Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chromosome Preparations and DAPI Staining
2.2. Extraction of Genomic DNA, Isolation of Repetitive DNA and Computer Analysis
2.3. Dot-Blot Hybridization and Fluorescence In Situ Hybridization.
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bologna, M.A.; Oliverio, M.; Pitzalis, M.; Mariottini, P. Phylogeny and evolutionary history of the blister beetles (Coleoptera, Meloidae). Mol. Phylogenet. Evol. 2008, 48, 679–693. [Google Scholar] [CrossRef]
- Eisner, T.; Smedley, S.R.; Young, D.K.; Eisner, M.; Roach, B.; Meinwald, J. Chemical basis of courtship in a beetle (Neopyrochroa flabellata): Cantharidin as “nuptial gift”. Proc. Natl. Acad. Sci. USA 1996, 93, 6499–6503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, D.J.; Farrell, S.E.; Harrigan, R.A.; Henretig, F.M.; Gealt, L. Poisoning from “Spanish fly” (cantharidin). Am. J. Emerg. Med. 1996, 14, 478–483. [Google Scholar] [CrossRef]
- Moed, L.; Shwayder, T.A.; Chang, M.D. Cantharidin revisited: A blistering defense of an ancient medicine. Arch. Dermatol. 2001, 137, 1357–1360. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.S. Medical uses of mylabris in ancient China and recent studies. J. Ethnopharmacol. 1989, 26, 147–162. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Xu, L.; Dai, E.; Chen, W. Cantharidin suppresses cell growth and migration, and activates autophagy in human non-small cell lung cancer cells. Oncol. Lett. 2018, 15, 6527–6532. [Google Scholar] [CrossRef] [Green Version]
- Naz, F.; Wu, Y.; Zhang, N.; Yang, Z.; Yu, C. Anticancer attributes of cantharidin: Involved molecular mechanisms and pathways. Molecules 2020, 25, 3279. [Google Scholar] [CrossRef]
- Wu, Y.M.; Li, J.; Chen, X.S. Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus. Gigascience 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Blackmon, H.; Demuth, J.P. Coleoptera Karyotype Database. Coleopt. Bull. 2015, 69, 174–175. [Google Scholar] [CrossRef]
- Kaur, P.; Yadav, A.S. Cytogenetic characterization of Mylabris pustulata (Coleoptera: Meloidae). Int. J. Entomol. Res. 2017, 2, 64–69. [Google Scholar]
- Mravinac, B.; Meštrović, N.; Čavrak, V.V.; Plohl, M. TCAGG, an alternative telomeric sequence in insects. Chromosoma 2011, 120, 367–376. [Google Scholar] [CrossRef]
- De Almeida, M.C.; Zacaro, A.A.; Cella, D.M. Cytogenetic analysis of Epicauta atomaria (Meloidae) and Palembus dermestoides (Tenebrionidae) with Xyp sex determination system using standard staining, C-bands, NOR and synaptonemal complex microspreading techniques. Hereditas 2000, 133, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Palomeque, T.; Lorite, P. Satellite DNA in insects: A review. Heredity 2008, 100, 564–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, P.; Vela, J.; Ruiz-Ruano, F.J.; Ruiz-Mena, A.; Montiel, E.E.; Palomeque, T.; Lorite, P. Satellitome analysis in the ladybird beetle Hippodamia variegata (Coleoptera, Coccinellidae). Genes 2020, 11, 783. [Google Scholar] [CrossRef]
- Garrido-Ramos, M.A. Satellite DNA: An evolving topic. Genes 2017, 8, 230. [Google Scholar] [CrossRef] [PubMed]
- Louzada, S.; Lopes, M.; Ferreira, D.; Adega, F.; Escudeiro, A.; Gama-Carvalho, M.; Chaves, R. Decoding the role of satellite DNA in genome architecture and plasticity—An evolutionary and clinical affair. Genes 2020, 11, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugarković, D.; Plohl, M. Variation in satellite DNA profiles—Causes and effects. EMBO J. 2002, 21, 5955–5959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorite, P.; Muñoz-López, M.; Carrillo, J.; Sanllorente, O.; Vela, J.; Mora, P.; Tinaut, A.; Torres, M.I.; Palomeque, T. Concerted evolution, a slow process for ant satellite DNA: Study of the satellite DNA in the Aphaenogaster genus (Hymenoptera, Formicidae). Org. Divers. Evol. 2017, 17, 595–606. [Google Scholar] [CrossRef]
