A Literature Review of Biological and Bio-Rational Control Strategies for Slugs: Current Research and Future Prospects
Abstract
:Simple Summary
Abstract
1. Introduction
2. Extant Research on Biocontrol and Bio-Rational Control of Slugs
2.1. Nematodes as a Biocontrol Agent of Slugs
2.2. Sciomyzid Flies as a Biocontrol Agent of Slugs
2.3. Carabid Beetles as a Biocontrol Agent of Slugs
2.4. Natural Products as Biorational Control Agents of Slugs
3. Future Research Prospects
3.1. Nematodes as the Biocontrol Agent of Slugs
3.2. Sciomyzid Flies as the Biocontrol Agents of Slugs
3.3. Carabid Beetles as the Biocontrol Agent of Slugs
3.4. Natural Products as Bio-Rational Control Agents of Slugs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- South, A. Terrestrial Slugs: Biology, Ecology and Control; Chapman and Hall: London, UK, 1992. [Google Scholar]
- Barker, G.M. Molluscs as Crop Pests; CABI Publishing: Wallingford, UK, 2002; 468p. [Google Scholar]
- AHDB. Integrated Slug Control. Available online: https://ahdb.org.uk/knowledge-library/integrated-slug-control (accessed on 22 March 2021).
- Speiser, B.; Glen, D.; Piggott, S.; Ester, A.; Davies, K.; Castillejo, J.; Coupland, J. Slug Damage and Control of Slugs in Horticultural Crops; Research Institute of Organic Agriculture (FiBL). Available online: https://www.schneckenprofi.de/shops/schneckenprofi/downloads/slug_damage_and_control.pdf (accessed on 28 March 2021).
- Wilson, M. A novel nematode for management of slugs. In Biological Control: A Global Perspective; Vincent, C., Goettel, M.S., Lazarovits, G., Eds.; CABI: Wallingford, UK, 2007; pp. 152–159. [Google Scholar]
- Hynes, T. 2015 The Biology of the Slug-Killing Tetanocera elata (Diptera: Sciomyzidae) and Its Potential as a Biological Control Agent for Pestiferous Slugs. Ph.D. Thesis, National University of Ireland, Galway, Ireland, 2015. [Google Scholar]
- Ross, J.L. Riding the Slime Wave: Gathering Global Data on Slug Control; Nuffield Farming Scholarships Trust: Taunton, UK, 2019. [Google Scholar]
- AHDB. Case Study1-Targeted Control of Slugs. Available online: https://ahdb.org.uk/case-study-1-targeted-control-of-slugs (accessed on 24 March 2021).
- Oregon State University. Slugs in the Willamette Valley. Available online: https://agsci.oregonstate.edu/slug-portal/identification/slugs-willamette- (accessed on 28 January 2021).
- Rowson, B.; Turner, J.A.; Anderson, R.; Symondson, B. The Slugs of Britain and Ireland: Identification, Understanding and Control; Field Studies Council: Shropshire, UK, 2014. [Google Scholar]
- Agritradenews. Chiltern Case Overturns UK Metaldehyde Ban. Available online: https://agritradenews.co.uk/news/2019/08/02/chiltern-case-overturns-uk-metaldehyde-ban/ (accessed on 20 December 2020).
- Gov, U.K. Outdoor Use of Metaldehyde to Be Banned to Protect Wildlife. Available online: https://www.gov.uk/government/news/outdoor-use-of-metaldehyde-to-be-banned-to-protect-wildlife (accessed on 28 December 2020).
- Barratt, B.I.P.; Moran, V.C.; Bigler, F.; Van Lenteren, J.C. The status of biological control and recommendations for improving uptake for the future. BioControl 2018, 63, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Haddi, K.; Turchen, L.M.; Viteri Jumbo, L.O.; Guedes, R.N.; Pereira, E.J.; Aguiar, R.W.; Oliveira, E.E. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 2020, 76, 2286–2293. [Google Scholar] [CrossRef]
- Barker, G.M. Natural Enemies of Terrestrial Molluscs. CABI Publishing: Wallingford, UK, 2004. [Google Scholar]
- Glen, D.M.; Wilson, M.J. Slug-parasitic nematodes as biocontrol agents for slugs. Agro Food Ind. Hi Tech 1997, 8, 23–27. [Google Scholar]
- Rae, R.; Verdun, C.; Grewal, P.S.; Robertson, J.F.; Wilson, M.J. Biological control of terrestrial molluscs using Phasmarhabditis hermaphrodita—Progress and prospects. Pest Manag. Sci. 2007, 63, 1153–1164. [Google Scholar] [CrossRef]
- Askary, T.H. Nematodes as biocontrol agents. In Sociology Organic Farming Climate Change and Soil Science, 1st ed.; Lichtfouse, E., Ed.; Springer: Dordrecht, the Netherland, 2010; pp. 347–378. [Google Scholar]
- Ahmed, K.S.D.; Stephens, C.; Bistline-East, A.; Williams, C.D.; Mc Donnell, R.J.; Carnaghi, M.; Huallacháin, D.Ó.; Gormally, M.J. Biological control of pestiferous slugs using Tetanocera elata (Fabricius)(Diptera: Sciomyzidae): Larval behavior and feeding on slugs exposed to Phasmarhabditis hermaphrodita (Schneider, 1859). Biol. Control 2019, 135, 1–8. [Google Scholar] [CrossRef]
- Barone, M.; Frank, T. Effects of plant extracts on the feeding behaviour of the slug Arion lusitanicus. Ann. Appl. Biol. 1999, 134, 341–345. [Google Scholar] [CrossRef]
