Influence of Vineyard Inter-Row Groundcover Vegetation Management on Arthropod Assemblages in the Vineyards of North-Eastern Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Influence of Non-Mowed Spontaneous Vegetation on Arthropod Assemblages
2.1.1. Study Area
2.1.2. Experimental and Sampling Design
2.2. Influence of the Timing of Green Manure Mowing on Arthropod Assemblages
2.2.1. Study Area
2.2.2. Experimental and Sampling Design
- (1)
- “Standard green manure” (Stand-GM), where vegetation was mowed when most of plants of the mixture were flowering, as traditionally done by the growers.
- (2)
- “Green manure with a more prolonged flowering period” (Late-GM), where vegetation was mowed when all the plants of the mixture finished flowering.
- (3)
- “Control”, where inter-rows were mowed before plants started to blossom.
- (4)
- Each treatment was replicated in four plots of 486 m2 comprising nine 20 m long inter-rows. In treatments with green manure, a commercial seed mixture (Semfor s.r.l. San Pietro di Morubio, VR, Italy) was sown in three out of nine inter-rows. In the experimental vineyard, replicates were assigned to the three treatments following a completely randomized block design. The mixture was sown in October 2016 using a disc seed drill (dose 11 g/m2). The composition of the green manure mixture is reported below (Table 1).
2.3. Influence of Different Green Manure Mixtures on Arthropod Assemblages
2.3.1. Study Area
2.3.2. Experimental and Sampling Design
- (1)
- “MIX-1”: Avena sativa L. cv Prevision + commercial mixture composed by buckwheat (KF 83%, RH 99.5%) (30%), Pisum sativum L. cv Arkta (20%), Vicia sativa cv Marianna (20%), Lupinus augustifolium L. cv Tango (10%), Trifolium incarnatum L. cv Tardivo (10%), Trifolium alexandrinum L. cv Marmilla (8%) and Phacelia tanacetifolia cv Natra (2%);
- (2)
- “MIX-2”: Lolium multiflorum Lam. Cv Furore (35%), Avena sativa L. cv Teobd40 (15%), Hordeum vulgare L. cv Tazio (10%), Trifolium alexandrinum cv Erix (20%) and Vicia sativa cv Marianna (20%);
- (3)
- “MIX-3”: Rye (Secale cereale L. cv Dukato, 55%) and Vetch (Vicia villosa Roth cv Minnie, 45%);
- (4)
- “Control”, in which the inter-row groundcover was mowed before the blossom.
2.4. Sampling Methods
2.4.1. Leaf Sampling
2.4.2. Beating Net Sampling
2.4.3. Sweep Net Sampling
2.5. Statistical Analysis
3. Results
3.1. Influence of Non-Mowed Spontaneous Vegetation on Arthropod Assemblages
3.1.1. Leaf Sampling
3.1.2. Beating Net Sampling
3.1.3. Sweep Net Sampling
3.2. Influence of Different Timing of Green Manure Mowing
3.2.1. Leaf Sampling
3.2.2. Beating Net Sampling
3.2.3. Sweep Net Sampling
3.3. Influence of Different Green Manure Mixtures
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corbett, A.; Rosenheim, J.A. Impact of a natural enemy overwintering refuge and its interaction with the surrounding landscape. Ecol. Entomol. 1996, 21, 155–164. [Google Scholar] [CrossRef]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef]
- Van Emden, H.F. Conservation biological control: From theory to practice. In Proceedings of the 1st International Symposium on Biological Control of Arthropods, Honolulu, HI, USA, 14–18 January 2002; Van Driesche, R.G., Ed.; USDA Forest Service, Forest Health Technology Enterprise Team: Morgantown, WV, USA, 2003; pp. 14–18. [Google Scholar]
- Hardin, M.R.; Benrey, B.; Coll, M.; Lamp, W.O.; Roderick, G.K.; Barbosa, P. Arthropod pest resurgence: An overview of potential mechanisms. Crop Prot. 1995, 14, 3–18. [Google Scholar] [CrossRef]
- Johnson, M.W.; Tabashnik, B.E. Enhanced biological control through pesticide selectivity. In Handbook of Biological Control, 1st ed.; Fisher, T.W., Bellows, T.S., Caltagirone, L.E., Dahlsten, D.L., Huffaker, C.B., Gordh, G., Eds.; Academic Press: San Diego, CA, USA, 1999; pp. 297–317. [Google Scholar]
- Symondson, W.O.C.; Sunderland, K.D.; Greenstone, M.H. Can generalist predators be effective biocontrol agents? Annu. Rev. Entomol. 2002, 47, 561–594. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.H.; Thies, C.; Tscharntke, T. Landscape context of arthropod biological control. In Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods; Gurr, G.M., Wratten, S.D., Altieri, M.A., Eds.; CSIRO Publishing: Collingwood, Australia, 2004; pp. 55–63. [Google Scholar]
- Thorbek, P.; Bilde, T. Reduced numbers of generalist arthropod predators after crop management. J. Appl. Ecol. 2004, 41, 526–538. [Google Scholar] [CrossRef]
- Bianchi, F.J.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. Lond. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [Green Version]