- Palacios-Gimenez, O.M.; Milani, D.; Song, H.; Marti, D.A.; López-León, M.D.; Ruiz-Ruano, F.J.; Camacho, J.P.M.; Cabral-de-Mello, D.C. Eight million years of satellite DNA evolution in grasshoppers of the genus Schistocerca illuminate the ins and outs of the library hypothesis. Genome Biol. Evol. 2020, 12, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Dutrillaux, A.M.; Carton, B.; Cacheux, L.; Dutrillaux, B. Interstitial NORs, fragile sites, and chromosome evolution: A not so simple relationship—The example of Melolontha melolontha and genus Protaetia (Coleoptera: Scarabaeidae). Cytogenet. Genome Res. 2016, 149, 304–311. [Google Scholar] [CrossRef]
- Lopes, A.T.; Fernandes, F.R.; Schneider, M.C. Chromosome mapping of 28S ribosomal genes in 11 species of Cassidinae (Coleoptera: Chrysomelidae). Eur. J. Entomol. 2017, 114, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Sumner, A.T. Chromosomes: Organization and Function; Blackwell Publishing Co.: North Berwick, UK, 2003; pp. 1–287. [Google Scholar]
- Dobigny, G.; Ozouf-Costaz, C.; Bonillo, C.; Volobouev, V. “Ag-NORs” are not always true NORs: New evidence in mammals. Cytogenet. Genome Res. 2002, 98, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Colomba, M.; Vitturi, R.; Libertini, A.; Gregorini, A.; Zunino, M. Heterochromatin of the scarab beetle, Bubas bison (Coleoptera: Scarabaeidae) II. Evidence for AT-rich compartmentalization and a high amount of rDNA copies. Micron 2006, 37, 47–51. [Google Scholar] [CrossRef]
- Sproul, J.S.; Barton, L.M.; Maddison, D.R. Repetitive DNA profiles reveal evidence of rapid genome evolution and reflect species boundaries in ground beetles. Syst. Biol. 2020, 69, 1137–1148. [Google Scholar] [CrossRef]
- Gromicho, M.; Ozouf-Costaz, C.; Collares-Pereira, M.J. Lack of correspondence between CMA3, Ag-positive signals and 28S rDNA loci in two Iberian minnows (Teleostei, Cyprinidae) evidenced by sequential banding. Cytogenet. Genome Res. 2005, 109, 507–511. [Google Scholar] [CrossRef]
- Vitturi, R.; Lannino, A.; Mansueto, C.; Mansueto, V.; Colomba, M. Silver-negative NORs in Pamphagus ortolaniae (Orthoptera: Pamphagidae). Eur. J. Entomol. 2008, 105, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Kacker, R.K. Studies on the chromosomes of Indian Coleoptera VI. chromosome numbers and sex determining mechanism in 15 species of Coleoptera. Newsl. Zool. Surv. India 1976, 2, 48–49. [Google Scholar]
- Kacker, R.K. Chromosomes and phylogeny of Coleoptera. Rec. Zool. Surv. India 1993, 147, 1–35. [Google Scholar]
- Ferreira, A.; Mesa, A. Estudos citológicos em três espécies brasileiras de coleópteros (Chrysomelidae, Cerambycidae e Meloidae). Rev. Bras. Genet. 1977, 37, 61–64. [Google Scholar]
- Vidal, O.R. Chromosome numbers of Coleoptera from Argentina. Genetica 1984, 65, 235–239. [Google Scholar] [CrossRef]
- Zacaro, A.A.; de Almeida, M.C.; Cella, D.M. Recombination nodules in coleopteran species: Palembus dermestoides (Tenebrionidae) and Epicauta atomaria (Meloidae). Cytogenet. Genome Res. 2003, 103, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Stevens, N.M. Further studies on the chromosomes of Coleoptera. J. Zool. 1909, 6, 101–121. [Google Scholar] [CrossRef]
- Virkki, N. Chromosomes of some certain meloid beetles from EI Salvador. Ann. Acad. Sci. Fenn. A 1962, 6, 1–11. [Google Scholar]
- Smith, S.G. Chromosome numbers of Coleoptera. Heredity 1953, 7, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, J. Studies on the chromosomes of some meloid and scarabaeoid beetles (Insecta: Coleoptera). In Proceedings of the 61st Indian Science Congress, Nagpur, India, 12 December 1974; pp. 127–128. [Google Scholar]
- Dasgupta, J. Comparative cytology of seven families of Indian Coleoptera. Nucleus 1977, 20, 294–301. [Google Scholar]
