Characterization of Cold Tolerance of Immature Stages of Small Hive Beetle (SHB) Aethina tumida Murray (Coleoptera: Nitidulidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Insect
2.2. Supercooling Point
2.3. Cold Tolerance Strategy
2.4. Lethal Temperature Determination
2.5. Acclimation
2.6. Statistical Analysis
3. Results
3.1. SCP and Cold Tolerance Strategy
3.2. Lethal Temperature Determination
3.3. Acclimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, S.A.; Jung, C. Effect of Temperature and Relative Humidity on the Emergence of Overwintered Osmia cormifrons (Hymenoptera, Megachilidae). Korean J. Apic. 2011, 26, 261–266. [Google Scholar]
- Noor-Ul-Ane, M.; Kim, D.; Zalucki, M.P. Fecundity and Egg Laying in Helicoverpa armigera (Lepidoptera: Noctuidae): Model development and field validation. J. Econ. Entomol. 2018, 111, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in a global climate change research, direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002, 88, 1–16. [Google Scholar] [CrossRef]
- Teets, N.M.; Denlinger, D.L. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 2013, 38, 105–116. [Google Scholar] [CrossRef]
- Garcia, M.J.; Littler, A.S.; Sriram, A.; Teets, N.M. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 2020, 74, 1437–1450. [Google Scholar] [CrossRef]
- Weldon, C.; Terblanche, J.S.; Chown, S.L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 2011, 36, 479–485. [Google Scholar] [CrossRef]
- Hemmati, C.; Moharramipour, S.; Talebi, A.A. Effects of cold acclimation, cooling rate and heat stress on cold tolerance of the potato tuber moth Phthorimaea operculella (Lepidoptera: Gelechidae). Eur. J. Entomol. 2014, 111, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Hawes, T.C.; Worland, M.R.; Bale, J.S. Convey, Rafting in Antarctic Collembola. J. Zool. 2008, 274, 44–50. [Google Scholar]
- Aryal, S.; Jung, C. Cold tolerance characteristics of Korean population of potato tuber moth, Phthorimaea operculella (Zeller), (Lepidoptera: Gelechiidae). Entomol. Res. 2018, 48, 300–307. [Google Scholar] [CrossRef]
- Terblanche, J.S.; Marais, E.; Chown, S.L. Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis. J. Insect Physiol. 2007, 53, 455–462. [Google Scholar] [CrossRef]
- Renault, D.; Salin, C.; Vannier, G.; Vernon, P. Survival at low temperatures in insects: What is the ecological significance of the supercooling point? Cryo Lett. 2002, 23, 217–218. [Google Scholar]
- Jakobs, R.; Gariepy, T.D.; Sinclair, B.J. Adult plasticity of cold tolerance in a cool-temperate population of Drosophila suzukii. J. Insect Physiol. 2015, 79, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, L.; Li, J.; Gao, C.; Luo, Y.; Ren, L. Thermal survival limits of larvae and adults of Sirex noctilio (Hymenoptera: Siricidae) in China. PLoS ONE 2019, 14, e0218888. [Google Scholar] [CrossRef] [Green Version]
- Nedve˘D, O.; Lavy, D.; Verhoef, H.A. Modelling the time-temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan. Funct. Ecol. 1998, 12, 816–824. [Google Scholar] [CrossRef]
- Hoffmann, D.; Pettis, J.; Neumann, P. Potential host shift of the small hive beetle Aethina tumida to bumblebee colonies Bombus impatiens. Insectes Soc. 2008, 55, 153–162. [Google Scholar] [CrossRef]
- Bobadoye, B.O.; Fombong, A.T.; Kiatok, N.; Suresh, R.; Teal, P.E.; Salifu, D.; Torto, B. Behavioral responses of the small hive beetle, Aethina tumida, to odors of three meliponine bee species and honey bees, Apis mellifera scutellata. Entomol. Exp. Appl. 2018, 166, 528–534. [Google Scholar] [CrossRef]
- Schäfer, M.O. How to slow the global spread of small hive beetles, Aethina tumida. Biol. Invasion 2019, 21, 1451–1459. [Google Scholar] [CrossRef]
- Dekebo, A.; Hong, S.; Jung, C. Attractiveness of the Small Hive Beetle (Aethina tumida) to Volatiles from Honey bee (Apis mellifera) and Beehive Materials. Korean J. Apic. 2017, 32, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Lundie, A.E. The Small Hive Beetle: Aethina tumida Science Bulletin 220; Entomology Series; Union of South Africa Department of Agriculture and Forestry: Cape Town, South Africa, 1940; Volume 3. [Google Scholar]
- Meikle, W.G.; Patt, J.M. Temperature, diet and other factors on development, survivorship and oviposition of the Small Hive Beetle, Aethina tumida Murray (Col.: Nitidulidae). J. Econ. Entomol. 2011, 104, 753–763. [Google Scholar] [CrossRef]