- Tsitsilas, A.; Stuckey, S.; Hoffmann, A.A.; Weeks, A.R.; Thomson, L.J. Shelterbelts in agricultural landscapes suppress invertebrate pests. Aust. J. Exp. Agric. 2006, 46, 1379–1388. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Biodiversity and Pest Management in Agroecosystems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 1–252. [Google Scholar]
- Gurr, G.M.; Scarratt, S.L.; Wratten, S.D.; Berndt, L.; Irvin, N. Ecological engineering, habitat manipulation and pest management. In Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods; Gurr, G.M., Wratten, S.D., Altieri, M.A., Eds.; CSIRO Publishing: Collingwood, Australia, 2004; pp. 1–12. [Google Scholar]
- Begum, M.; Gurr, G.M.; Wratten, S.D.; Nicol, H.I. Flower color affects tri-trophic-level biocontrol interactions. Biol. Control 2004, 30, 584–590. [Google Scholar] [CrossRef]
- Altieri, M.A.; Ponti, L.; Nicholls, C.I. Manipulating vineyard biodiversity for improved insect pest management: Case studies from northern California. Int. J. Biodiv. Sci. Manag. 2005, 1, 191–203. [Google Scholar] [CrossRef]
- Flaherty, D.L. Ecosystem trophic complexity and densities of the Willamette mite, Eotetranychus willamettei Ewing (Acarina: Tetranychidae). Ecology 1969, 50, 911–916. [Google Scholar] [CrossRef]
- Irvin, N.A.; Hoddle, M.S. The effect of buckwheat flowers and cahaba vetch on fitness of the vine mealybug parasitoid Anagyrus pseudococci (Hymenoptera: Encyrtidae). Fla. Entomol. 2015, 237–242. [Google Scholar] [CrossRef]
- Duso, C.; Malagnini, V.; Paganelli, A.; Aldegheri, L.; Bottini, M. Pollen availability and phytoseiid abundance (Acari: Phytoseiidae) on natural and secondary hedgerows. BioControl 2004, 49, 397–415. [Google Scholar] [CrossRef]
- Duso, C.; Pozzebon, A.; Kreiter, S.; Tixier, M.S.; Candolfi, M.P. Management of phytophagous mites in European vineyards. In Arthropod Management in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Vincent, C., Isaacs, R., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 191–217. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I.; Wilson, H.; Miles, A. Habitat Management in Vineyards. A Growers Manual for Enhancing Natural Enemies; College of Natural Resources, Laboratory of Agroecology, University of California: Berkeley, CA, USA, 2010; pp. 1–21. [Google Scholar]
- Wäckers, F.L. Assessing the suitability of flowering herbs as parasitoid food sources: Flower attractiveness and nectar accessibility. Biol. Control 2004, 29, 307–314. [Google Scholar] [CrossRef]
- Schvester, D.; Carle, P.; Moutous, G. Transmission de la flavescence dorée de la vigne par Scaphoideus littoralis Ball. Ann. Epiphyt. 1963, 14, 175–198. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 1 January 2013).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models; R Package Version 3.1-120; 2015; Available online: https://cran.r-project.org/web/packages/nlme/citation.html (accessed on 5 February 2020).
- McMurtry, J.A.; Croft, B.A. Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 1997, 42, 291–321. [Google Scholar] [CrossRef]
- Altieri, M.A.; Whitcomb, W.H. Weed manipulation for insect pest management in corn. Environ. Manag. 1980, 4, 483–489. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Parrella, M.P.; Altieri, M.A. Reducing the abundance of leafhoppers and thrips in a northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agric. For. Entomol. 2000, 2, 107–113. [Google Scholar] [CrossRef]
- Daane, K.M.; Hogg, B.N.; Wilson, H.; Yokota, G.Y. Native grass ground covers provide multiple ecosystem services in Californian vineyards. J. Appl. Ecol. 2018, 55, 2473–2483. [Google Scholar] [CrossRef] [Green Version]
- Trivellone, V.; Jermini, M.; Linder, C.; Cara, C.; Delabays, N.; Baumgartner, J. Rôle de la flore du vignoble sur la distribution de Scaphoideus titanus. Rev. Suisse Vitic. Arboric. Hortic. 2013, 45, 222–228. [Google Scholar]
- Mori, N.; Tonello, D.; Posenato, G.; Pozzebon, A.; Duso, C. Efficacy of biopesticides against Scaphoides titanus Ball in different experimental conditions. IOBC/WPRS Bull. 2014, 105, 45–48. [Google Scholar]
- Tacoli, F.; Mori, N.; Pozzebon, A.; Cargnus, E.; Da Vià, S.; Zandigiacomo, P.; Duso, C.; Pavan, F. Control of Scaphoideus titanus with natural products in organic vineyards. Insects 2017, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merot, A.; Ugaglia, A.A.; Barbier, J.M.; Del’homme, B. Diversity of conversion strategies for organic vineyards. Agron. Sustain. Dev. 2019, 39, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Farm to Fork Strategy. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM/2020/381 Final. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_actionplan_2020_strategy-info_en.pdf (accessed on 20 October 2020).
