Mitochondrial Phylogenomics of Tenthredinidae (Hymenoptera: Tenthredinoidea) Supports the Monophyly of Megabelesesinae as a Subfamily
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Analyzed
2.2. Mitogenome Sequencing, Annotation, and Analyses
2.3. Phylogenetic Analyses
3. Results
3.1. Mitogenome Architectures and Nucleotide Compositions
3.2. Phylogeny of Tenthredinidae
3.3. Divergence Time Estimations at the Subfamily Level
4. Discussion
4.1. Mitogenome Organization of Cladiucha and Megabeleses
4.2. Phylogenetic Placement of Cladiucha and Megabeleses
4.3. Divergences of Tenthredinid Subfamilies through Time
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jervis, M.; Vilhelmsen, L. Mouthpart evolution in adults of the basal, “symphytan”, hymenopteran lineages. Biol. J. Linn. Soc. 2000, 70, 121–146. [Google Scholar] [CrossRef]
- Boevé, J.L. Sawflies (Hymenoptera: Tenthredinidae). In Encyclopedia of Entomology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 1952–1954. [Google Scholar]
- Robinson, W.H. Hymenoptera. In Handbook of Urban Insects and Arachnids; Cambridge University Press: Cambridge, UK, 2005; pp. 224–290. [Google Scholar]
- Nyman, T.; Onstein, R.E.; Silvestro, D.; Wutke, S.; Taeger, A.; Wahlberg, N.; Blank, S.M.; Malm, T. The early wasp plucks the flower: Disparate extant diversity of sawfly superfamilies (Hymenoptera: ‘Symphyta’) may reflect asynchronous switching to angiosperm hosts. Biol. J. Linn. Soc. 2019, 128, 1–19. [Google Scholar] [CrossRef]
- Goulet, H.; Hubert, J.T. Hymenoptera of the World: An Identification Guide to Families; Agriculture Canada Publication: Ottawa, ON, Canada, 1993; ISBN 0660149338. [Google Scholar]
- Taeger, A.; Liston, A.D.; Prous, M.; Groll, E.K.; Gehroldt, T.; Blank, S.M. EcatSym—Electronic World Catalog of Symphyta (Insecta, Hymenoptera); Program Version 5.0 (19 December 2018), Data Version 40 (23 September 2018); Senckenberg Deutsches Entomologisches Institut (SDEI): Müncheberg, Germany; Available online: https://sdei.de/ecatsym/ (accessed on 15 February 2020).
- Taeger, A.; Blank, S.M.; Liston, A.D. World catalog of Symphyta (Hymenoptera). Zootaxa 2010, 2580, 1–1064. [Google Scholar] [CrossRef] [Green Version]
- Abe, M.; Smith, D.R. The genus-group names of Symphyta (Hymenoptera) and their type species. Esakia 1991, 31, 1–115. [Google Scholar] [CrossRef]
- Benson, R.B. On the classification of sawflies (Hymenoptera: Symphyta). Trans. R. Entomol. Soc. Lond. 1938, 87, 353–384. [Google Scholar] [CrossRef]
- Malm, T.; Nyman, T. Phylogeny of the symphytan grade of Hymenoptera: New pieces into the old jigsaw(fly) puzzle. Cladistics 2015, 31, 1–17. [Google Scholar] [CrossRef]
- Nyman, T.; Zinojev, A.G.; Vikberg, V.; Farrell, B.D. Molecular phylogeny of the sawfly subfamily Nematinae (Hymenoptera: Tenthredinidae). Syst. Entomol. 2006, 31, 569–583. [Google Scholar] [CrossRef]
- Vilhelmsen, L. Morphological phylogenetics of the Tenthredinidae (Insecta: Hymenoptera). Invertebr. Syst. 2015, 29, 164. [Google Scholar] [CrossRef]
- Wei, M.; Niu, G. Review of Anhoplocampa Wei (Hymenoptera, Tenthredinidae), with description of a new species and a new combination. Zookeys 2011, 159, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Zhang, Y.; Li, Z.; Wei, M. Characterization of the mitochondrial genome of Analcellicampa xanthosoma gen. et sp. nov. (Hymenoptera: Tenthredinidae). PeerJ 2019, 7, e6866. [Google Scholar] [CrossRef] [Green Version]
