Effects of NF-kB Signaling Inhibitors on Bed Bug Resistance to Orally Provisioned Entomopathogenic Bacteria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bed Bug Rearing
2.2. NF-kB Signaling Inhibitors
2.3. Inhibitor Feeding Experiments
2.4. Bacterial Entomopathogen Cultures
2.5. Effects of NF-kb Signaling Inhibitors on Bacterial Entomopathogen Cultures
2.6. Combination Treatments with NF-kB Signaling Inhibitors and Bacterial Entomopathogens
2.7. Estimation of Bacterial Entomopathogen Load In Vivo
3. Results
3.1. Toxicity of NF-KB Signaling Inhibitors as Lone Agents
3.2. Effects of NF-kB Signaling Inhibitors on Bacterial Entomopathogen Growth In Vitro
3.3. Effects of NF-kB Signaling Inhibitors on Mortality during Infection with Entomopathogenic Bacteria
3.4. Pseudomonas Entomophila Load during Infection of Bed Bugs
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reinhardt, K.; Siva-Jothy, M.T. Biology of the Bed Bugs (Cimicidae). Annu. Rev. Entomol. 2007, 52, 351–374. [Google Scholar] [CrossRef] [Green Version]
- Akhoundi, M.; Sereno, D.; Durand, R.; Mirzaei, A.; Bruel, C.; Delaunay, P.; Marty, P.; Izri, A. Bed Bugs (Hemiptera, Cimicidae): Overview of Classification, Evolution and Dispersion. Int. J. Environ. Res. Public Health 2020, 17, 4576. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Izri, A. Bedbugs. N. Engl. J. Med. 2020, 382, 2230–2237. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Doggett, S.L.; Singham, G.V.; Lee, C.-Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasites Vectors 2017, 10, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacey, L.A. Microbial Control of Insect and Mite Pests: From Theory to Practice; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Pereira, R.M.; Oi, D.H.; Baggio, M.V.; Koehler, P.G. Chapter 29–Microbial Control of Structural Insect Pests. In Microbial Control of Insect and Mite Pests; Elsevier BV: Amsterdam, The Netherlands, 2017; pp. 431–442. [Google Scholar] [CrossRef]
- Barbarin, A.M.; Bellicanta, G.S.; Osborne, J.A.; Schal, C.; Jenkins, N.E. Susceptibility of insecticide-resistant bed bugs (Cimex lectularius) to infection by fungal biopesticide. Pest Manag. Sci. 2017, 73, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Barbarin, A.M.; Jenkins, N.E.; Rajotte, E.G.; Thomas, M.B. A preliminary evaluation of the potential of Beauveria bassiana for bed bug control. J. Invertebr. Pathol. 2012, 111, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Shikano, I.; Gomez, L.; Bellicanta, G.S.; Jenkins, N.E.; Appel, A. Persistence and Lethality of a Fungal Biopesticide (Aprehend) Applied to Insecticide-impregnated and Encasement-type Box Spring Covers for Bed Bug Management. J. Econ. Entomol. 2019, 112, 2489–2492. [Google Scholar] [CrossRef] [PubMed]
- Pietri, J.E.; Liang, D. Virulence of entomopathogenic bacteria in the bed bug, Cimex lectularius. J. Invertebr. Pathol. 2018, 151, 1–6. [Google Scholar] [CrossRef]
- Reinhardt, K.; Naylor, R.A.; Siva-Jothy, M.T. Potential sexual transmission of environmental microbes in a traumatically inseminating insect. Ecol. Entomol. 2005, 30, 607–611. [Google Scholar] [CrossRef]