- Hollingsworth, R.G.; Armstrong, J.W.; Campbell, E. Caffeine as a repellent for slugs and snails. Nature 2002, 417, 915–916. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.L.; Chastain, T.G.; Garbacik, C.J.; Qian, Y.P.L.; Mc Donnell, R.J. Acute toxicity of essential oils to the pest slug Deroceras reticulatum in laboratory and greenhouse bioassays. J. Pest Sci. 2020, 93, 415–425. [Google Scholar] [CrossRef]
- Wilson, M.J.; Glen, D.M.; George, S.K. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Sci. Technol. 1993, 3, 503–511. [Google Scholar] [CrossRef]
- Ebssa, L.; Borgemeister, C.; Berndt, O.; Poehling, H.M. Efficacy of entomopathogenic nematodes against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). J. Invertebr. Pathol. 2001, 78, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Shah, F.A.; Tirry, L.; Moens, M. Field trials against Hoplia philanthus (Coleoptera: Scarabaeidae) with a combination of an entomopathogenic nematode and the fungus Metarhizium anisopliae. Biol. Control 2006, 39, 453–459. [Google Scholar] [CrossRef]
- Ross, J.L.; Malan, A.P. Nematodes Associated with Terrestrial Slugs. In Nematology in South Africa: A View from the 21st Century; Fourie, H., Spaull, V., Jones, R., Daneel, M., De Waele, D., Eds.; Springer: Cham, Switzerland, 2017; pp. 481–493. [Google Scholar]
- Nermuť, J.; Zemek, R.; Mráček, Z.; Palevsky, E.; Půža, V. Entomopathogenic nematodes as natural enemies for control of Rhizoglyphus robini (Acari: Acaridae)? Biol. Control 2019, 128, 102–110. [Google Scholar] [CrossRef]
- Zemek, R.; Nermuť, J.; Konopická, J.; Palevsky, E.; Bohatá, A.; Mráček, Z.; Půža, V. Microbial and nematode control of the bulb mite, Rhizoglyphus robini (Acari: Acaridae). IOBC WPRS Bull. 2020, 149, 75–76. [Google Scholar]
- MacMillan, K.; Haukeland, S.; Rae, R.; Young, I.; Crawford, J.; Hapca, S.; Wilson, M. Dispersal patterns and behaviour of the nematode Phasmarhabditis hermaphrodita in mineral soils and organic media. Soil Biol. Biochem. 2009, 41, 1483–1490. [Google Scholar] [CrossRef]
- Barua, A.; McDonald-Howard, K.L.; Mc Donnell, R.J.; Rae, R.; Williams, C.D. Toxicity of essential oils to slug parasitic and entomopathogenic nematodes. J. Pest Sci. 2020, 93, 1411–1419. [Google Scholar] [CrossRef]
- Tan, L.; Grewal, P.S. Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum. Appl. Environ. Microbiol. 2001, 67, 5010–5016. [Google Scholar] [CrossRef] [Green Version]
- Howlett, S.A. Terrestrial slug problems: Classical biological control and beyond. CAB Rev. 2012, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mc Donnell, R.J.; Lutz, M.S.; Howe, D.K.; Denver, D.R. First report of the gastropod-killing nematode, Phasmarhabditis hermaphrodita, in Oregon, USA. J. Nematol. 2018, 50, 77. [Google Scholar] [CrossRef] [Green Version]
- De Ley, I.T.; Mc Donnell, R.D.; Lopez, S.; Paine, T.D.; De Ley, P. Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae), a potential biocontrol agent isolated for the first time from invasive slugs in North America. J. Nematol. 2014, 16, 1129–1138. [Google Scholar] [CrossRef]
- De Ley, I.T.; Holovachov, O.; Mc Donnell, R.J.; Bert, W.; Paine, T.D.; De Ley, P. Description of Phasmarhabditis californica n. sp. and first report of P. papillosa (Nematoda: Rhabditidae) from invasive slugs in the USA. J. Nematol. 2016, 18, 175–193. [Google Scholar] [CrossRef]
- Wilson, M.J.; Burch, G.; Tourna, M.; Aalders, L.T.; Barker, G.M. The potential of a New Zealand strain of Phasmarhabditis hermaphrodita for biological control of slugs. N. Z. Plant Prot. 2012, 65, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Cutler, J.; Rae, R. Pathogenicity of wild and commercial Phasmarhabditis hermaphrodita exposed to the pestiferous slug Deroceras invadens. J. Invertebr. Pathol. 2020, 174, 107435. [Google Scholar] [CrossRef] [PubMed]
- Grimm, B. Effect of the nematode Phasmarhabditis hermaphrodita on young stages of the pest slug Arion lusitanicus. J. Molluscan Stud. 2002, 68, 25–28. [Google Scholar] [CrossRef]
- Huang, R.E.; Ye, W.; Ren, X.; Zhao, Z. Morphological and molecular characterization of Phasmarhabditis huizhouensis sp. nov. (Nematoda: Rhabditidae), a new rhabditid nematode from South China. PLoS ONE 2015, 10, e0144386. [Google Scholar] [CrossRef] [Green Version]
- Pieterse, A.; Malan, A.P.; Ross, J.L. Nematodes that associate with terrestrial molluscs as definitive hosts, including Phasmarhabditis hermaphrodita (Rhabditida: Rhabditidae) and its development as a biological molluscicide. J. Helminthol. 2017, 91, 517. [Google Scholar] [CrossRef] [PubMed]
