Novel RNA Viruses from the Transcriptome of Pheromone Glands in the Pink Bollworm Moth, Pectinophora gossypiella
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collection and Pheromone Gland Extraction
2.2. RNA Isolation and Illumina Sequencing
2.3. De Novo Assembly of Short Reads and Gene Annotation
2.4. Sequence and Phylogenetic Analysis
3. Results
3.1. Identification of Sequences Derived from Putative Viruses
3.2. Analysis of Positive-Sense Single-Stranded RNA Viruses
3.3. Negative-Sense Single-Stranded RNA Viruses
3.4. Endogenous Viral Elements (EVE) Derived from RNA Viruses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carrière, Y.; Ellers-Kirk, C.; Sisterson, M.; Antilla, L.; Whitlow, M.; Dennehy, T.J. Long-term regional suppression of pink bollworm by Bacillus thuringiensis cotton. Proc. Natl. Acad. Sci. USA 2003, 100, 1519–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabashnik, B.E.; Liu, Y.B.; Dennehy, T.J.; Sims, M.A.; Sisterson, M.S.; Biggs, R.W.; Carrière, Y. Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol. 2002, 95, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Critchley, B.R.; Campion, D.G.; Mcveigh, L.J.; Hunter-Jones, P. Control of pink boll worm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), in Egypt by mating disruption using an aerially applied microencapsulated pheromone formulation. Bull. Entomol. Res. 1983, 73, 289–299. [Google Scholar] [CrossRef]
- Dou, X.; Liu, S.; Soroker, V.; Harari, A.; Jurenka, R. Pheromone gland transcriptome of the pink bollworm moth, Pectinophora gossypiella: Comparison between a laboratory and field population. PLoS ONE 2019, 14, e0220187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, M.R.; Kanavel, R.F. Potential of bait formulations to increase effectiveness of nuclear polyhedrosis virus against the pink bollworm. J. Econ. Entomol. 1975, 68, 389–391. [Google Scholar] [CrossRef]
- Bell, M.R.; Kanavel, R.F. Field tests of a nuclear polyhedrosis virus in a bait formulation for control of pink bollworms and Heliothis spp. in cotton in Arizona. J. Econ. Entomol. 1997, 70, 625–629. [Google Scholar] [CrossRef]
- Vail, P.V.; Jay, D.L.; Hunter, D.K.; Staten, R.T. A nuclear polyhedrosis virus infective to the pink bollworm, Pectinophora gossypiella. J. Invertebr. Pathol. 1972, 20, 124–128. [Google Scholar] [CrossRef]
- Monsarrat, A.; Abol-Ela, S.; Abdel-Hamid, I.; Fediere, G.; Kuhl, G.; EI Husseini, M.; Giannotti, J. A new RNA picorna-like virus in the cotton pink bollworm Pectinophora gossypiella. (LEP: Gelechiidae) in Egypt. Entomophaga 1995, 40, 47–54. [Google Scholar] [CrossRef]
- Liu, S.; Vijayendran, D.; Bonning, B.C. Next generation sequencing technologies for insect virus discovery. Viruses 2011, 3, 1849–1869. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, Y.; Bonning, B.C. RNA virus discovery in insects. Curr. Opin. Insect Sci. 2015, 8, 54–61. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Coates, B.S.; Bonning, B.C. Endogenous viral elements integrated into the genome of the soybean aphid, Aphis glycines. Insect Biochem. Mol. Biol. 2020, 123, 103405. [Google Scholar] [CrossRef]
- Kumar, S.; Strcher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Tassone, E.E.; Zastrow-Hayes, G.; Mathis, J.; Nelson, M.E.; Wu, G.; Lindsey Flexner, J.; Carriere, Y.; Tabashnik, B.E.; Fabrick, J.A. Sequencing, de novo assembly and annotation of a pink bollworm larval midgut transcriptome. GigaScience 2016, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Nouri, S.; Salem, N.; Nigg, J.C.; Falk, B.W. Diverse array of new viral sequences identified in worldwide population of the Asian citrus psyllid (Diaphorina citri) using viral metagenomics. J. Virol. 2016, 90, 2434–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.; Qin, X.; Li, J.; Cao, J.; Eden, J.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Dolja, V.V.; Morris, T.J. Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 2018, 28, 375–430. [Google Scholar] [CrossRef] [PubMed]