- Lacourt, J. Contribution à une révision mondiale de la sous-famille des Tenthredininae (Hymenoptera: Tenthredinidae). Annales de la Société Entomologique de France (N. S.) 1996, 32, 363–402. [Google Scholar]
- Boquan, W.; Xunru, A.; Qiong, P.; Zongrong, L.; Wei, W. Preliminary investigation of the pests of Magnolia officinalis. Plant Prot. 2011, 37, 132–134. [Google Scholar]
- Ding, Y.Z.; Zheng, H.S. Study on the sawfly Megabeleses crassitarsis (Hymenoptera: Tenthredinidae, Allantinae). Sci. Silvae Sin. 1999, 35, 68–71. [Google Scholar]
- Takeuchi, K. A Generic Classification of the Japanese Tenthredinidae (Hymenoptera: Symphyta); Issued in Celebration of the Sixtieth Birthday of Kichizo Takeuchi by his Friends: Kyoto, Japan, 1952. [Google Scholar]
- Wei, M. A new species of Cladiucha Konow (Hymenoptera, Tenthredinidae) from China with a key to sawfly species damaging plants of Magnoliaceae. Acta Zootaxonomica Sin. 2010, 35, 635–640. [Google Scholar]
- Wei, M. Revision of Megabeleses Takeuchi (Hymenoptera, Tenthredinidae) with description of two new species from China. Zootaxa 2010, 2729, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Zhao, H.; Wei, M. Review of Cladiucha Konow (Hymenoptera: Tenthredinidae) with description of a new species from China. Entomotaxonomia 2020, 42, 311–318. [Google Scholar] [CrossRef]
- Sundukov, Y.N. A new species of the genus Cladiucha Konow, 1902 (Hymenoptera: Tenthredinidae) from Vietnam. Far East. Entomol. 2020, 407, 25–28. [Google Scholar] [CrossRef]
- Konow, F.W. Neue Blattwespen. (Hym.). J. Syst. Hymenopterol. Dipterol. 1902, 2, 384–390. [Google Scholar]
- Smith, D.R. Rediscovery of Cladiucha insolita Konow (Hymenoptera, Tenthredinidae), description of the male and intraspecific variation. J. Hymenopt. Res. 2017, 60, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Wei, M. A new subfamily and two new genera of Tenthredinidae (Hymenoptera: Tenthredinomorpha). Entomotaxonomia 1997, 19, 69–76. [Google Scholar]
- Wei, M.; Nie, H. Generic list of Tenthredinoidea s. str. (Hymenoptera) in new systematic arrangement with synonyms and distribution data. J. Cent. For. Coll. 1998, 18, 23–31. [Google Scholar]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Wyman, S.K.; Jansen, R.K.; Boore, J.L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20, 3252–3255. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, E.M.; Doğan, Ö.; Budak, M.; Başıbüyük, H.H. Two nearly complete mitogenomes of wheat stem borers, Cephus pygmeus (L.) and Cephus sareptanus Dovnar-Zapolskij (Hymenoptera: Cephidae): An unusual elongation of rrnS gene. Gene 2015, 558, 254–264. [Google Scholar] [CrossRef]
- Niu, G.; Korkmaz, E.M.; Doğan, Ö.; Zhang, Y.; Aydemir, M.N.; Budak, M.; Du, S.; Başıbüyük, H.H.; Wei, M. The first mitogenomes of the superfamily Pamphilioidea (Hymenoptera: Symphyta): Mitogenome architecture and phylogenetic inference. Int. J. Biol. Macromol. 2019, 124, 185–199. [Google Scholar] [CrossRef]
- Darty, K.; Denise, A.; Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009, 25, 1974–1975. [Google Scholar] [CrossRef] [Green Version]
- De Rijk, P.; Wuyts, J.; de Wachter, R. RnaViz 2: An improved representation of RNA secondary structure. Bioinformatics 2003, 19, 299–300. [Google Scholar] [CrossRef] [Green Version]