- Caprio, E.; Nervo, B.; Isaia, M.; Allegro, G.; Rolando, A. Organic versus conventional systems in viticulture: Comparative effects on spiders and carabids in vineyards and adjacent forests. Agric. Syst. 2015, 136, 61–69. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Burgio, G.; Marchesini, E.; Reggiani, N.; Montepaone, G.; Schiatti, P.; Sommaggio, D. Habitat management of organic vineyard in Northern Italy: The role of cover plants management on arthropod functional biodiversity. Bull. Entomol. Res. 2016, 106, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Thomson, L.J.; Hoffmann, A.A. Effects of ground cover (straw and compost) on the abundance of natural enemies and soil macro invertebrates in vineyards. Agric. For. Entomol. 2007, 9, 173–179. [Google Scholar] [CrossRef]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Raynor, G.S.; Hayes, J.V.; Ogden, E.C. Mesoscale transport and dispersion of airborne pollens. J. Appl. Meteorol. 1974, 13, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Tixier, M.S.; Kreiter, S.; Auger, P.; Weber, M. Colonization of Languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): Influence of wind and crop environment. Exp. Appl. Acarol. 1998, 22, 523–542. [Google Scholar] [CrossRef]
- Decante, D.; Van Helden, M. Spatial and temporal distribution of Empoasca vitis within a vineyard. Agric. For. Entomol. 2008, 10, 111–118. [Google Scholar] [CrossRef]
- Malavolta, C.; Duso, C. IOBC/WPRS Crop Specific Technical Guidelines for Integrated Production of Grapes, 5th ed.; International Organisation for Biological and Integrated Control (IOBC)/West Palearctic Regional Section (WPRS): Zürich, Switzerland, 2020. [Google Scholar]
- Perrin, R.M. The role of the perennial stinging nettle, Urtica dioica, as a reservoir of beneficial natural enemies. Ann. Appl. Biol. 1975, 81, 289–297. [Google Scholar] [CrossRef]
- Van den Bosch, R.; Telford, A.D. Environmental modification and biological control. In Biological Control of Insect Pests and Weeds; DeBach, P., Ed.; Reinhold Publ. Co.: New York, NY, USA, 1964; pp. 459–488. [Google Scholar]
- Mori, N.; Pozzebon, A.; Duso, C.; Reggiani, N.; Pavan, F. Vineyard colonization by Hyalesthes obsoletus (Hemiptera: Cixiidae) induced by stinging nettle cut along surrounding ditches. J. Econ. Entomol. 2015, 109, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Longa, C.M.; Nicola, L.; Antonielli, L.; Mescalchin, E.; Zanzotti, R.; Turco, E.; Pertot, I. Soil microbiota respond to green manure in organic vineyards. J. Appl. Microbiol. 2017, 123, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.; Daane, K.M. Review of ecologically-based pest management in California vineyards. Insects 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Common Name | Scientific Name | Cultivar | Pure Seed (%) |
---|---|---|---|
Rye | Secale cereale L. | Conduct | 15 |
Triticale | hybrid of wheat (Triticum) and rye (Secale) | Oxygen | 20 |
Oats | Avena sativa L. | Novella Antonia | 15 |
Vetch | Vicia sativa L. | Mikaela | 13 |
Flax | Linum usitatissimum L. | Sideral | 3 |
White mustard | Sinapis alba L. | Abraham | 3 |
Horseradish | Brassica rapa subsp. campestris L. | Carwoodi | 4 |
