of Ignorance; Routledge: London, UK, 1993; pp. 61–78. [Google Scholar]
- Zou, Y.; De Kraker, J.; Bianchi, F.J.J.A.; Xiao, H.; Huang, J.; Deng, X.; Hou, L.; Van Der Werf, W. Do diverse landscapes provide for effective natural pest control in subtropical rice? J. Appl. Ecol. 2019, 1–11. [Google Scholar] [CrossRef]
- Sirami, C.; Gross, N.; Baillod, A.B.; Bertrand, C.; Carrié, R.; Hass, A.; Henckel, L.; Miguet, P.; Vuillot, C.; Alignier, A.; et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl. Acad. Sci. USA 2019, 116, 16442–16447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Westphal, C.; Vidal, S.; Horgan, F.G.; Gurr, G.M.; Escalada, M.M.; Van Chien, H.; Tscharntke, T.; Heong, K.L.; Settele, J. Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic Appl. Ecol. 2015, 16, 681–689. [Google Scholar] [CrossRef]
- Haro, M.M.; Silveira, L.C.P.; Wilby, A. Stability lies in flowers: Plant diversification mediating shifts in arthropod food webs. PLoS ONE 2018, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Dominik, C.; Seppelt, R.; Horgan, F.G.; Settele, J.; Václavík, T. Landscape composition, configuration, and trophic interactions shape arthropod communities in rice agroecosystems. J. Appl. Ecol. 2018, 55, 2461–2472. [Google Scholar] [CrossRef]
- Sann, C.; Theodorou, P.; Heong, K.L.; Villareal, S.; Settele, J.; Vidal, S.; Westphal, C. Hopper parasitoids do not significantly benefit from non-crop habitats in rice production landscapes. Agric. Ecosyst. Environ. 2018, 254, 224–232. [Google Scholar] [CrossRef]
Rank | Common Name | Scientific Name | n | % of Respondents |
---|---|---|---|---|
1 | Rice | Oryza sativa | 59 | 98.3 |
2 | Sponge gourd | Luffa aegyptiaca | 54 | 90.0 |
3 | Lemon grass | Cymbopogon sp. | 49 | 81.7 |
4 | Banana | Musaacuminata | 48 | 80.0 |
5 | Papaya | Carica papaya | 46 | 76.7 |
6 | Greater galangal | Alpinia galanga | 40 | 66.7 |
7 | Mango | Mangifera indica | 39 | 65.0 |
7 | Chili | Capsicum annuum | 39 | 65.0 |
9 | Coconut | Cocos nucifera | 38 | 63.3 |
9 | Turmeric | Curcuma longa | 38 | 63.3 |
11 | Bottle gourd | Lagenaria siceraria | 32 | 53.3 |
11 | Chinese basil | Ocimum basilicum | 32 | 53.3 |
13 | Sweetsop/sugar apple | Annona squamosa | 30 | 50.0 |
13 | Sugar palm tree | Borassus flabellifer | 30 | 50.0 |
Ecological Engineering (n = 5) | Control (n = 5) | Conventional (n = 5) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |
Land preparation (constant) | 459.2 | 459.2 | 459.20 | 0.00 | 459.2 | 459.2 | 459.20 | 0.00 | 459.2 | 459.2 | 459.20 | 0.00 |
Seed cost (rice) | 115.0 | 115.0 | 115.00 | 0.00 | 115.0 | 115.0 | 115.00 | 0.00 | 115.0 | 115.0 | 115.00 | 0.00 |
Seed cost (crop) | 2.0 | 2.0 | 2.0 | 0.00 | ||||||||
Labor | 25.0 | 25.0 | 25.00 | 0.00 | 0.0 | 25.0 | 12.00 | 12.55 | 0.0 | 25.0 | 5.00 | 11.18 |
Fertilizer | 19.01 | 83.00 | 46.35 | 24.48 | 19.01 | 56.25 | 43.43 | 16.51 | 19.01 | 78.75 | 53.18 | 21.67 |
Pesticide | 0.0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 | 0.00 | 11.75 | 46.00 | 31.25 | 17.63 |