- Cannone, J.J.; Subramanian, S.; Schnare, M.N.; Collett, J.R.; D’Souza, L.M.; Du, Y.; Feng, B.; Lin, N.; Madabusi, L.V.; Müller, K.M.; et al. The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform. 2002, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Lanfear, R.; Calcott, B.; Ho, S.Y.W.; Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012, 29, 1695–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; ISBN 3900051070. [Google Scholar]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Swofford, D.L.; PAUP. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Assoc. 2002, 294–307. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, syy032. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Ho, S.Y.W.; Phillips, M.J.; Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4, 699–710. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; dos Reis, M.; Donoghue, P.C.J. Dating tips for divergence-time estimation. Trends Genet. 2015, 31, 637–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, R.S.; Krogmann, L.; Mayer, C.; Donath, A.; Gunkel, S.; Meusemann, K.; Kozlov, A.; Podsiadlowski, L.; Petersen, M.; Lanfear, R.; et al. Evolutionary history of the Hymenoptera. Curr. Biol. 2017, 27, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A. FigTree v1.4.2: Tree Drawing Tool; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2014. [Google Scholar]
- Gillespie, J.J.; Johnston, J.S.; Cannone, J.J.; Gutell, R.R. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): Structure, organization, and retrotransposable elements. Insect Mol. Biol. 2006, 15, 657–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.-J.; Niu, F.-F.; Du, B.-Z. Rearrangement of trnQ-trnM in the mitochondrial genome of Allantus luctifer (Smith) (Hymenoptera: Tenthredinidae). Mitochondrial DNA 2016, 27, 856–858. [Google Scholar] [CrossRef]
- He, H.; Niu, G.; Zhang, B.; Wei, M. The complete mitochondrial genome of Athalia proxima (Hymenoptera: Tenthredinidae) and phylogenetic analysis. Mitochondrial DNA Part B 2019, 4, 3868–3869. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wei, M.; Liu, J.; Niu, G. Characterization of the mitochondrial genome of Eutomostethus vegetus Konow, 1898 (Hymenoptera: Tenthredinidae) and phylogenetic analysis. Mitochondrial DNA Part B 2020, 5, 3051–3052. [Google Scholar] [CrossRef]
- Wu, R.; Wei, M.; Liu, M.; Niu, G. Advancement in sequencing the mitochondrial genome of Birmella discoidalisa Wei, 1994 (Hymenoptera: Tenthredinidae) and the phylogenetic classification of Fenusini. Mitochondrial DNA Part B 2019, 4, 4100–4101. [Google Scholar] [CrossRef]
- Wu, D.; Wang, H.; Wei, M.; Niu, G. The nearly complete mitochondrial genome of Colochela zhongi Wei, 2016 (Hymenoptera: Tenthredinidae) and phylogenetic analysis. Mitochondrial DNA Part B 2020, 5, 3359–3360. [Google Scholar] [CrossRef]
- Luo, X.; Wei, M.; Niu, G. Nearly complete mitochondrial genome of Siobla xizangensis Xiao, Huang & Zhou, 1988 (Hymenoptera: Tenthredinidae) and phylogenetic analysis. Mitochondrial DNA Part B 2019, 4, 4102–4103. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.J.; Wu, Q.L.; Liu, W. Sequencing and characterization of the Monocellicampa pruni (Hymenoptera: Tenthredinidae) mitochondrial genome. Mitochondrial DNA 2013. [Google Scholar] [CrossRef]