- Andrus, P.; Rae, R. Natural variation in chemoattraction in the gastropod parasitic nematodes Phasmarhabditis hermaphrodita, P. neopapillosa and P. californica exposed to slug mucus. J. Nematol. 2019, 21, 479–488. [Google Scholar] [CrossRef]
- Laznik, Ž.; Majić, I.; Trdan, S.; Malan, A.P.; Pieterse, A.; Ross, J.L. Is Phasmarhabditis papillosa (Nematoda: Rhabditidae) a possible biological control agent against the Spanish slug, Arion vulgaris (Gastropoda: Arionidae)? Nematology 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Ivanova, E.; Van Luc, P.; Spiridonov, S. Neoalloionema tricaudatum gen. n., sp. n.(Nematoda: Alloionematidae) associated with a cyclophorid snail in Cuc Phuong Natural Park, Vietnam. Nematology 2016, 18, 109–120. [Google Scholar] [CrossRef]
- Ross, J.L.; Ivanova, E.S.; Severns, P.M.; Wilson, M.J. The role of parasite release in invasion of the USA by European slugs. Biol. Invasions 2010, 12, 603–610. [Google Scholar] [CrossRef]
- Charwat, S.M.; Davies, K.A. Laboratory screening of nematodes isolated from South Australia for potential as biocontrol agents of helicid snails. J. Invertebr. Pathol. 1999, 74, 55–61. [Google Scholar] [CrossRef]
- Ross, J.L.; Ivanova, E.S.; Sirgel, W.F.; Malan, A.P.; Wilson, M.J. Diversity and distribution of nematodes associated with terrestrial slugs in the Western Cape Province of South Africa. J. Helminthol. 2012, 86, 215. [Google Scholar] [CrossRef] [PubMed]
- Nermuť, J.; Půža, V.; Mekete, T.; Mráček, Z. Phasmarhabditis bonaquaense n. sp. (Nematoda: Rhabditidae), a new slug-parasitic nematode from the Czech Republic. Zootaxa 2016, 4179, 530–546. [Google Scholar] [CrossRef]
- Kaya, H.K.; Mitani, D.R. Molluscicidal nematodes for the biological control of pest slugs. Slosson Rep. 2000, 14, 1–5. [Google Scholar]
- Ross, J.L.; Pieterse, A.; Malan, A.P.; Ivanova, E. Phasmarhabditis safricana n. sp. (Nematoda: Rhabditidae), a parasite of the slug Deroceras reticulatum from South Africa. Zootaxa 2018, 4420, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.L.; Haukeland, S.; Hatteland, B.A.; Ivanova, E.S. Angiostoma norvegicum n. sp. (Nematoda: Angiostomatidae) a parasite of arionid slugs in Norway. Syst. Parasitol. 2017, 94, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Karimi, J.; Kharazi-Pakdel, A.; Robert, S.J. Report of pathogenic nematode of slugs, Phasmarhabditis hermaphrodita (Nematoda: Rhabditida) in Iran. J. Entomol. Soc. Iran 2003, 22, 77–78. [Google Scholar]
- France, A.; Gerding, M. Discovery of Phasmarhabditis hermaphrodita in Chile and its pathological differences with the UK isolate in slug control. J. Nematol. 2000, 32, 430. [Google Scholar]
- Wilson, M.; Grewal, P.S. Biology, production and formulation of slug-parasitic nematodes. In Nematodes as Biological Control Agents; Grewal, P.S., Ehlers, R.-U., Shapiro-Ilan, D.I., Eds.; CAB International: Wallingford, UK, 2005; 421p. [Google Scholar]
- Pieterse, A.; Tiedt, L.R.; Malan, A.P.; Ross, J.L. First record of Phasmarhabditis papillosa (Nematoda: Rhabditidae) in South Africa, and its virulence against the invasive slug, Deroceras panormitanum. J. Nematol. 2017, 19, 1035–1050. [Google Scholar] [CrossRef]
- Wilson, M.J.; Wilson, D.J.; Aalders, L.T.; Tourna, M. Testing a new low-labour method for detecting the presence of Phasmarhabditis spp. in slugs in New Zealand. J. Nematol. 2016, 18, 925–931. [Google Scholar] [CrossRef]
- Carnaghi, M.; Rae, R.; De Ley, I.T.; Johnston, E.; Kindermann, G.; Mc Donnell, R.; O’Hanlon, A.; Reich, I.; Sheahan, J.; Williams, C.D.; et al. Nematode associates and susceptibility of a protected slug (Geomalacus maculosus) to four biocontrol nematodes. Biocontrol Sci. Technol. 2017, 27, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Brophy, T.; Howe, D.K.; Denver, D.R.; Luong, L.T. First report of a gastropod parasitic nematode Phasmarhabditis californica (Nematoda: Rhabditidae) in Alberta, Canada. J. Nematol. 2020, 52, 1–3. [Google Scholar] [CrossRef]
- Azzam, K.M.; Tawfik, M.F.S.; Dokki, G. Capability of the nematoide Phasmarhabditis tawfiki Azzam to infect some snails, slugs and insect larvae in the laboratory. J. Egypt. Ger. Soc. Zool. 2003, 42, 27–32. [Google Scholar]
- Pieterse, A.; Rowson, B.; Tiedt, L.; Malan, A.P.; Haukeland, S.; Ross, J.L. Phasmarhabditis kenyaensis n. sp.(Nematoda: Rhabditidae) from the slug, Polytoxon robustum, in Kenya. J. Nematol. 2020, 23, 229–245. [Google Scholar] [CrossRef]
- Zhang, C.N.; Liu, Q.Z. Phasmarhabditis zhejiangensis sp. nov. (Nematoda: Rhabditidae), a new rhabditid nematode from Zhejiang, China. PLoS ONE 2020, 15, e0241413. [Google Scholar] [CrossRef]
- Nermuť, J.; Půža, V.; Mekete, T.; Mráček, Z. Phasmarhabditis bohemica n. sp. (Nematoda: Rhabditidae), a slug-parasitic nematode from the Czech Republic. J. Nematol. 2017, 19, 93–107. [Google Scholar] [CrossRef]