Kale | Brassica oleracea L. | Malwira | 4 |
Rape | Brassica napus L. | Bonar | 3 |
Blue tansy | Phacelia tanacetifolia Benth. | Stala | 5 |
2016 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Factor or Interaction | d.f. | F | P | d.f. | F | P | |||
Predatory mites (Acari: Phytoseiidae) | grass mowing | 1; 10 | 6.863 | 0.026 | * | 1; 10 | 5.359 | 0.043 | * |
management | 1; 2 | 0.670 | 0.499 | 1; 2 | 0.000 | 0.987 | |||
time | 2; 21 | 5.461 | 0.012 | * | 1; 8 | 6.850 | 0.031 | * | |
grass mowing:management | 1; 10 | 0.857 | 0.376 | 1; 10 | 0.849 | 0.378 | |||
grass mowing:time | 2; 21 | 0.766 | 0.477 | 1; 8 | 2.181 | 0.178 | |||
management:time | 2; 21 | 2.923 | 0.076 | 1; 8 | 0.462 | 0.516 | |||
grass mowing:management:time | 2; 21 | 1.386 | 0.272 | 1; 8 | 0.532 | 0.487 | |||
Non-specialized mites (Acari: Tydeidae) | grass mowing | 1; 10 | 0.431 | 0.526 | 1; 10 | 0.616 | 0.451 | ||
management | 1; 2 | 0.099 | 0.783 | 1; 2 | 0.102 | 0.780 | |||
time | 2; 21 | 0.451 | 0.643 | 1; 8 | 3.152 | 0.114 | |||
grass mowing:management | 1; 10 | 1.178 | 0.303 | 1; 10 | 0.010 | 0.924 | |||
grass mowing:time | 2; 21 | 1.317 | 0.289 | 1; 8 | 1.679 | 0.231 | |||
management:time | 2; 21 | 3.612 | 0.045 | * | 1; 8 | 0.115 | 0.743 | ||
grass mowing:management:time | 2; 21 | 0.568 | 0.575 | 1; 8 | 0.431 | 0.530 | |||
Eggs of lacewings (Neuroptera: Chrysopidae) | grass mowing | 1; 10 | 0.296 | 0.598 | 1; 10 | 0.928 | 0.358 | ||
management | 1; 2 | 10.285 | 0.085 | 1; 2 | 1.141 | 0.397 | |||
time | 2; 21 | 1.450 | 0.257 | 1; 8 | 1.313 | 0.285 | |||
grass mowing:management | 1; 10 | 0.505 | 0.494 | 1; 10 | 0.036 | 0.853 | |||
grass mowing:time | 2; 21 | 0.451 | 0.643 | 1; 8 | 0.001 | 0.997 | |||
management:time | 2; 21 | 0.307 | 0.739 | 1; 8 | 0.001 | 0.979 | |||
grass mowing:management:time | 2; 21 | 0.284 | 0.755 | 1; 8 | 0.001 | 0.999 |
2016 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Factor or Interaction | d.f. | F | P | d.f. | F | P | |||
Empoasca vitis (Hemiptera: Cicadellidae) | grass mowing | 1; 10 | 0.080 | 0.783 | 1; 10 | 1.135 | 0.312 | ||
management | 1; 2 | 12.226 | 0.073 | 1; 2 | 0.140 | 0.744 | |||
time | 2; 21 | 4.617 | 0.022 | * | 1; 8 | 6.031 | 0.040 | * | |
grass mowing:management | 1; 10 | 0.009 | 0.928 | 1; 10 | 0.870 | 0.373 | |||
grass mowing:time | 2; 21 | 0.042 | 0.959 | 1; 8 | 0.373 | 0.558 | |||
management:time | 2; 21 | 5.129 | 0.015 | * | 1; 8 | 4.519 | 0.066 | ||
grass mowing:management:time | 2; 21 | 0.035 | 0.966 | 1; 8 | 0.243 | 0.635 | |||
Parasitism rate of leafhopper eggs | grass mowing | 1; 10 | 0.014 | 0.907 | 1; 10 | 0.600 | 0.457 | ||
management | 1; 2 | 0.154 | 0.733 | 1; 2 | 0.491 | 0.556 | |||
time | 2; 18 | 3.116 | 0.069 | 1; 7 | 2.294 | 0.174 | |||
grass mowing:management | 1; 10 | 0.175 | 0.685 | 1; 10 | 1.395 | 0.265 | |||
grass mowing:time | 2; 18 | 0.052 | 0.950 | 1; 7 | 0.258 | 0.627 | |||
management:time | 2; 18 | 0.806 | 0.462 | 1; 7 | 1.737 | 0.229 | |||
grass mowing:management:time | 2; 18 | 0.479 | 0.627 | 1; 7 | 2.806 | 0.138 | |||
Zygina rhamni (Hemiptera: Cicadellidae) | grass mowing | 1; 10 | 5.933 | 0.035 | * | 1; 10 | 1.487 | 0.251 | |