- Song, S.-N.; Tang, P.; Wei, S.-J.; Chen, X.-X. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Song, S.-N.; Wang, Z.-H.; Li, Y.; Wei, S.-J.; Chen, X.-X. The mitochondrial genome of Tenthredo tienmushana (Takeuchi) and a related phylogenetic analysis of the sawflies (Insecta: Hymenoptera). Mitochondrial DNA Part A 2016, 27, 2860–2861. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, E.M.; Aydemir, H.B.; Temel, B.; Budak, M.; Başıbüyük, H.H. Mitogenome evolution in Cephini (Hymenoptera: Cephidae): Evidence for parallel adaptive evolution. Biochem. Syst. Ecol. 2017, 71, 137–146. [Google Scholar] [CrossRef]
- Dowton, M.; Cameron, S.L.; Dowavic, J.I.; Austin, A.D.; Whiting, M.F. Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral. Mol. Biol. Evol. 2009, 26, 1607–1617. [Google Scholar] [CrossRef] [Green Version]
- Dowton, M.; Austin, A.D. Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Mol. Biol. Evol. 1999, 16, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Dowton, M.; Castro, L.R.; Campbell, S.L.; Bargon, S.D.; Austin, A.D. Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction. J. Mol. Evol. 2003, 56, 517–526. [Google Scholar] [CrossRef]
- Kong, X.; Dong, X.; Zhang, Y.; Shi, W.; Wang, Z.; Yu, Z. A novel rearrangement in the mitochondrial genome of tongue sole, Cynoglossus semilaevis: Control region translocation and a tRNA gene inversion. Genome 2009, 52, 975–984. [Google Scholar] [CrossRef]
- Doğan, Ö.; Korkmaz, E.M. Nearly complete mitogenome of hairy sawfly, Corynis lateralis (Brullé, 1832) (Hymenoptera: Cimbicidae): Rearrangements in the IQM and ARNS1EF gene clusters. Genetica 2017, 145, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, E.M.; Doğan, Ö.; Durel, B.S.; Temel Altun, B.; Budak, M.; Başıbüyük, H.H. Mitogenome organization and evolutionary history of the subfamily Cephinae (Hymenoptera: Cephidae). Syst. Entomol. 2018, 43, 606–618. [Google Scholar] [CrossRef]
- Aydemir, M.N.; Korkmaz, E.M. Comparative mitogenomics of Hymenoptera reveals evolutionary differences in structure and composition. Int. J. Biol. Macromol. 2020. [Google Scholar] [CrossRef]
- Boevé, J.-L.; Blank, S.M.; Meijer, G.; Nyman, T. Invertebrate and avian predators as drivers of chemical defensive strategies in tenthredinid sawflies. BMC Evol. Biol. 2013, 13, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulmeister, S.; Wheeler, W.C.; Carpenter, J.M. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 2002, 18, 455–484. [Google Scholar] [CrossRef]
- Heraty, J.; Ronquist, F.; Carpenter, J.M.; Hawks, D.; Schulmeister, S.; Dowling, A.P.; Murray, D.; Munro, J.; Wheeler, W.C.; Schiff, N.; et al. Evolution of the hymenopteran megaradiation. Mol. Phylogenet. Evol. 2011, 60, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Klopfstein, S.; Vilhelmsen, L.; Schulmeister, S.; Murray, D.L.; Rasnitsyn, A.P. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 2012, 61, 973–999. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, M.J.; Carpenter, J.M.; Vilhelmsen, L.; Heraty, J.; Liljeblad, J.; Dowling, A.P.G.; Schulmeister, S.; Murray, D.; Deans, A.R.; Ronquist, F.; et al. Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics 2012, 28, 80–112. [Google Scholar] [CrossRef] [Green Version]
- Schulmeister, S. Morphology and evolution of the tarsal plantulae in Hymenoptera (Insecta), focussing on the basal lineages. Zool. Scr. 2003, 32, 153–172. [Google Scholar] [CrossRef]
- Crane, P.R.; Friis, E.M.; Pedersen, K.R. The origin and early diversification of angiosperms. Nature 1995, 374, 27–33. [Google Scholar] [CrossRef]
- Silvestro, D.; Cascales-Miñana, B.; Bacon, C.D.; Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. 2015, 207, 425–436. [Google Scholar] [CrossRef]