- Laznik, Z.; Ross, J.L.; Trdan, S. Massive occurrence and identification of the nematode Alloionema appendiculatum Schneider (Rhabditida: Alloionematidae) found in Arionidae slugs in Slovenia. Acta Agric. Slov. 2010, 95, 43–49. [Google Scholar]
- Ross, J.L.; Ivanova, E.S.; Hatteland, B.A.; Brurberg, M.B.; Haukeland, S. Survey of nematodes associated with terrestrial slugs in Norway. J. Helminthol. 2016, 90, 583. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.L.; Malan, A.P.; Ivanova, E.S. Angiostoma margaretae n. sp (Nematoda: Angiostomatidae), a parasite of the milacid slug Milax gagates Draparnaud collected near Caledon, South Africa. Syst. Parasitol. 2011, 79, 71–76. [Google Scholar] [CrossRef]
- Ivanova, E.S.; Wilson, M.J. Two new species of Angiostoma Dujardin, 1845 (Nematoda: Angiostomatidae) from British terrestrial molluscs. Syst. Parasitol. 2009, 74, 113–124. [Google Scholar] [CrossRef]
- Mc Donnell, R.J.; Paine, T.D.; Mulkeen, C.J.; Gormally, M.J. Effects of temperature and prey availability on the malacophagous larval stage of Sepedon spinipes (Scopoli)(Diptera: Sciomyzidae): Potential biocontrol for gastropod vectors of parasitic diseases. Biol. Control 2014, 70, 42–47. [Google Scholar] [CrossRef]
- Knutson, L.V.; Vala, J.C. Biology of Snail-Killing Sciomyzidae Flies; Cambridge University Press: Cambridge, UK, 2011; 584p. [Google Scholar]
- Berg, C.O. Sciomyzid larvae (Diptera) that feed on snails. J. Parasitol. 1953, 39, 630–636. [Google Scholar] [CrossRef]
- Knutson, L.V.; Stephenson, J.W.; Berg, C.O. Biology of a slug-killing fly, Tetanocera elata (Diptera: Sciomyzidae). J. Molluscan Stud. 1965, 36, 213–220. [Google Scholar]
- Murphy, W.L.; Knutson, L.V.; Chapman, E.G.; Mc Donnell, R.J.; Williams, C.D.; Foote, B.A.; Vala, J.C. Key aspects of the biology of snail-killing Sciomyzidae flies. Annu. Rev. Entomol. 2012, 57, 425–447. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, W.; McDonnell, R.J.; Williams, C.D.; Knutson, L.; Gormally, M.J. Biology of the snail-killing fly Ilione albiseta (Scopoli, 1763)(Diptera: Sciomyzidae). Stud. Dipterol. 2009, 16, 245–307. [Google Scholar]
- Khaghaninia, S.; Kazerani, F.; Vala, J.C. New Data about Snail-Killing Flies (Diptera, Sciomyzidae) in Iran. Vestn. Zool. 2018, 52, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Vala, J.C.; Murphy, W.L.; Knutson, L.; Rozkošný, R. A cornucopia for Sciomyzidae (Diptera). Stud. Dipterol. 2012, 19, 67–137. [Google Scholar]
- Reidenbach, J.M.; Vala, J.C.; Ghamizi, M. Slug-killings Sciomyzidae (Diptera): Potential Agents in the Biological Control of Crop Pest Molluscs; Monograph-British Crop Protection Council: Guildford, UK, 1989; pp. 273–280. [Google Scholar]
- Coupland, J.; Baker, G. The potential of several species of terrestrial Sciomyzidae as biological control agents of pest helicid snails in Australia. Crop Prot. 1995, 14, 573–576. [Google Scholar] [CrossRef]
- Trelka, D.G.; Foote, B.A. Biology of slug-killing Tetanocera (Diptera: Sciomyzidae). Ann. Entomol. Soc. Am. 1970, 63, 877–895. [Google Scholar] [CrossRef]
- Hynes, T.M.; Giordani, I.; Larkin, M.; Mc Donnell, R.J.; Gormally, M.J. Larval feeding behaviour of Tetanocera elata (Diptera: Sciomyzidae): Potential biocontrol agent of pestiferous slugs. Biocontrol Sci. Technol. 2014, 24, 1077–1082. [Google Scholar] [CrossRef]
- Foote, B.A. Biology and immature stages of snail-killing flies belonging to the genus Tetanocera (Diptera: Sciomyzidae). IV. Life histories of predators of land snails and slugs. Ann. Carnegie Mus. 2008, 77, 301–312. [Google Scholar] [CrossRef]
- Bistline-East, A.; Burke, D.; Williams, C.D.; Gormally, M.J. Habitat requirements of Tetanocera elata (Diptera: Sciomyzidae): Case study of a dry meadow in western Ireland. Agric. For. Entomol. 2020, 22, 250–262. [Google Scholar] [CrossRef]
- Asteraki, E.J. The potential of carabid beetles to control slugs in grass/clover swards. Entomophaga 1993, 38, 193–198. [Google Scholar] [CrossRef]
- Ayre, K. Evaluation of Carabids as Predators of Slugs in Arable Land. Ph.D. Thesis, University of Newcastle upon Tyne, Newcastle UK, 1995. [Google Scholar]
- Kromp, B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 1999, 74, 187–228. [Google Scholar] [CrossRef]
- Bohan, D.A.; Bohan, A.C.; Glen, D.M.; Symondson, W.O.; Wiltshire, C.W.; Hughes, L. Spatial dynamics of predation by carabid beetles on slugs. J. Anim. Ecol. 2000, 69, 367–379. [Google Scholar] [CrossRef]