- Asana, J.J.; Makino, S.; Niiyama, H.A. chromosomal survey of some Indian insects. IV. On the sex chromosomes of some species of beetles (Coleoptera). Cytologia 1942, 12, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Dua, P.S.; Kacker, R.K. Chromosome number in ten species of Indian Coleoptera (Insecta). News Lett. Zool. Surv. India 1976, 2, 88–89. [Google Scholar]
- Dua, P.S.; Kacker, R.K. Chromosomes and phylogeny of Coleoptera II. Meloidae. Bull Zool. Surv. India 1984, 5, 19–21. [Google Scholar]
- Joneja, M.G. Chromosome number and sex-determination mechanism in twenty-five species of Indian Coleoptera. Research bulletin of the Panjab University, Chandigarh (N.S.) 11:249-251. Res. Bull. Panjab Univ. Sci. 1960, 11, 249–251. [Google Scholar]
- Saha, A.K.; Manna, G.K. Cytological investigations of Indian Coleoptera insects (Beetles). In Proceedings of the 58th Indian Science Congress, Bangalore, India, 23–25 January 1971; p. 20. [Google Scholar]
- Manna, G.K.; Lahiri, M. Chromosome complement and meiosis in forty-six species of Coleoptera. Chromosome Inf. Serv. 1972, 13, 9–11. [Google Scholar]
- Yadav, J.S. Chromosome number and sex determining mechanism in fourteen species of Coleoptera. Curr. Sci. 1973, 42, 514. [Google Scholar]
- Yadav, J.S.; Pillai, R.K.; Bhardwaj, S.C. Chromosome studies on two species of meloidae (Coleoptera). In Proceedings of the 61st Indian Science Congress, Nagpur, India, 12 December 1974; p. 106. [Google Scholar]
- Yadav, J.S.; Pillai, R.K.; Bhardwaj, S.C. Chromosome studies on two species of Meloidae (Coleoptera). Res. Bull. Panjab Univ. Sci. 1977, 28, 35–38. [Google Scholar]
- Dua, P.S.; Kacker, R.K. Chromosome numbers in ten species of Coleoptera. News Lett. Zool. Surv. India 1975, 1, 32–33. [Google Scholar]
- Bisoi, M.R.; Patnaik, S.C. A chromosome study of seven species of Indian coleoptera (Meloidae, Tenebrionidae and Coccinellidae). Caryologia 1988, 41, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, U. Chromosome number and sex mechanism in sixteen species of Indian Coleoptera. Curr. Sci. 1960, 29, 140. [Google Scholar]
- Agarwal, U. Studies and behavior of the chromosomes of five species of Indian Coleoptera. Jpn. J. Genet. 1962, 37, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.G.; Virkki, N. Animal Cytogenetics 3; Insecta. 5. Coleoptera; Gerbünder Bomtrager: Berlin, Germany; Stuttgart, Germany, 1978; p. 366. [Google Scholar]
- Riccieri, A.; Mancini, E.; Salvi, D.; Bologna, M.A. Phylogeny, biogeography and systematics of the hyper-diverse blister beetle genus Hycleus (Coleoptera: Meloidae). Mol. Phylogenet. Evol. 2020, 144, 106706. [Google Scholar] [CrossRef] [PubMed]
- Trotta-Moreu, N.; García-París, M. The Iberian species of Hycleus Latreille, 1829 (Coleoptera: Meloidae): Geographic ranges and elytral variability. Graellsia 2001, 57, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Lorite, P.; Chica, E.; Palomeque, T. G-banding and chromosome condensation in the ant, Tapinoma nigerrimum. Chromosome Res. 1996, 4, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, D. Simultaneous fluorescent staining of R bands and specific heterochromatic regions (DA-DAPI bands) in human chromosomes. Cytogenet. Cell Genet. 1980, 27, 190–193. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Goodsell, D.S.; Dickerson, R.E. Bending and curvature calculations in B-DNA. Nucleic Acids Res. 1994, 22, 5497–5503. [Google Scholar] [CrossRef] [Green Version]
- Vlahoviček, K.; Kaján, L.; Pongor, S. DNA analysis servers: Plot.it., bend.it, model.it and IS. Nucleic Acids Res. 2003, 31, 3686–3687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorite, P.; Palomeque, T.; Garnería, I.; Petitpierre, E. Characterization and chromosome location of satellite DNA in the leaf beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genetica 2001, 110, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Mora, P.; Vela, J.; Ruiz-Mena, A.; Palomeque, T.; Lorite, P. Isolation of a pericentromeric satellite DNA family in Chnootriba argus (Henosepilachna argus) with an unusual short repeat unit (TTAAAA) for beetles. Insects 2019, 10, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endow, S.A. Polytenization of the ribosomal genes on the X and Y chromosomes of Drosophila melanogaster. Genetics 1982, 100, 375–385. [Google Scholar] [CrossRef]