- Monnet, C. The Cenomanian–Turonian boundary mass extinction (Late Cretaceous): New insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 282, 88–104. [Google Scholar] [CrossRef]
- Xiao, G. Redescription of the genus Cladiucha (Hymenoptera: Tenthredinidae) and descriptions of two new species from China. J. Beijing For. Univ. 1994, 3, 15–22, English edition. [Google Scholar]
- Nie, Z.L.; Wen, J.; Azuma, H.; Qiu, Y.L.; Sun, H.; Meng, Y.; Sun, W.B.; Zimmer, E.A. Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Mol. Phylogenet. Evol. 2008. [Google Scholar] [CrossRef]
- Massoni, J.; Couvreur, T.L.; Sauquet, H. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms). BMC Evol. Biol. 2015, 15, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuma, H.; García-Franco, J.G.; Rico-Gray, V.; Thien, L.B. Molecular phylogeny of the Magnoliaceae: The biogeography of tropical and temperate disjunctions. Am. J. Bot. 2001, 88, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-T.; Yi, T.-S.; Gao, L.-M.; Ma, P.-F.; Zhang, T.; Yang, J.-B.; Gitzendanner, M.A.; Fritsch, P.W.; Cai, J.; Luo, Y.; et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 2019, 5, 461–470. [Google Scholar] [CrossRef] [PubMed]
Datasets | Within Tenthredinoidea | Within Tenthredinidae | |||
Inference Methods | BI | ML | BI | ML | |
P123RNA | (P + A) + (Ath + ((D + C) + (H + T))) | (P + A) + (Ath + (D + C) + (H + T))) | N + (S + (M + ((Ht + (Al + B)) + (Ht + B)) + (Th + Al)))) | N + (S + (M + ((Ht + (Al + B)) + (Ht + B)) + (Th + Al)))) | |
P12RNA | (P + A) + (Ath + ((D + C) + (H + T))) | (P + A) + (Ath + ((D + C) + (H + T))) | N + (S + (M + ((Ht + (Al + B)) + (Ht + B)) + (Th + Al)))) | N + (S + (M + ((Ht + (Al + B)) + (Ht + B)) + (Th + Al)))) | |
P123RNAexc3genes | (P + A) + (Ath + ((H + (D + C)) + T)) | (P + A) + (Ath + ((D + C) + (H + T))) | N + (S + (M + ((Ht + (Al + B)) + (Ht + B)) + (Th + Al)))) | N + (S + (M + ((Ht + (Al + B)) + (Ht + B)) + (Th + Al)))) | |
P12RNAexc3genes | (P + A) + (Ath + ((H + (D + C)) + T)) | (P + A) + (Ath + ((H + (D + C)) + T)) | N + (S + (M + (((Ht + (Al + B)) + (Ht + B)) + (Th + Al))) | N + (S + (M + (Th + (((Ht + (Al + B)) + (Ht + B)) + Al)))) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, G.; Jiang, S.; Doğan, Ö.; Korkmaz, E.M.; Budak, M.; Wu, D.; Wei, M. Mitochondrial Phylogenomics of Tenthredinidae (Hymenoptera: Tenthredinoidea) Supports the Monophyly of Megabelesesinae as a Subfamily. Insects 2021, 12, 495. https://doi.org/10.3390/insects12060495
Niu G, Jiang S, Doğan Ö, Korkmaz EM, Budak M, Wu D, Wei M. Mitochondrial Phylogenomics of Tenthredinidae (Hymenoptera: Tenthredinoidea) Supports the Monophyly of Megabelesesinae as a Subfamily. Insects. 2021; 12(6):495. https://doi.org/10.3390/insects12060495
Chicago/Turabian StyleNiu, Gengyun, Sijia Jiang, Özgül Doğan, Ertan Mahir Korkmaz, Mahir Budak, Duo Wu, and Meicai Wei. 2021. "Mitochondrial Phylogenomics of Tenthredinidae (Hymenoptera: Tenthredinoidea) Supports the Monophyly of Megabelesesinae as a Subfamily" Insects 12, no. 6: 495. https://doi.org/10.3390/insects12060495
APA StyleNiu, G., Jiang, S., Doğan, Ö., Korkmaz, E. M., Budak, M., Wu, D., & Wei, M. (2021). Mitochondrial Phylogenomics of Tenthredinidae (Hymenoptera: Tenthredinoidea) Supports the Monophyly of Megabelesesinae as a Subfamily. Insects, 12(6), 495. https://doi.org/10.3390/insects12060495