- Reich, I.; Jessie, C.; Ahn, S.J.; Choi, M.Y.; Williams, C.; Gormally, M.; Mc Donnell, R. Assessment of the Biological Control Potential of Common Carabid Beetle Species for Autumn- and Winter-Active Pests (Gastropoda, Lepidoptera, Diptera: Tipulidae) in Annual Ryegrass in Western Oregon. Insects 2020, 11, 722. [Google Scholar] [CrossRef]
- Symondson, W.O.C. The potential of Abax parallelepipedus (Col.: Carabidae) for mass breeding as a biological control agent against slugs. Entomophaga 1994, 39, 323–333. [Google Scholar] [CrossRef]
- Tod, M.E. Notes on beetle predators of molluscs. Entomologist 1973, 106, 196–201. [Google Scholar]
- Digweed, S.C. Selection of terrestrial gastropod prey by Cychrine and Pterostichine ground beetles (Coleoptera: Carabidae). Can. Entomol. 1993, 125, 463–472. [Google Scholar] [CrossRef]
- Ayre, K. Effect of predator size and temperature on the predation of Deroceras reticulatum (Muller)(Mollusca) by carabid beetles. J. Appl. Entomol. 2001, 125, 389–395. [Google Scholar] [CrossRef]
- Hatteland, B.A. Predation by Carabid Beetles (Coleoptera, Carabidae) on the Invasive Iberian Slug Arion lusitanicus. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2010. [Google Scholar]
- Symondson, W.O. Coleoptera (Carabidae, Staphylinidae, Lampyridae, Drilidae and Silphidae) as predators of terrestrial gastropods. In Natural Enemies of Terrestrial Molluscs; Barker, G.M., Ed.; CABI: Wallingford, UK, 2004; pp. 37–84. [Google Scholar]
- McKemey, A.R.; Symondson, W.O.C.; Glen, D.M.; Brain, P. Effects of slug size on predation by Pterostichus melanarius (Coleoptera: Carabidae). Biocontrol Sci. Technol. 2001, 11, 81–91. [Google Scholar] [CrossRef]
- Symondson, W.O.C.; Cesarini, S.; Dodd, P.W.; Harper, G.L.; Bruford, M.W.; Glen, D.M.; Wiltshire, C.W.; Harwood, J.D. Biodiversity vs. biocontrol: Positive and negative effects of alternative prey on control of slugs by carabid beetles. Bull. Entomol. Res. 2006, 96, 637. [Google Scholar] [CrossRef]
- Harper, G.L.; King, R.A.; Dodd, C.S.; Harwood, J.D.; Glen, D.M.; Bruford, M.W.; Symondson, W.O.C. Rapid screening of invertebrate predators for multiple prey DNA targets. Mol. Ecol. 2005, 14, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.S.; Glen, D.M.; Symondson, W.O.C. Prey detection through olfaction by the soil-dwelling larvae of the carabid predator Pterostichus melanarius. Soil Biol. Biochem. 2008, 40, 207–216. [Google Scholar] [CrossRef]
- Oberholzer, F.; Frank, T. Predation by the carabid beetles Pterostichus melanarius and Poecilus cupreus on slugs and slug eggs. Biocontrol Sci. Technol. 2003, 13, 99–110. [Google Scholar] [CrossRef]
- El-Danasoury, H.; Iglesias-Piñeiro, J. Predation by polyphagous carabid beetles on eggs of a pest slug: Potential implications of climate change. J. Appl. Entomol. 2018, 142, 340–348. [Google Scholar] [CrossRef]
- Barker, G.M. Biology of slugs (Agriolimacidae and Arionidae: Mollusca) in New Zealand hill country pastures. Oecologia 1991, 85, 581–595. [Google Scholar] [CrossRef]
- Bless, R. Investigations into the question of the predator-prey ratio of carabids and gastropods. Number Schadl. Plant Prot. Environ. Prot. 1977, 50, 55–57. [Google Scholar]
- Foltan, P.; Sheppard, S.; Konvicka, M.; Symondson, W.O. The significance of facultative scavenging in generalist predator nutrition: Detecting decayed prey in the guts of predators using PCR. Mol. Ecol. 2005, 14, 4147–4158. [Google Scholar] [CrossRef]
- Pakarinen, E. The importance of mucus as a defence against carabid beetles by the slugs Arion fasciatus and Deroceras reticulatum. J. Molluscan Stud. 1994, 60, 149–155. [Google Scholar] [CrossRef]
- O’Hanlon, A.; Williams, C.D.; Gormally, M.J. Terrestrial slugs (Mollusca: Gastropoda) share common anti-predator defence mechanisms but their expression differs among species. J. Zool. 2019, 307, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Chapman, R.B.; Simeonidis, A.S.; Smith, J.T. Evaluation of metallic green ground beetle as a predator of slugs. In Proceedings of the New Zealand Plant Protection Conference, Auckland, New Zealand, 1 August 1997; New Zealand Plant Protection Society: Auckland, New Zealand, 1997; pp. 51–55. [Google Scholar]
- Reich, I.; Jessie, C.; Colton, A.; Gormally, M.; Mc Donnell, R. Guide to Ground Beetles in Grass Seed Crops Grown in the Willamette Valley, Oregon; Oregon State University Extension Service: Oregon, USA, 2021; pp. 1–29. [Google Scholar]
- Tulli, M.C.; Carmona, D.M.; López, A.N.; Manetti, P.L.; Vincini, A.M.; Cendoya, G. Predation on the slug Deroceras reticulatum (Pulmonata: Stylommatophora) by Scarites anthracinus (Coleoptera: Carabidae). Ecología Austral 2009, 19, 055–061. [Google Scholar]