- Amroun, A.; Priet, S.; de Lamballerie, X.; Querat, G. Bunyaviridae RdRps: Structure, motifs, and RNA synthesis machinery. Crit. Rev. Microbiol. 2017, 43, 753–778. [Google Scholar] [CrossRef] [PubMed]
- Reguera, J.; Weber, F.; Cusack, S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 2010, 6, e1001101. [Google Scholar] [CrossRef]
- Bruenn, J.A. A structural and primary sequence comparison of the viral RNA dependent RNA polymerases. Nucleic Acids Res. 2003, 31, 1821–1829. [Google Scholar] [CrossRef]
- Elbeaino, T.; Diagiaro, M.; Alabdullah, A.; De Stradis, A.; Minafra, A.; Mielke, N.; Castellano, M.A.; Martelli, G.P. A multipartite single-stranded negative-sense RNA virus is the putative agent of Figure mosaic disease. J. Gen. Virol. 2009, 90, 1281–1288. [Google Scholar] [CrossRef]
- Parrish, N.F.; Tomonaga, K. Endogenized viral sequences in mammals. Curr. Opin. Microbiol. 2016, 31, 176–183. [Google Scholar] [CrossRef]
- Chiu, C.Y. Viral pathogen discovery. Curr. Opin. Microbiol. 2013, 16, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Lipkin, W.I.; Firth, C. Viral surveillance and discovery. Curr. Opin. Virol. 2013, 3, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, D.; Isawa, H.; Fujita, R.; Murota, K.; Itokawa, K.; Higa, Y.; Katayama, Y.; Sasaki, T.; Mizutani, T.; Iwanage, S.; et al. Isolation and characterization of a new iflavirus from Armigeres spp. mosquitoes in the Philippines. J. Gen. Virol. 2017, 98, 2876–2881. [Google Scholar] [CrossRef]
- Smith, G.; Macias-Munoz, A.; Briscoe, A.D. Genome sequence of a novel iflavirus from mRNA sequencing of the butterfly Heliconius erato. Genome Announc. 2014, 2, e0039814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparks, M.E.; Gundersen-Rindal, D.E.; Harrison, R.L. Complete genome sequence of a novel iflavirus from the transcriptome of Halyomorpha halys, the brown marmorated stink bug. Genome Announc. 2013, 1, e00910-13. [Google Scholar] [CrossRef] [Green Version]
- Barba, M.; Czosnek, H.; Hadidi, A. Historical perspective, development and application of next-generation sequencing in plant virology. Viruses 2014, 6, 106–136. [Google Scholar] [CrossRef] [PubMed]
- Hany, U.; Adams, I.P.; Glover, R.; Bhat, A.I.; Boonham, N. The complete genome sequence of piper yellow mottle virus (PYMoV). Arch. Virol. 2014, 159, 385–388. [Google Scholar] [CrossRef]
- Chiapello, M.; Rodríguez-Romero, J.; Ayllón, M.A.; Turinam, M. Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol. 2020, 6, veaa058. [Google Scholar] [CrossRef]
- Nerva, L.; Forgia, M.; Ciuffo, M.; Chitarra, W.; Chiapello, M.; Vallino, M.; Varese, G.C.; Turina, M. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Res. 2019, 273, 197737. [Google Scholar] [CrossRef]
- Sutela, S.; Forgia, M.; Vainio, E.J.; Chiapello, M.; Daghino, S.; Vallino, M.; Martino, E.; Girlanda, M.; Perotto, S.; Turina, M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 2020, 6, veaa076. [Google Scholar] [CrossRef]
- Li, R.; Gao, S.; Hernandez, A.G.; Wechter, W.P.; Fei, Z.; Ling, K.S. Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS ONE 2012, 7, e37127. [Google Scholar] [CrossRef]
- Zografidis, A.; Nieuwerburgh, F.V.; Kolliopoulou, A.; Apostolou-Karampelis, K.; Head, S.R.; Defore, D.; Smagghe, G.; Swevers, L. Viral small-RNA analysis of Bombyx mori larval midgut during persistent and pathogenic cytoplasmic polyhedrosis virus infection. J. Virol. 2015, 89, 11473–11486. [Google Scholar] [CrossRef] [Green Version]