- Lee, S.; Hong, K.J.; Cho, Y.S.; Choi, Y.S.; Yoo, M.S.; Lee, S. Review of the subgenus Aethina Erichson s. str. (Coleoptera: Nitidulidae: Nitidulinae) in Korea, reporting recent invasion of small hive beetle, Aethina tumida. J. Asia-Pac. Entomol. 2017, 20, 553–558. [Google Scholar] [CrossRef]
- Ellis, J.D.; Delaplane, K.S. Small hive beetle (Aethina tumida) oviposition behaviour in sealed brood cells with notes on the removal of the cell contents by European honey bees (Apis mellifera). J. Apic. Res. 2008, 47, 210–215. [Google Scholar] [CrossRef]
- Schäfer, M.O.; Ritter, W.; Pettis, J.; Neumann, P. Small hive beetles, Aethina tumida, are vectors of Paenibacillus larvae. Apidologie 2009, 41, 14–20. [Google Scholar] [CrossRef]
- Noor-ul-Ane, M.; Jung, C. Temperature-dependent modelling of adult performance of small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae). J. Apic. Res. 2021. [Google Scholar] [CrossRef]
- Arbogast, R.T.; Torto, B.; Teal, P.E. Potential for population growth of the small hive beetle Aethina tumida (Coleoptera, Nitidulidae) on diets of pollen dough and oranges. Fla. Entomol. 2010, 93, 224–230. [Google Scholar] [CrossRef]
- Noor-ul-Ane, M.; Jung, C. Temperature-dependent development and survival of small hive beetle, Aethina tumida (Coleoptera: Nitidulidae). J. Apic. Res. 2020, 59, 807–816. [Google Scholar] [CrossRef]
- Bleiker, K.P.; Smith, G.D.; Humble, L.M. Cold tolerance of mountain pine beetle (Coleoptera: Curculionidae) eggs from the historic and expanded ranges. Environ. Entomol. 2017, 46, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Hiiesaar, K.; Williams, I.H.; Mänd, M.; Luik, A.; Jõgar, K.; Metspalu, L.; Švilponis, E.; Ploomi, A.; Kivimägi, I. Supercooling ability and cold hardiness of the pollen beetle Meligethes aeneus. Entomol. Exp. Appl. 2011, 138, 117–127. [Google Scholar] [CrossRef]
- Lee, R.E. A primer on insect cold-tolerance. In Low Temperature Biology of Insects; Denlinger, D.L., Lee, R.E., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 3–34. [Google Scholar]
- Salt, R.W. The influence of food on cold hardiness of insects. Can. Entomol. 1953, 85, 261–269. [Google Scholar] [CrossRef]
- Koštál, V.; Korbelová, J.; Rozsypal, J.; Zahradníčková, H.; Cimlová, J.; Tomčala, A.; Šimek, P. Long-Term Cold Acclimation Extends Survival Time at 0 °C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster Fly. PLoS ONE 2011, 6, e25025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietersea, W.; Terblanche, J.S.; Addison, P. Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)? J. Insect Physiol. 2017, 98, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Somme, L. The physiology of cold hardiness in terrestrial arthropods. Eur. J. Entomol. 1999, 96, 1–10. [Google Scholar]
- Cornelissen, B.; Neumann, P.; Schweiger, O. Global warming promotes biological invasion of a honey bee pest. Glob. Chang. Biol. 2019, 25, 3642–3655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, R.J.; Gerber, G.H. Effects of temperature on the development, growth, and survival of larvae and pupae of a north-temperate chrysomelid beetle. Oecologia 1985, 67, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Southwick, E.E. Allometric relations, metabolism and heat conductance in clusters of honey bees at cool temperatures. J. Comp. Physiol. B 1985, 156, 143–149. [Google Scholar] [CrossRef]
- Jamal, Z.A.; Abou-Shaara, H.F.; Qamer, S.; Alotaibi, M.A.; Khan, K.A.; Khan, M.F.; Bashir, M.A.; Hannan, A.; AL-Kahtani, S.N.; Taha, E.-K.A.; et al. Future expansion of small hive beetles, Aethina tumida, towards North Africa and South Europe based on temperature factors using maximum entropy algorithm. J. King Saud Univ.-Sci. 2021, 33, 101242. [Google Scholar] [CrossRef]
- Bernier, M.; Fournier, V.; Giovenazzo, P. Pupal Development of Aethina tumida (Coleoptera: Nitidulidae) in Thermo-Hygrometric Soil Conditions Encountered in Temperate Climates. J. Econ. Entomol. 2014, 107, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Pettis, J.S.; Shimanuki, H. Observations on the small hive beetle, Aethina tumida Murray, in the United States. Am. Bee J. 2000, 140, 152–155. [Google Scholar]
- Park, S.K.; Sungmin, O.; Cassardo, C. Soil temperature response in Korea to a changing climate using a land surface model, Asia-Pac. J. Atmos. Sci. 2017, 53, 457–470. [Google Scholar]
- Korea Meteorological Adminisitration. Korean Climate Change Assessment Report 2020-The Physical Science Bais-Sumary for Pilicy Makers; Publication Number: I 978-89-954715-9-3; Korea Meteorological Administration: Seoul, Korea, 2020.