- Oberholzer, F.; Escher, N.; Frank, T. The potential of carabid beetles (Coleoptera) to reduce slug damage to oilseed rape in the laboratory. Eur. J. Entomol. 2003, 100, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Barbosa, P.; Lima, A.S.; Vieira, P.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Nematicidal activity of essential oils and volatiles derived from Portuguese aromatic flora against the pinewood nematode, Bursaphelenchus xylophilus. J. Nematol. 2010, 42, 8. [Google Scholar] [PubMed]
- EL-Kamali, H.H.; EL-Nour, R.O.; Khalid, S.A. Molluscicidal activity of the essential oils of Cymbopogon nervatus leaves and Boswellia papyrifera resins. Curr. Res. J. Biol. Sci. 2010, 2, 139–142. [Google Scholar]
- Barua, A.; Roy, S.; Handique, G.; Bora, F.R.; Rahman, A.; Pujari, D.; Muraleedharan, N. Clove oil efficacy on the red spider mite, Oligonychus coffeae Nietner (Acari: Tetranychidae) infesting tea plants. Proc. Zool. Soc. 2017, 70, 92–96. [Google Scholar] [CrossRef]
- Mc Donnell, R.; Yoo, J.; Patel, K.; Rios, L.; Hollingsworth, R.; Millar, J.; Paine, T. Can essential oils be used as novel drench treatments for the eggs and juveniles of the pest snail Cornu aspersum in potted plants? J. Pest Sci. 2016, 89, 549–555. [Google Scholar] [CrossRef]
- Deletre, E.; Schatz, B.; Bourguet, D.; Chandre, F.; Williams, L.; Ratnadass, A.; Martin, T. Prospects for repellent in pest control: Current developments and future challenges. Chemoecology 2016, 26, 127–142. [Google Scholar] [CrossRef]
- Miller, J.R.; Cowles, R.S. Stimulo-deterrent diversion: A concept and its possible application to onion maggot control. J. Chem. Ecol. 1990, 16, 3197–3212. [Google Scholar] [CrossRef] [PubMed]
- Ali, A. Repellent, Antifeedant & Molluscicidal Effects of Commiphora spp. Oleoresins, and Their Extracts, on Deroceras reticulatum and Helix aspersa. Ph.D. Thesis, Cardiff University, Cardiff UK, 2005. [Google Scholar]
- Lindqvist, I.; Lindqvist, B.; Tiilikkala, K. Birch tar oil is an effective mollusc repellent: Field and laboratory experiments using Arianta arbustorum (Gastropoda: Helicidae) and Arion lusitanicus (Gastropoda: Arionidae). Agric. Food Sci. 2010, 19, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Laznik, Ž.; Majić, I.; Horvat, A.; Trdan, S. Contact Efficacy of Different Wood Ashes against Spanish Slug, Arion vulgaris (Gastropoda: Arionidae). Appl. Sci. 2020, 10, 8564. [Google Scholar] [CrossRef]
- Nechev, J.; Stefanov, K.; Popov, S. Effect of cobalt ions on lipid and sterol metabolism in the marine invertebrates Mytilus galloprovincialis and Actinia equina. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 144, 112–118. [Google Scholar] [CrossRef] [PubMed]
- O’Hanlon, A.; Fahy, R.; Gormally, M.J. Indication of interference competition between the EU-protected Kerry slug Geomalacus maculosus and the native tree slug Lehmannia marginata in Ireland. J. Molluscan Stud. 2020, 86, 389–400. [Google Scholar] [CrossRef]
- Mc Donnell, R.; O’Meara, K.; Nelson, B.; Marnell, F.; Gormally, M. Revised distribution and habitat associations for the protected slug Geomalacus maculosus (Gastropoda, Arionidae) in Ireland. Basteria 2013, 77, 33–37. [Google Scholar]
- Amirmohammadi, F.; Sendi, J.J.; Zibaee, A. Toxicity and physiological effect of essential oil of Artemisia annua (Labiatae) on Agriolimax agrestis L. (Stylommatophora: Limacidae). J. Plant Prot. Res. 2012, 52, 185–189. [Google Scholar] [CrossRef]
- Iglesias, J.; Castillejo, J.; Ester, A. Laboratory evaluation of potential molluscicides for the control of eggs of the pest slug Deroceras reticulatum (Müller)(Pulmonata: Limacidae). Int. J. Pest Manag. 2002, 48, 19–23. [Google Scholar] [CrossRef]
- Frank, T.; Biert, K.; Speiser, B. Feeding deterrent effect of carvone, a compound from caraway seeds, on the slug Arion lusitanicus. Ann. Appl. Biol. 2002, 141, 93–100. [Google Scholar] [CrossRef]
- González-Cruz, D.; San Martín, R. Molluscicidal effects of saponin-rich plant extracts on the grey field slug. J. Agric. Nat. Resour. 2013, 40, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Zolovs, M.; Jakubāne, I.; Kirilova, J.; Kivleniece, I.; Moisejevs, R.; Koļesnikova, J.; Pilāte, D. The potential antifeedant activity of lichen-forming fungal extracts against the invasive Spanish slug (Arion vulgaris). Can. J. Zool. 2020, 98, 195–201. [Google Scholar] [CrossRef]
- Laznik, Ž.; Trdan, S. Is a combination of different natural substances suitable for slug (Arion spp.) control? Span. J. Agric. Res. 2016, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Howe, D.K.; Ha, A.D.; Colton, A.; De Ley, I.T.; Rae, R.G.; Ross, J.; Wilson, M.; Nermut, J.; Zhao, Z.; Mc Donnell, R.J.; et al. Phylogenetic evidence for the invasion of a commercialized European Phasmarhabditis hermaphrodita lineage into North America and New Zealand. PLoS ONE 2020, 15, e0237249. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Lee, W.S.; Ehsani, R.J.; Albrigo, L.G.; Yang, C.; Mangan, R.L. Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques. J. Appl. Remote Sens. 2012, 6, 063542. [Google Scholar]