- Palomeque, T.; Muñoz-López, M.; Carrillo, J.A.; Lorite, P. Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae). Chromosome Res. 2005, 13, 795. [Google Scholar] [CrossRef]
- Schneider, M.C.; Rosa, S.P.; Almeida, M.C.; Costa, C.; Cella, D.M. Chromosomal similarities and differences among four Neotropical Elateridae (Conoderini and Pyrophorini) and other related species, with comments on the NORs pattern in Coleoptera. J. Zool. Syst. Evol. Res. 2007, 45, 308–316. [Google Scholar] [CrossRef]
- Karagyan, G.H.; Kuznetsova, V.G. Chromosome numbers and sex chromosome systems in buprestid beetles (Coleoptera, Buprestidae). Entomol. Rev. 2000, 80, 38–49. [Google Scholar]
- Mravinac, B.; Plohl, M. Parallelism in evolution of highly repetitive DNAs in sibling species. Mol. Biol. Evol. 2010, 27, 1857–1867. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.A.; Braga, L.S.; Guedes, R.N.C.; Tavares, M.G. Cytogenetic analyses using C-banding and DAPI/CMA3 staining of four populations of the maize weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera, Curculionidae). Comp. Cytogenet. 2015, 9, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Mora, P.; Vela, J.; Sanllorente, O.; Palomeque, T.; Lorite, P. Molecular cytogenetic studies in the ladybird beetle Henosepilachna argus Geoffroy, 1762 (Coleoptera, Coccinellidae, Epilachninae). Comp. Cytogenet. 2015, 9, 423–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, M.C.; Almeida, M.C.; Rosa, S.P.; Costa, C.; Cella, D.M. Evolutionary chromosomal differentiation among four species of Conoderus Eschscholtz, 1829 (Coleoptera, Elateridae, Agrypninae, Conoderini) detected by standard staining, C-banding, silver nitrate impregnation, and CMA3/DA/DAPI staining. Genetica 2006, 128, 333. [Google Scholar] [CrossRef] [PubMed]
- Karagyan, G.; Lachowska, D.; Kalashian, M. Karyotype analysis of four jewel-beetle species (Coleoptera, Buprestidae) detected by standard staining, C-banding, AgNOR-banding and CMA3/DAPI staining. Comp. Cytogenet. 2012, 6, 183–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stork, N.E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 2018, 63, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, S.G.; de Moura, R.C.; Barros e Silva, A.E.; de Souza, M.J. Cytogenetic analysis of two Coprophanaeus species (Scarabaeidae) revealing wide constitutive heterochromatin variability and the largest number of 45S rDNA sites among Coleoptera. Micron 2010, 41, 960–965. [Google Scholar] [CrossRef]
- Dutrillaux, A.M.; Dutrillaux, B. Chromosome analysis of 82 species of Scarabaeoidea (Coleoptera), with special focus on NOR localization. Cytogenet. Genome Res. 2012, 136, 208–219. [Google Scholar] [CrossRef]
- Goll, L.G.; Artoni, R.F.; Vicari, M.R.; Nogaroto, V.; Petitpierre, E.; Almeida, M.C. Cytogenetic analysis of Lagria villosa (Coleoptera, Tenebrionidae): Emphasis on the mechanism of association of the Xyp sex chromosomes. Cytogenet. Genome Res. 2013, 139, 29–35. [Google Scholar] [CrossRef]
- Goll, L.G.; Matiello, R.R.; Artoni, R.F.; Vicari, M.R.; Nogaroto, V.; de Barros, A.V.; Almeida, M.C. High-resolution physical chromosome mapping of multigene families in Lagria villosa (Tenebrionidae): Occurrence of interspersed ribosomal genes in Coleoptera. Cytogenet. Genome Res. 2015, 146, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Hirai, H. Chromosome dynamics regulating genomic dispersion and alteration of nucleolus organizer regions (NORs). Cells 2020, 9, 971. [Google Scholar] [CrossRef] [Green Version]
- Imai, H.T. On-Line Monograph: The Minimum Interaction Theory. Available online: https://minimum-interaction-theory.jimdofree.com/ (accessed on 21 April 2021).