management | 1; 2 | 9.204 | 0.094 | 1; 2 | 1.023 | 0.418 | |||
time | 2; 21 | 2.429 | 0.113 | 1; 8 | 0.217 | 0.654 | |||
grass mowing:management | 1; 10 | 6.223 | 0.032 | * | 1; 10 | 0.084 | 0.778 | ||
grass mowing:time | 2; 21 | 1.048 | 0.368 | 1; 8 | 2.676 | 0.141 | |||
management:time | 2; 21 | 2.645 | 0.095 | 1; 8 | 0.360 | 0.565 | |||
grass mowing:management:time | 2; 21 | 1.005 | 0.383 | 1; 8 | 0.104 | 0.756 |
2016 | 2017 | |||||||
---|---|---|---|---|---|---|---|---|
Factor or Interaction | d.f. | F | P | d.f. | F | P | ||
Red velvet mites (Acari: Trombidiidae) | grass mowing | 1; 10 | 6.705 | 0.027 | * | |||
management | 1; 20 | 0.035 | 0.869 | |||||
time | 2; 21 | 5.046 | 0.016 | * | ||||
grass mowing:management | 1; 10 | 0.400 | 0.541 | |||||
grass mowing:time | 2; 21 | 0.053 | 0.948 | |||||
management:time | 2; 21 | 0.213 | 0.810 | |||||
grass mowing:management:time | 2; 21 | 0.180 | 0.837 | |||||
Earwigs (Dermaptera) | grass mowing | 1; 10 | 2.728 | 0.130 | 1; 9 | 0.002 | 0.961 | |
management | 1; 20 | 12.879 | 0.070 | 1; 2 | 0.119 | 0.763 | ||
time | 2; 21 | 9.704 | 0.001 | *** | 1; 8 | 0.011 | 0.918 | |
grass mowing:management | 1; 10 | 2.279 | 0.162 | 1; 9 | 0.002 | 0.967 | ||
grass mowing:time | 2; 21 | 3.521 | 0.048 | * | 1; 8 | 0.961 | 0.356 | |
management:time | 2; 21 | 9.943 | 0.001 | *** | 1; 8 | 0.017 | 0.899 | |
grass mowing:management:time | 2; 21 | 3.243 | 0.059 | 1; 8 | 1.549 | 0.249 | ||
Stink bugs (Hemiptera: Pentatomidae) | grass mowing | 1; 10 | 1.022 | 0.336 | 1; 9 | 0.072 | 0.794 | |
management | 1; 20 | 0.979 | 0.427 | 1; 2 | 0.006 | 0.944 | ||
time | 2; 21 | 0.941 | 0.406 | 1; 8 | 0.161 | 0.699 | ||
grass mowing:management | 1; 10 | 0.935 | 0.356 | 1; 9 | 0.103 | 0.756 | ||
grass mowing:time | 2; 21 | 0.852 | 0.441 | 1; 8 | 4.452 | 0.068 | ||
management:time | 2; 21 | 0.902 | 0.421 | 1; 8 | 0.302 | 0.598 | ||
grass mowing:management:time | 2; 21 | 0.848 | 0.443 | 1; 8 | 0.091 | 0.771 |
2016 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Factor or Interaction | d.f. | F | P | d.f. | F | P | |||
Leafhoppers not associated with grapevine (Hemiptera: Cicadellidae) | grass mowing | 1; 10 | 0.288 | 0.603 | 1; 9 | 1.450 | 0.259 | ||
management | 1; 2 | 0.275 | 0.652 | 1; 2 | 0.879 | 0.447 | |||
time | 2; 21 | 1.165 | 0.331 | 1; 8 | 1.356 | 0.278 | |||
grass mowing:management | 1; 10 | 1.211 | 0.297 | 1; 9 | 0.549 | 0.478 | |||
grass mowing:time | 2; 21 | 3.788 | 0.039 | * | 1; 8 | 0.153 | 0.706 | ||
management:time | 2; 21 | 5.569 | 0.012 | * | 1; 8 | 0.017 | 0.900 | ||
grass mowing:management:time | 2; 21 | 1.204 | 0.320 | 1; 8 | 2.332 | 0.165 | |||
Larvae of lacewings (Neuroptera: Chrysopidae) | grass mowing | 1; 10 | 0.082 | 0.781 | 1; 9 | 0.438 | 0.525 | ||
management | 1; 2 | 0.743 | 0.479 | 1; 2 | 0.057 | 0.833 | |||
time | 2; 21 | 3.934 | 0.035 | * | 1; 8 | 3.944 | 0.082 | ||
grass mowing:management | 1; 10 | 0.052 | 0.824 | 1; 9 | 0.549 | 0.478 | |||
grass mowing:time | 2; 21 | 0.599 | 0.558 | 1; 8 | 0.609 | 0.458 | |||
management:time | 2; 21 | 4.167 | 0.030 | * | 1; 8 | 0.001 | 0.981 | ||
grass mowing:management:time | 2; 21 | 0.630 | 0.543 | 1; 8 | 0.964 | 0.355 | |||