- Otti, O.; Deines, P.; Hammerschmidt, K.; Reinhardt, K. Regular Wounding in a Natural System: Bacteria Associated with Reproductive Organs of Bedbugs and Their Quorum Sensing Abilities. Front. Immunol. 2017, 8, 1855. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, A.; Gupta, K.; van Hoek, M.L. Characterization of Cimex lectularius (bedbug) defensin peptide and its antimicrobial activity against human skin microflora. Biochem. Biophys. Res. Commun. 2016, 470, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Siva-Jothy, M.T.; Zhong, W.; Naylor, R.; Heaton, L.; Hentley, W.; Harney, E. Female bed bugs (Cimex lectularius L.) anticipate the immunological consequences of traumatic insemination via feeding cues. Proc. Natl. Acad. Sci. USA 2019, 116, 14682–14687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potts, R.; King, J.G.; Pietri, J.E. Ex vivo characterization of the circulating hemocytes of bed bugs and their responses to bacterial exposure. J. Invertebr. Pathol. 2020, 174, 107422. [Google Scholar] [CrossRef] [PubMed]
- Bellinvia, S.; Spachtholz, A.; Borgwardt, I.; Schauer, B.; Otti, O. Female immunity in response to sexually transmitted opportunistic bacteria in the common bedbug Cimex lectularius. J. Insect Physiol. 2020, 123, 104048. [Google Scholar] [CrossRef]
- Kleino, A.; Silverman, N. The Drosophila IMD pathway in the activation of the humoral immune response. Dev. Comp. Immunol. 2014, 42, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daigneault, J.; Klemetsaune, L.; Wasserman, S.A. The IRAK Homolog Pelle Is the Functional Counterpart of IκB Kinase in the Drosophila Toll Pathway. PLoS ONE 2013, 8, e75150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Gregorio, E.; Spellman, P.T.; Tzou, P.; Rubin, G.M.; Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 2002, 21, 2568–2579. [Google Scholar] [CrossRef] [Green Version]
- Valanne, S.; Wang, J.-H.; Ramet, M. The Drosophila Toll Signaling Pathway. J. Immunol. 2011, 186, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Silverman, N.; Zhou, R.; Erlich, R.L.; Hunter, M.; Bernstein, E.; Schneider, D.; Maniatis, T. Immune Activation of NF-kappaB and JNK Requires Drosophila TAK. J. Biol. Chem. 2003, 278, 48928–48934. [Google Scholar] [CrossRef] [Green Version]
- Silverman, N.; Zhou, R.; Stöven, S.; Pandey, N.; Hultmark, D.; Maniatis, T. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 2000, 14, 2461–2471. [Google Scholar] [CrossRef] [Green Version]
- Benoit, J.B.; Adelman, Z.N.; Reinhardt, K.; Dolan, A.; Poelchau, M.; Jennings, E.C.; Szuter, E.M.; Hagan, R.W.; Gujar, H.; Shukla, J.N.; et al. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. Nat. Commun. 2016, 7, 10165. [Google Scholar] [CrossRef] [Green Version]
- Vieira, C.S.; Moreira, O.C.; Batista, K.K.S.; Ratcliffe, N.A.; Castro, D.P.; Azambuja, P. The NF-κB Inhibitor, IMD-0354, Affects Immune Gene Expression, Bacterial Microbiota and Trypanosoma cruzi Infection in Rhodnius prolixus Midgut. Front. Physiol. 2018, 9, 1189. [Google Scholar] [CrossRef] [PubMed]
- Haines, R.R.; Scharer, C.D.; Lobby, J.L.; Boss, J.M. LSD1 Cooperates with Noncanonical NF-κB Signaling to Regulate Marginal Zone B Cell Development. J. Immunol. 2019, 203, 1867–1881. [Google Scholar] [CrossRef] [PubMed]
- Harrold, A.P.; Cleary, M.M.; Bharathy, N.; Lathara, M.; Berlow, N.E.; Foreman, N.K.; Donson, A.M.; Amani, V.; Zuercher, W.J.; Keller, C. In vitro benchmarking of NF-κB inhibitors. Eur. J. Pharmacol. 2020, 873, 172981. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.R.; Pattoli, M.A.; Gregor, K.R.; Brassil, P.J.; MacMaster, J.F.; McIntyre, K.W.; Yang, X.; Iotzova, V.S.; Clarke, W.; Strnad, J.; et al. BMS-345541 Is a Highly Selective Inhibitor of IκB Kinase That Binds at an Allosteric Site of the Enzyme and Blocks NF-κB-dependent Transcription in Mice. J. Biol. Chem. 2003, 278, 1450–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totzke, J.; Gurbani, D.; Raphemot, R.; Hughes, P.F.; Bodoor, K.; Carlson, D.A.; Loiselle, D.R.; Bera, A.K.; Eibschutz, L.S.; Perkins, M.M.; et al. Takinib, a Selective TAK1 Inhibitor, Broadens the Therapeutic Efficacy of TNF-α Inhibition for Cancer and Autoimmune Disease. Cell Chem. Biol. 2017, 24, 1029–1039.e7. [Google Scholar] [CrossRef] [Green Version]