- Brown, R.B.; Noble, S.D. Site-specific weed management: Sensing requirements—What do we need to see? Weed Sci. 2005, 53, 252–258. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef] [Green Version]
- Berg, C.O.; Knutson, L. Biology and systematics of the Sciomyzidae. Annu. Rev. Entomol. 1978, 23, 239–258. [Google Scholar] [CrossRef]
- Williams, C.D.; Knutson, L.V.; Gormally, M.J. Host snails, habitats, egg deposition and biological/ecological equivalency of the snail-killing fly Colobaea bifasciella (Fallen)(Diptera: Sciomyzidae). Stud. Dipterol. 2013, 20, 97–112. [Google Scholar]
- Pearce, J.L.; Venier, L.A. The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: A review. Ecol. Indic. 2006, 6, 780–793. [Google Scholar] [CrossRef]
- Rainio, J.; Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 2003, 12, 487–506. [Google Scholar] [CrossRef]
- Ngoh, S.P.; Choo, L.E.; Pang, F.Y.; Huang, Y.; Kini, M.R.; Ho, S.H. Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach, Periplaneta americana (L.). Pestic. Sci. 1998, 54, 261–268. [Google Scholar] [CrossRef]
- Barnard, D.R. Repellency of essential oils to mosquitoes (Diptera: Culicidae). J. Med. Entomol. 1999, 36, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Koppenhöfer, A.M.; Brown, I.M.; Gaugler, R.; Grewal, P.S.; Kaya, H.K.; Klein, M.G. Synergism of entomopathogenic nematodes and imidacloprid against white grubs: Greenhouse and field evaluation. Biol. Control 2000, 19, 245–251. [Google Scholar] [CrossRef]
- Amizadeh, M.; Hejazi, M.J.; Niknam, G.; Askari-Saryazdi, G. Interaction between the entomopathogenic nematode, Steinernema feltiae and selected chemical insecticides for management of the tomato leafminer, Tuta absoluta. Biol. Control 2019, 64, 709–721. [Google Scholar] [CrossRef]
Nematode Species | Host Slug Species | Geographical Location | Reported by |
---|---|---|---|
P. hermaphrodita | D. reticulatum, D. caruanae, D. invadens, A. distinctus, A. silvaticus, A. intermedius, A. ater, A. lusitanicus, T. sowerbyi, T. budapestensis | UK | [17,23,37,38] |
P. iberica (Limacidae) | Iran | [51] | |
D. reticulatum | USA | [33] | |
D. reticulatum, D. laeve and L. valentiana | California | [34] | |
D. reticulatum | New Zealand | [36] | |
D. reticulatum | Chile | [52] | |
Lehmannia marginata | Egypt | [17] | |
P. neopapillosa | L. cinereoniger | UK | [53] |
D. reticulatum, D. panormitanum, A. ater, A. distinctus | UK | [44] | |
P. papillosa | D. panormitanum, D. reticulatum | South Africa | [54] |
A. vulgaris | Slovenia | [42] | |
D. reticulatum | USA | [35] | |
P. californica | A. hortensis agg., D. reticulatum and L. valentiana | USA | [35] |
New Zealand | [55] | ||
G. maculosus (non-pathogenic) | Europe | [56] | |
A.rufus | Canada | [57] | |
P. safricana | D. reticulatum | South Africa | [49] |
P. apuliae | M. sowerbyi and M. gagates | Italy | [47] |
P. tawfiki | L. flavus | Egypt | [58] |
P. kenyaensis | P. robustum | Kenya | [59] |
P. zhejiangensis | P. bilineatus Benson, PB | China | [60] |
P. bonaquaense | M. tenellus | Czech Republic | [47] |
P. bohemica | D. reticulatum | Czech Republic | [61] |
Sciomyzid Species | Host Slug | Geographical Location | Reported by |
---|---|---|---|
Euthycera arcuate | Pallifera spp., Philomycus spp. | North America | [6,67,76] |
Euthycera chaerophylli | Deroceras spp. | Not specified | [67] |
Euthycera cribrata | D. reticulatum | Not specified | [1] |
Euthycera stichospila | Not specified | Not specified | [1] |
Limnia unguicornis | Not specified | Not specified | [1] |
Tetanocera clara | P. morse, P. rafinesque | USA (New York and Ohio) | [76] |
Tetanocera elata | D. reticulatum,D. invadens, Deroceras laeve, A. hortensis, A. fasciatus, A. intermedius, L. flavus, M. tenellus, T. budapestensi, T. sowerbyi, G. maculosus (protected slug species) | Ireland | [15,19,77,79] |
Tetanocera plebeja | D.slaeve, D. reticulatum | USA (Ohio) | [78] |
Tetanocera valida | Deroceras spp. | North America | [76] |
Carabid Species | Host Slug | Geographical Location | Reported by |
---|---|---|---|
Abax ater | A. subfuscus, A. intermedius, A. circumscriptus, A. rufus, L. tenellus | Germany | [98] |
Abax parallelepipedus | D. reticulatum, Arion spp. | Norway | [80,89] |
Abax parallelus | Not specified | Not specified | [89] |
Agonum muelleri | Not specified | USA | [84] |
Amara aulica | Not specified | Norway | [89] |
Amara lunicolis | Not specified | Norway | [89] |