Spiders (Araneae) | grass mowing | 1; 10 | 0.236 | 0.638 | 1; 9 | 1.246 | 0.293 | ||
management | 1; 2 | 22.547 | 0.042 | * | 1; 2 | 12.007 | 0.074 | ||
time | 2; 21 | 0.910 | 0.418 | 1; 8 | 0.027 | 0.874 | |||
grass mowing:management | 1; 10 | 2.825 | 0.124 | 1; 9 | 1.436 | 0.261 | |||
grass mowing:time | 2; 21 | 3.564 | 0.047 | * | 1; 8 | 0.349 | 0.571 | ||
management:time | 2; 21 | 5.822 | 0.010 | ** | 1; 8 | 6.341 | 0.036 | * | |
grass mowing:management:time | 2; 21 | 0.862 | 0.437 | 1; 8 | 0.253 | 0.628 |
2016 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Factor or Interaction | d.f. | F | P | d.f. | F | P | |||
Leafhoppers not associated with grapevines (Hemiptera: Cicadellidae) | grass mowing | 1; 10 | 0.075 | 0.790 | 1; 10 | 0.065 | 0.805 | ||
management | 1; 2 | 5.583 | 0.142 | 1; 2 | 0.161 | 0.727 | |||
time | 2; 23 | 5.432 | 0.012 | * | 1; 8 | 13.109 | 0.007 | ** | |
grass mowing:management | 1; 10 | 1.151 | 0.309 | 1; 10 | 5.776 | 0.037 | * | ||
grass mowing:time | 2; 23 | 0.780 | 0.470 | 1; 8 | 0.739 | 0.415 | |||
management:time | 2; 23 | 1.367 | 0.275 | 1; 8 | 6.598 | 0.033 | * | ||
grass mowing:management:time | 2; 23 | 0.386 | 0.684 | 1; 8 | 0.092 | 0.770 | |||
Scaphoideus titanus (Hemiptera: Cicadellidae) | grass mowing | 1; 10 | 7.321 | 0.022 | * | ||||
management | 1; 2 | 7.647 | 0.110 | ||||||
time | 2; 23 | 3.918 | 0.034 | * | |||||
grass mowing:management | 1; 10 | 6.963 | 0.025 | * | |||||
grass mowing:time | 2; 23 | 3.564 | 0.045 | * | |||||
management:time | 2; 23 | 3.752 | 0.039 | * | |||||
grass mowing:management:time | 2; 23 | 3.555 | 0.045 | * | |||||
Nabids (Hemiptera: Nabidae) | grass mowing | 1; 10 | 0.072 | 0.794 | 1; 10 | 0.312 | 0.589 | ||
management | 1; 2 | 13.722 | 0.066 | 1; 2 | 0.188 | 0.707 | |||
time | 2; 23 | 3.459 | 0.049 | * | 1; 8 | 3.488 | 0.099 | ||
grass mowing:management | 1; 10 | 0.012 | 0.916 | 1; 10 | 0.024 | 0.880 | |||
grass mowing:time | 2; 23 | 2.916 | 0.074 | 1; 8 | 0.286 | 0.608 | |||
management:time | 2; 23 | 1.893 | 0.173 | 1; 8 | 2.681 | 0.140 | |||
grass mowing:management:time | 2; 23 | 0.753 | 0.482 | 1; 8 | 0.038 | 0.851 | |||
Assassin bugs (Hemiptera: Reduviidae) | grass mowing | 1; 10 | 17.275 | 0.002 | ** | 1; 10 | 8.398 | 0.016 | * |
management | 1; 2 | 6.558 | 0.125 | 1; 2 | 1.158 | 0.394 | |||
time | 2; 23 | 1.144 | 0.336 | 1; 8 | 1.621 | 0.239 | |||
grass mowing:management | 1; 10 | 10.909 | 0.008 | ** | 1; 10 | 1.158 | 0.307 | ||
grass mowing:time | 2; 23 | 0.151 | 0.860 | 1; 8 | 1.621 | 0.239 | |||
management:time | 2; 23 | 0.165 | 0.849 | 1; 8 | 0.003 | 0.961 | |||
grass mowing:management:time | 2; 23 | 0.378 | 0.689 | 1; 8 | 0.003 | 0.961 |
2016 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Factor or Interaction | d.f. | F | P | d.f. | F | P | |||
Lacewing larvae (Neuroptera: Chrysopidae) | grass mowing | 1; 10 | 0.730 | 0.413 | 1; 10 | 2.093 | 0.179 | ||
management | 1; 2 | 0.004 | 0.957 | 1; 2 | 0.770 | 0.473 | |||
time | 2; 23 | 14.774 | <0.001 | *** | 1; 8 | 0.000 | 1.000 | ||
grass mowing:management | 1; 10 | 0.484 | 0.503 | 1; 10 | 1.570 | 0.239 | |||
grass mowing:time | 2; 23 | 0.520 | 0.601 | 1; 8 | 0.000 | 1.000 | |||