- Strachan, T.; Webb, D.; Dover, G.A. Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J. 1985, 4, 1701–1708. [Google Scholar] [CrossRef]
- Koo, H.; Wu, H.; Crothers, D. DNA bending at adenine • thymine tracts. Nature 1986, 320, 501–506. [Google Scholar] [CrossRef]
- Martínez-Balbás, A.; Rodríguez-Campos, A.; García-Ramírez, M.; Sainz, J.; Carrera, P.; Aymamí, J.; Azorín, F. Satellite DNAs contain sequences that induce curvature. Biochemistry 1990, 29, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Matyasek, R.; Fulnecek, J.; Leitch, A.R.; Kovarik, A. Analysis of two abundant, highly related satellites in the allotetraploid Nicotiana arentsii using double-strand conformation polymorphism analysis and sequencing. New Phytol. 2011, 192, 747–759. [Google Scholar] [CrossRef]
- Lorite, P.; Carrillo, J.A.; Aguilar, J.A.; Palomeque, T. Isolation and characterization of two families of satellite DNA with repetitive units of 135 bp and 2.5 kb in the ant Monomorium subopacum (Hymenoptera, Formicidae). Cytogenet. Genome Res. 2004, 105, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Ugarković, D.L.; Plohl, M.; Lucijanic-Justic, V.; Borstnik, B. Detection of satellite DNA in Palorus ratzeburgii: Analysis of curvature profiles and comparison with Tenebrio molitor satellite DNA. Biochimie 1992, 74, 1075–1082. [Google Scholar] [CrossRef]
- Plohl, M.; Mestrović, N.; Bruvo, B.; Ugarković, D. Similarity of structural features and evolution of satellite DNAs from Palorus subdepressus (Coleoptera) and related species. J. Mol. Evol. 1998, 46, 234–239. [Google Scholar] [CrossRef]
- Lobov, I.B.; Tsutsui, K.; Mitchell, A.R.; Podgornaya, O.I. Specificity of SAF-A and lamin B binding in vitro correlates with the satellite DNA binding state. J. Cell. Biochem. 2001, 83, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Escudeiro, A.; Adega, F.; Robinson, T.J.; Heslop-Harrison, J.S.; Chaves, R. Conservation, divergence, and functions of centromeric satellite DNA families in the Bovidae. Genome Biol. Evol. 2019, 11, 1152–1165. [Google Scholar] [CrossRef] [PubMed]
- Lorite, P.; Torres, M.I.; Palomeque, T. Characterization of two unrelated satellite DNA families in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae). Bull. Entomol. Res. 2013, 103, 538–546. [Google Scholar] [CrossRef]
- Ruiz-Ruano, F.J.; López-León, M.D.; Cabrero, J.; Camacho, J.P.M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 2016, 6, 28333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios-Gimenez, O.M.; Dias, G.B.; de Lima, L.G.; Kuhn, G.C.S.; Ramos, E.; Martins, C.; Cabral de Mello, D.C. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci. Rep. 2017, 7, 6422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios-Gimenez, O.M.; Bardella, V.B.; Lemos, B.; Cabral-de-Mello, D.C. Satellite DNAs are conserved and deferentially transcribed among Gryllus cricket species. DNA Res. 2018, 25, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Meioformula | References |
---|---|---|
Subfamily Meloinae | ||