- Cornelissen, A.; Neumann, P.; Ellis, J.D. Successful Pupation of Small Hive Beetle, Aethina tumida (Coleoptera: Nitidulidae), in Greenhouse Substrates. J. Econ. Entomol. 2020, 113, 3032–3034. [Google Scholar] [CrossRef]
Stage | Without Acclimation | Acclimation | ||
---|---|---|---|---|
16 °C | 10 °C | 5 °C | ||
Feeding larvae | −10.7 ± 0.62c a * | −9.7 ± 0.48 a * | −9.6 ± 0.53 a * | −8.9 ± 0.44 a * |
Wandering larvae | −19.4 ± 0.35a a * | −18.2 ± 0.40 a * | −18.4 ± 0.48 a * | −18.5 ± 0.32 a * |
Pupae | −12.5 ± 0.69b a * | −10.9 ± 0.75 a * | −11.9 ± 0.68 a * | −12.2 ± 0.50 a * |
Stage | Without Acclimation | Acclimation | ||||||
---|---|---|---|---|---|---|---|---|
16 °C | 10 °C | 5 °C | ||||||
Mortality | Mortality | Mortality | Mortality | |||||
Unfrozen | Frozen | Unfrozen | Frozen | Unfrozen | Frozen | Unfrozen | Frozen | |
* Feeding larvae | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 |
* Wandering larvae | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 |
* Pupae | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 |
Stage | Lethal Hours | |||
---|---|---|---|---|
7 | 48 | |||
LT50(°C) (95% CI) | LT80(°C) (95% CI) | LT50(°C) (95% CI) | LT80(°C) (95% CI) | |
Feeding larvae | 4.9 (4.43–5.28) | 3.5 (3.02–3.92) | ** | ** |
Wandering larvae | * | * | 3.7 (3.221–4.18) | 2.5 (1.85–2.91) |
Pupae | * | * | 5.6(5.05–6.22) | 3.7(3.02–4.18) |
Stage | a * | b | c | R2 |
---|---|---|---|---|
Feeding larvae | 4.6 ± 0.64 | 0.16 ± 0.03 | 9.1 ± 0.56 | 0.99 |
Wandering larvae | 4.1 ± 0.53 | 0.01 ± 0.01 | 10.1 ± 1.04 | 0.98 |
Pupae | 2.7 ± 0.39 | 0.01 ± 0.00 | 9.1 ± 1.03 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor-ul-Ane, M.; Jung, C. Characterization of Cold Tolerance of Immature Stages of Small Hive Beetle (SHB) Aethina tumida Murray (Coleoptera: Nitidulidae). Insects 2021, 12, 459. https://doi.org/10.3390/insects12050459
Noor-ul-Ane M, Jung C. Characterization of Cold Tolerance of Immature Stages of Small Hive Beetle (SHB) Aethina tumida Murray (Coleoptera: Nitidulidae). Insects. 2021; 12(5):459. https://doi.org/10.3390/insects12050459
Chicago/Turabian StyleNoor-ul-Ane, Muhammad, and Chuleui Jung. 2021. "Characterization of Cold Tolerance of Immature Stages of Small Hive Beetle (SHB) Aethina tumida Murray (Coleoptera: Nitidulidae)" Insects 12, no. 5: 459. https://doi.org/10.3390/insects12050459
APA StyleNoor-ul-Ane, M., & Jung, C. (2021). Characterization of Cold Tolerance of Immature Stages of Small Hive Beetle (SHB) Aethina tumida Murray (Coleoptera: Nitidulidae). Insects, 12(5), 459. https://doi.org/10.3390/insects12050459