Pest mgmt. labor | 0.0 | 0.0 | 0.0 | 0.00 | 0.0 | 0.0 | 0.0 | 0.00 | 3.0 | 25.0 | 15.20 | 11.32 |
Harvest (constant) | 63.4 | 63.4 | 63.40 | 0.00 | 63.4 | 63.4 | 63.40 | 0.00 | 63.4 | 63.4 | 63.40 | 0.00 |
Total cost | 683.61 | 747.60 | 710.95 | 24.48 | 656.61 | 718.85 | 693.03 | 27.57 | 672.11 | 787.35 | 742.23 | 48.47 |
Revenue rice | 1125.00 | 1580.63 | 1372.50 | 164.86 | 1338.75 | 1490.63 | 1402.88 | 68.73 | 1046.25 | 1603.13 | 1366.88 | 202.54 |
Revenue mung bean | 2.50 | 76.67 | 35.17 | 25.74 | ||||||||
Revenue sponge gourd | 1.56 | 6.67 | 5.12 | 1.88 | ||||||||
Revenue sesame | 4.69 | 54.17 | 23.84 | 17.86 | ||||||||
Total revenue | 1133.75 | 1718.14 | 1436.63 | 153.79 | 1338.75 | 1490.63 | 1402.88 | 68.73 | 1046.25 | 1603.13 | 1366.88 | 202.54 |
BCR | 1.66 | 2.30 | 2.02 | 0.19 | 1.94 | 2.09 | 2.02 | 0.06 | 1.56 | 2.07 | 1.84 | 0.19 |
Season | Functional Group | Comparison | Estimate | SE | p Value |
---|---|---|---|---|---|
DS | Detritivore | CR–EE | −0.406 | 0.440 | 0.356 |
Herbivore | CR–EE | 0.067 | 0.444 | 0.880 | |
Parasitoid | CR–EE | −0.386 | 0.439 | 0.380 | |
Predator | CR–EE | −0.418 | 0.439 | 0.341 | |
WS | Detritivore | Control–CR | 0.065 | 0.275 | 0.970 |
Control–EE | −0.359 | 0.273 | 0.387 | ||
CR–EE | −0.424 | 0.274 | 0.270 | ||
Herbivore | Control–CR | 0.245 | 0.276 | 0.649 | |
Control–EE | 0.295 | 0.274 | 0.529 | ||
CR–EE | 0.050 | 0.274 | 0.982 | ||
Parasitoid | Control–CR | 0.821 | 0.274 | <0.01 | |
Control–EE | 0.187 | 0.273 | 0.773 | ||
CR–EE | −0.634 | 0.274 | <0.05 | ||
Predator | Control–CR | −0.084 | 0.275 | 0.950 | |
Control–EE | −0.185 | 0.274 | 0.778 | ||
CR–EE | −0.101 | 0.275 | 0.928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sattler, C.; Schrader, J.; Flor, R.J.; Keo, M.; Chhun, S.; Choun, S.; Hadi, B.A.R.; Settele, J. Reducing Pesticides and Increasing Crop Diversification Offer Ecological and Economic Benefits for Farmers—A Case Study in Cambodian Rice Fields. Insects 2021, 12, 267. https://doi.org/10.3390/insects12030267
Sattler C, Schrader J, Flor RJ, Keo M, Chhun S, Choun S, Hadi BAR, Settele J. Reducing Pesticides and Increasing Crop Diversification Offer Ecological and Economic Benefits for Farmers—A Case Study in Cambodian Rice Fields. Insects. 2021; 12(3):267. https://doi.org/10.3390/insects12030267
Chicago/Turabian StyleSattler, Cornelia, Julian Schrader, Rica Joy Flor, Makarakpakphea Keo, Sokunroth Chhun, Saban Choun, Buyung Asmara Ratna Hadi, and Josef Settele. 2021. "Reducing Pesticides and Increasing Crop Diversification Offer Ecological and Economic Benefits for Farmers—A Case Study in Cambodian Rice Fields" Insects 12, no. 3: 267. https://doi.org/10.3390/insects12030267
APA StyleSattler, C., Schrader, J., Flor, R. J., Keo, M., Chhun, S., Choun, S., Hadi, B. A. R., & Settele, J. (2021). Reducing Pesticides and Increasing Crop Diversification Offer Ecological and Economic Benefits for Farmers—A Case Study in Cambodian Rice Fields. Insects, 12(3), 267. https://doi.org/10.3390/insects12030267