Amara similata | Not specified | Norway | [89] |
Calosoma frigidum | A. ater | Not specified | [89] |
Carabus nemoralis | A. lusitanicus, A. ater, D. reticulatum | Norway, UK | [81,89] |
Carabus granulatus | A. lusitanicus, D. reticulatum | Austria | [89] |
Carabus problematicus | Not specified | Europe | [88] |
Carabus violaceus | A. fasciatus, D. reticulatum | Norway, UK | [81,89] |
Pterostichus madidus | D. reticulatum | UK | [80] |
Pterostichus melanarius | A. lusitanicus (eggs), D. retuculatum, A. distinctus, A. subfuscus, L. marginate, M. tenellus, T. budapestensis | Norway, UK, Czech Republic | [89,99] |
Pterostichus niger | A. lusitanicus, Arion fasciatus, D. reticulatum | Ireland, Finland, Norway, UK | [81,89,100,101] |
Pterostichus aethiops | Not specified | Not specified | [89] |
Cychrus attenuatus | Not specified | Not specified | [89] |
Cychrus caraboides | D. reticulatum, A. fasciatus, A. vulgaris (eggs/juveniles) | UK, Finland | [81,100] |
Cyclotrachelus alternas | Not specified | Not specified | [89] |
Diplocheila striatopunctata | A. ater | Not specified | [89] |
Harpalus aeneus | D.reticulatum | UK | [88] |
Harpalus latus | Not specified | Norway | [89] |
Harpalus rufipes | D. reticulatum (eggs) | Spain | [96] |
Megadromus antarcticus | D. panormitanum, D.reticulatum | New Zealand | [102] |
Nebria brevicollis | D. reticulatum | UK, USA | [84,88] |
Poecilus cupreus | A. lusitanicus, D. reticulatum | Switzerland | [95] |
Poecilus laetulus | Not specified | USA | [103] |
Poecilus lucublandus | Not specified | Not specified | [89] |
Poecilus nigrita | Not specified | Norway | [89] |
Poecilus oblongopunctatus | Not specified | Norway | [89] |
Scaphinotus marginatus | D. reticulatum | Not specified | [87] |
Scarites anthracinus | D.reticulatum | Argentina | [104] |
Product Class | Product Names | Effect | Target Slug | Reported By |
---|---|---|---|---|
Essential Oils | Thyme, spearmint, pine, peppermint, garlic, rosemary, lemongrass and cinnamon oil | Toxic effect | D. reticulatum | [22] |
Sweet wormwood oil | Toxic and physiological effect | Agriolimax agrestis | [119] | |
Neem oil | Ovicidal effect | D. reticulatum | [120] | |
Birch tar oil | Repellent effect | A. lusitanicus | [114] | |
Myrrhs oil (Commiphora molmol and Commiphora guidotti) | Repellent effect | D. reticulatum | [113] | |
Carvone (natural compound present in caraway seed oils) | Antifeedant effect | A. lusitanicus | [121] | |
Plant Extracts | Geranium robertianum, Lepidium sativum, Origanum vulgare, Salvia officinalis, Salvia pratensis, Saponaha officinalis, Thymus vulgaris, Trifolium repens and Valerianella locusta | Antifeedant effect | A. lusitanicus | [20] |
Invasive Plant species extract (Japanese knotweed, Bohemian knotweed, Canadian goldenrod, Giant goldenrod, Staghorn sumac, Tree of heaven False indigo) | Toxic, repellent and antifeedant effect | A. vulgaris, Arion rufus | [115] | |
Saponin-rich plant extracts (Camellia oleifera, Gleditsia amorphoides and Quillaja saponaria) | Toxic and antifeedant effect | D.reticulatum | [122] | |
Microbes | Fungal extract | Antifeedant effect | A. vulgaris | [123] |
Verticillium chlamydosporium | Ovicidal effect | Not mentioned | [32] | |
Arthrobotrys was found to be parasitising the eggs of the slug D. reticulatum | Ovicidal effect | D. reticulatum | [32] | |
Others | Caffeine | Toxic effect, repellent effect | D. reticulatum, Veronicella cubensis | [21,22] |
Hydrated lime | Toxic and repellent effect | Arion sp. | [124] | |
Plant wood ash | Toxic, antifeedant and repellent effect | A. vulgaris | [115] | |
Mucus of Kerry slugs | Repellent effect | L. marginata | [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barua, A.; Williams, C.D.; Ross, J.L. A Literature Review of Biological and Bio-Rational Control Strategies for Slugs: Current Research and Future Prospects. Insects 2021, 12, 541. https://doi.org/10.3390/insects12060541
Barua A, Williams CD, Ross JL. A Literature Review of Biological and Bio-Rational Control Strategies for Slugs: Current Research and Future Prospects. Insects. 2021; 12(6):541. https://doi.org/10.3390/insects12060541
Chicago/Turabian StyleBarua, Archita, Christopher D. Williams, and Jenna L. Ross. 2021. "A Literature Review of Biological and Bio-Rational Control Strategies for Slugs: Current Research and Future Prospects" Insects 12, no. 6: 541. https://doi.org/10.3390/insects12060541
APA StyleBarua, A., Williams, C. D., & Ross, J. L. (2021). A Literature Review of Biological and Bio-Rational Control Strategies for Slugs: Current Research and Future Prospects. Insects, 12(6), 541. https://doi.org/10.3390/insects12060541