management:time | 2; 23 | 0.036 | 0.965 | 1; 8 | 0.000 | 1.000 | |||
grass mowing:management:time | 2; 23 | 0.562 | 0.578 | 1; 8 | 0.000 | 1.000 | |||
Parasitic wasps (Hymenoptera Apocrita Terebrantia) | grass mowing | 1; 10 | 4.023 | 0.073 | 1; 10 | 7.500 | 0.021 | * | |
management | 1; 2 | 4.205 | 0.177 | 1; 2 | 7.322 | 0.114 | |||
time | 2; 23 | 2.190 | 0.135 | 1; 8 | 0.428 | 0.531 | |||
grass mowing:management | 1; 10 | 2.367 | 0.155 | 1; 10 | 0.010 | 0.923 | |||
grass mowing:time | 2; 23 | 3.421 | 0.050 | * | 1; 8 | 5.169 | 0.053 | . | |
management:time | 2; 23 | 2.931 | 0.074 | 1; 8 | 2.531 | 0.150 | |||
grass mowing:management:time | 2; 23 | 0.594 | 0.560 | 1; 8 | 0.863 | 0.380 | |||
Spiders (Araneae) | grass mowing | 1; 10 | 11.773 | 0.006 | ** | 1; 10 | 11.802 | 0.006 | ** |
time | 2; 23 | 1.917 | 0.170 | 1; 2 | 2.189 | 0.277 | |||
management | 1; 2 | 1.525 | 0.342 | 1; 8 | 0.004 | 0.950 | |||
grass mowing:time | 2; 23 | 4.860 | 0.017 | * | 1; 10 | 0.152 | 0.705 | ||
grass mowing:management | 1; 10 | 1.425 | 0.260 | 1; 8 | 0.805 | 0.396 | |||
time:management | 2; 23 | 0.086 | 0.918 | 1; 8 | 0.776 | 0.404 | |||
grass mowing:time:management | 2; 23 | 0.883 | 0.427 | 1; 8 | 1.660 | 0.234 |
Factor or Interaction | d.f. | F | P | ||
---|---|---|---|---|---|
Predatory mites (Acari: Phytoseiidae) | treatment | 2; 9 | 1.222 | 0.339 | |
time | 2; 18 | 3.602 | 0.048 | * | |
treatment:time | 4; 18 | 1.517 | 0.239 | ||
Eggs of predatory mites (Acari: Phytoseiidae) | treatment | 2; 9 | 4.554 | 0.043 | * |
time | 2; 18 | 0.380 | 0.689 | ||
treatment:time | 4; 18 | 0.050 | 0.995 | ||
Panonychus ulmi (Acari: Tetranychidae) | treatment | 2; 9 | 3.594 | 0.071 | |
time | 2; 18 | 6.505 | 0.008 | ** | |
treatment:time | 4; 18 | 4.010 | 0.017 | * | |
Eggs of Panonychus ulmi (Acari: Tetranychidae) | treatment | 2; 9 | 6.572 | 0.017 | * |
time | 2; 18 | 7.044 | 0.006 | ** | |
treatment:time | 4; 18 | 6.573 | 0.002 | ** | |
Empoasca vitis (Hemiptera: Cicadellidae) | treatment | 2; 9 | 0.951 | 0.422 | |
time | 2; 18 | 49.937 | <0.0001 | *** | |
treatment:time | 4; 18 | 0.908 | 0.480 | ||
Zygina rhamni (Hemiptera: Cicadellidae) | treatment | 2; 9 | 0.049 | 0.952 | |
time | 2; 18 | 6.203 | 0.009 | ** | |
treatment:time | 4; 18 | 0.885 | 0.493 | ||
Lacewing eggs (Neuroptera: Chrysopidae) | treatment | 2; 9 | 1.619 | 0.251 | |
time | 2; 18 | 0.670 | 0.524 | ||
treatment:time | 4; 18 | 0.569 | 0.689 | ||
Parthenolecanium corni (Hemiptera: Coccidae) | treatment | 2; 9 | 0.545 | 0.598 | |
time | 2; 18 | 28.253 | <0.0001 | *** | |
treatment:time | 4; 18 | 0.915 | 0.476 |
Factor or Interaction | d.f. | F | P | ||
---|---|---|---|---|---|
Leafhoppers not associated with grapevines (Hemiptera: Cicadellidae) | treatment | 2; 9 | 1.789 | 0.222 | |
time | 2; 18 | 1.789 | 0.196 | ||
treatment:time | 4; 18 | 0.963 | 0.452 | ||
Stink bugs (Hemiptera: Pentatomidae) | treatment | 2; 9 | 1.356 | 0.306 | |
time | 2; 18 | 1.656 | 0.219 | ||
treatment:time | 4; 18 | 0.436 | 0.781 | ||
Red velvet mites (Acari: Trombidiidae) | treatment | 2; 9 | 2.509 | 0.136 | |
time | 2; 18 | 5.856 | 0.011 | * | |
treatment:time | 4; 18 | 1.971 | 0.142 | ||