Cyaneolytta n. sp. | 2n = 20, 9 + Xyp | [28,29] |
Epicauta anthracina Erichson, 1848 | 2n = 20, 9 + Xyp | [30] |
Epicauta atomaria Germar, 1821 | 2n = 20, 9 + Xyp | [12,31,32] |
2n = 21, 9 + Xyyp | [31] | |
2n = 22, 9 + Xyyyp | [31] | |
Epicauta cinerea Forster, 1771 | 2n = 20, 9 + XYp | [33] |
Epicauta grammica Fischer, 1827 | 2n = 24, 11 + Xyp | [34] |
Epicauta isthmica Werner, 1949 | 2n = 20, 9 + Xyp | [34] |
Epicauta murina LeConte, 1853 | 2n = 20, 9 + Xyp | [35] |
Epicauta n. sp. | 2n = 20, 9 + Xyp | [34] |
Epicauta pennsylvanica Borchmann, 1917 | 2n = 20, 9 + XYp | [33] |
Epicauta picta Laporte de Castelnau, 1840 | 2n = 20, 9 + Xyp | [36,37] (as Lytta picta) |
Epicauta pluvialis Borchmann, 1930 | 2n = 20, 9 + Xyp | [31] |
Epicauta rosilloi Martinez, 1952 | 2n = 20, 9 + Xyp | [31] |
Epicauta rufipedes Dugés, 1870 | 2n = 20, 9 + Xyp | [34] |
Hycleus scutellatus Rosenhauer, 1856 | 2n = 20, 9 + Xyp | Current study |
Meloe sp. | 2n = 20, 9 + Xyp | [38] |
Mylabris balteata Pallas 1782 | 2n = 20, 9 + Xyr | [36,37] |
Mylabris himalayaensis Saha, 1979 | 2n = 22, 10 + Xyp | [39,40] (as M. himalayica) |
Mylabris macilenta Marseul, 1873 | 2n = 22, 10 + Xyp | [41] |
Mylabris phalerata Pallas, 1781 | 2n = 22, 10 + Xyp | [36,42,43,44,45,46] (as M. phalerta or M. phalcrata) |
Mylabris pustulata Thunberg, 1821 | 2n = 22, 10 + Xyp | [10,38,40,44,46,47,48] |
Mylabris thunbergi Billberg, 1813 | 2n = 22, 10 + Xyp | [48,49,50] |
Paniculolytta sanguineoguttata Haag-Rutenberg, 1880 | 2n = 20, 9 + Xyp | [34] |
Pyrota decorata Haag-Rutenberg, 1880 | 2n = 20, 9 + Xyp | [34] |
Psalydolytta sp.nr.rouxi | 2n = 20, 9 + Xyp | [28,29] |
Sybaris praeustus Redtenbacher, 1844 | 2n = 20, 9 + Xyp | [41] (as S. paraeustus) |
Sybaris testaceus Fabricius, 1792 | 2n = 20, 9 + Xyp | [36,37] |
Subfamily Tetraonycinae | ||
Tetraonyx frontalis Chevrolat, 1833 | 2n = 20, 9 + Xyp | [34] |
Tetraonyx quadrimaculata Fabricius, 1792 | 2n = 20, 9 + Xyp | [51] |
Subfamily Nemognathinae | ||
Zonitis tarasca Dugès, 1888 | 2n = 20, 9 + Xyp | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Torres, L.; Mora, P.; Ruiz-Mena, A.; Vela, J.; Mancebo, F.J.; Montiel, E.E.; Palomeque, T.; Lorite, P. Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters. Insects 2021, 12, 385. https://doi.org/10.3390/insects12050385
Ruiz-Torres L, Mora P, Ruiz-Mena A, Vela J, Mancebo FJ, Montiel EE, Palomeque T, Lorite P. Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters. Insects. 2021; 12(5):385. https://doi.org/10.3390/insects12050385
Chicago/Turabian StyleRuiz-Torres, Laura, Pablo Mora, Areli Ruiz-Mena, Jesús Vela, Francisco J. Mancebo, Eugenia E. Montiel, Teresa Palomeque, and Pedro Lorite. 2021. "Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters" Insects 12, no. 5: 385. https://doi.org/10.3390/insects12050385
APA StyleRuiz-Torres, L., Mora, P., Ruiz-Mena, A., Vela, J., Mancebo, F. J., Montiel, E. E., Palomeque, T., & Lorite, P. (2021). Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters. Insects, 12(5), 385. https://doi.org/10.3390/insects12050385