- Waelchli, R.; Bollbuck, B.; Bruns, C.; Buhl, T.; Eder, J.; Feifel, R.; Hersperger, R.; Janser, P.; Revesz, L.; Zerwes, H.G.; et al. Design and preparation of 2-benzamido-pyrimidines as inhibitors of IKK. Bioorganic Med. Chem. Lett. 2006, 16, 108–112. [Google Scholar] [CrossRef]
- Vodovar, N.; Vallenet, D.; Cruveiller, S.; Rouy, Z.; Barbe, V.; Acosta, C.; Cattolico, L.; Jubin, C.; Lajus, A.; Segurens, B.; et al. Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat. Biotechnol. 2006, 24, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Vodovar, N.; Vinals, M.; Liehl, P.; Basset, A.; Degrouard, J.; Spellman, P.; Boccard, F.; Lemaitre, B. Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc. Natl. Acad. Sci. USA 2005, 102, 11414–11419. [Google Scholar] [CrossRef] [Green Version]
- Cockburn, C.; Amoroso, M.; Carpenter, M.; Johnson, B.; McNeive, R.; Miller, A.; Nichols, A.E.; Riotto, A.; Rzepkowzski, A.; Croshaw, C.M.S.; et al. Gram-Positive Bacteria Isolated from the Common Bed Bug, Cimex lectularius L. Entomol. Am. 2013, 119, 23–29. [Google Scholar] [CrossRef]
- Duneau, D.; Ferdy, J.-B.; Revah, J.; Kondolf, H.; Ortiz, G.A.; Lazzaro, B.P.; Buchon, N. Stochastic variation in the initial phase of bacterial infection predicts the probability of survival in D. melanogaster. eLife 2017, 6, 28298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, D.S.; Ayres, J.S. Two ways to survive infection: What resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 2008, 8, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, A.W.; Lindsay, S.A.; Wasserman, A.A. An Effector Peptide Family Required for Drosophila Toll-Mediated Immunity. PLoS Pathog 2015, 11, e1004876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faucher, C.; Mazana, V.; Kardacz, M.; Parthuisot, N.; Ferdy, J.B.; Duneau, D. Step-Specific Adaptation and Trade-Off over the Course of an Infection by GASP Mutation Small Colony Variants. MBio 2021, 12, e01399-20. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Schal, C. Blood constituents as phagostimulants for the bed bug Cimex lectularius L. J. Exp. Biol. 2013, 217, 552–557. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietri, J.E.; Potts, R. Effects of NF-kB Signaling Inhibitors on Bed Bug Resistance to Orally Provisioned Entomopathogenic Bacteria. Insects 2021, 12, 303. https://doi.org/10.3390/insects12040303
Pietri JE, Potts R. Effects of NF-kB Signaling Inhibitors on Bed Bug Resistance to Orally Provisioned Entomopathogenic Bacteria. Insects. 2021; 12(4):303. https://doi.org/10.3390/insects12040303
Chicago/Turabian StylePietri, Jose E., and Rashaun Potts. 2021. "Effects of NF-kB Signaling Inhibitors on Bed Bug Resistance to Orally Provisioned Entomopathogenic Bacteria" Insects 12, no. 4: 303. https://doi.org/10.3390/insects12040303
APA StylePietri, J. E., & Potts, R. (2021). Effects of NF-kB Signaling Inhibitors on Bed Bug Resistance to Orally Provisioned Entomopathogenic Bacteria. Insects, 12(4), 303. https://doi.org/10.3390/insects12040303