Ladybirds (Coleoptera: Coccinellidae) | treatment | 2; 9 | 1.000 | 0.405 | |
time | 2; 18 | 1.000 | 0.387 | ||
treatment:time | 4; 18 | 1.000 | 0.433 | ||
Spiders (Araneae) | treatment | 2; 9 | 0.694 | 0.525 | |
time | 2; 18 | 12.828 | 0.0003 | *** | |
treatment:time | 4; 18 | 3.436 | 0.030 | * |
Factor or Interaction | d.f. | F | P | ||
---|---|---|---|---|---|
Leafhoppers not associated with grapevines (Hemiptera: Cicadellidae) | treatment | 2; 9 | 3.839 | 0.062 | |
time | 2; 17 | 32.199 | <0.0001 | *** | |
treatment:time | 4; 17 | 1.126 | 0.377 | ||
Parasitic wasps (Hymenoptera Apocrita Terebrantia) | treatment | 2; 9 | 14.011 | 0.002 | ** |
time | 2; 17 | 12.532 | 0.001 | *** | |
treatment:time | 4; 17 | 2.626 | 0.071 | ||
Ladybirds (Coleoptera: Coccinellidae) | treatment | 2; 9 | 2.583 | 0.130 | |
time | 2; 17 | 2.663 | 0.099 | ||
treatment:time | 4; 17 | 2.599 | 0.073 | ||
Nabids (Hemiptera: Nabidae) | treatment | 2; 9 | 0.424 | 0.667 | |
time | 2; 17 | 1.537 | 0.243 | ||
treatment:time | 4; 17 | 1.878 | 0.161 | ||
Spiders (Araneae) | treatment | 2; 9 | 12.828 | 0.002 | ** |
time | 2; 17 | 1.697 | 0.213 | ||
treatment:time | 4; 17 | 4.139 | 0.016 | * |
Factor or Interaction | d.f. | F | P | ||
---|---|---|---|---|---|
Panonychus ulmi (Acari: Tetranychidae) | treatment | 3; 11 | 0.809 | 0.515 | |
time | 2; 21 | 0.126 | 0.883 | ||
treatment:time | 6; 21 | 0.414 | 0.861 | ||
Phytoseius finitimus (Acari: Phytoseiidae) | treatment | 3; 11 | 0.536 | 0.667 | |
time | 2; 21 | 6.232 | 0.008 | ** | |
treatment:time | 6; 21 | 1.494 | 0.228 | ||
Empoasca vitis (Hemiptera: Cicadellidae) | treatment | 3; 11 | 0.413 | 0.747 | |
time | 2; 21 | 11.697 | 0.001 | *** | |
treatment:time | 6; 21 | 1.015 | 0.442 | ||
Zygina rhamni (Hemiptera: Cicadellidae) | treatment | 3; 12 | 0.497 | 0.691 | |
time | 2; 23 | 9.558 | 0.001 | *** | |
treatment:time | 6; 23 | 0.930 | 0.492 | ||
Erasmoneura vulnerata (Hemiptera: Cicadellidae) | treatment | 3; 11 | 1.238 | 0.343 | |
time | 2; 21 | 3.157 | 0.063 | ||
treatment:time | 6; 21 | 0.805 | 0.578 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanettin, G.; Bullo, A.; Pozzebon, A.; Burgio, G.; Duso, C. Influence of Vineyard Inter-Row Groundcover Vegetation Management on Arthropod Assemblages in the Vineyards of North-Eastern Italy. Insects 2021, 12, 349. https://doi.org/10.3390/insects12040349
Zanettin G, Bullo A, Pozzebon A, Burgio G, Duso C. Influence of Vineyard Inter-Row Groundcover Vegetation Management on Arthropod Assemblages in the Vineyards of North-Eastern Italy. Insects. 2021; 12(4):349. https://doi.org/10.3390/insects12040349
Chicago/Turabian StyleZanettin, Giulia, Angela Bullo, Alberto Pozzebon, Giovanni Burgio, and Carlo Duso. 2021. "Influence of Vineyard Inter-Row Groundcover Vegetation Management on Arthropod Assemblages in the Vineyards of North-Eastern Italy" Insects 12, no. 4: 349. https://doi.org/10.3390/insects12040349
APA StyleZanettin, G., Bullo, A., Pozzebon, A., Burgio, G., & Duso, C. (2021). Influence of Vineyard Inter-Row Groundcover Vegetation Management on Arthropod Assemblages in the Vineyards of North-Eastern Italy. Insects, 12(4), 349. https://doi.org/10.3390/insects12040349