- Ballou, H.A. The pink bollworm (Gelechia gossypiella) in Egypt. J. Econ. Entomol. 1918, 11, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Hunter, W.D. The Pink Bollworm with Special Reference to the Steps Taken by the Department of Agriculture to Prevent its Establishment in the United States; Bulletin 1397; U.S. Department of Agriculture: Washington, DC, USA, 1926; p. 12. [Google Scholar]
- D’Arcy, C.J.; Burnett, P.A.; Hewings, A.D.; Goodman, R.M. Purification and characterization of a virus from the aphid Rhopalosiphum padi. Virology 1981, 112, 346–349. [Google Scholar] [CrossRef]
- Williamson, C.; Rybicki, E.P.; Kasdorf, G.G.F.; Von Wechmar, M.B. Characterization of a new picorna-like virus isolated from aphids. J. General Virol. 1988, 69, 787–795. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Watanabe, A.; Kawase, S. In vitro translation of infectious acherie virus RNA in a wheat germ and a rabbit reticulocyte system. Biochim. Biophys. Acta 1984, 781, 76–80. [Google Scholar] [CrossRef]
- Dolja, V.V.; Koonin, E.V. Metagenomics reshapes the conceptd of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 2018, 244, 36–52. [Google Scholar] [CrossRef]
- Katzourakis, A.; Gifford, R.J. Endogenous viral elements in animal genomes. PLoS Genet. 2010, 6, e1001191. [Google Scholar] [CrossRef]
- Geisler, C.; Jarvis, D. Rhabdovirus-like endogenous viral elements in the genome of Spodoptera frugiperda insect cells are actively transcribed: Implications for adventitious virus detection. Biologicals 2016, 44, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Ter Horst, A.; Nigg, J.C.; Dekker, F.M.; Falk, B.W. Endogenous viral elements are widespread in arthropod genomes and commonly give rise to PIWI-interacting RNAs. J. Virol. 2019, 93, e02124-18. [Google Scholar] [CrossRef] [Green Version]
- Tassetto, M.; Kunitomi, M.; Whitfield, Z.J.; Dolan, P.T.; Sanchez-Vargas, I.; Garcia-Knight, M.; Ribiero, I.; Chen, T.; Olson, K.E.; Andino, R. Control of RNA viruses in mosquito cell through the acquisition of vDNA and endogenous viral elements. Elife 2019, 8, e41244. [Google Scholar] [CrossRef]
- Liu, S.; Vijayendran, D.; Carrillo-Tripp, J.; Allen Miller, W.; Bonning, B.C. Analysis of new aphid lethal paralysis virus (ALPV) isolates suggests evolution of two ALPV species. J. General Virol. 2014, 95, 2809–2819. [Google Scholar] [CrossRef]
Virus | dsDNA Virus | ssRNA Virus | ||
---|---|---|---|---|
Positive-Sense | Negative-Sense | |||
Lab | 19 | 9 | 2 | 8 |
Field | 21 | 11 | 2 | 8 |
ssRNA Viruses | AA Length | Identity (Field vs. Lab) | Sequence Coverage (Field/Lab) | % of Reads (Field/Lab) |
---|---|---|---|---|
PecgV1 | 2948 | 99% | 39,250.6/4052 | 3.34/1.09 |
PecgV2-L | 2093 | 99% | 87.4/56 | 0/0 |
PecgV2-M | 724 | 99% | 49.3/168.9 | 0/0 |
PecgV2-S | 364 | 99% | 286.7/487.3 | 0/0 |
PecgV3-S | 277 | 100% | 106.1/50 | 0/0 |
PecgV3-M | 1558 | 99% | 170.8/103.2 | 0/0 |
PecgV3-L | 2502 | 99% | 709.9/632.4 | 0.05/0.14 |
PecgV4 | 2846 | 99% | 8474.6/5510.7 | 1.1/2.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, X.; Liu, S.; Soroker, V.; Harari, A.; Jurenka, R. Novel RNA Viruses from the Transcriptome of Pheromone Glands in the Pink Bollworm Moth, Pectinophora gossypiella. Insects 2021, 12, 556. https://doi.org/10.3390/insects12060556
Dou X, Liu S, Soroker V, Harari A, Jurenka R. Novel RNA Viruses from the Transcriptome of Pheromone Glands in the Pink Bollworm Moth, Pectinophora gossypiella. Insects. 2021; 12(6):556. https://doi.org/10.3390/insects12060556
Chicago/Turabian StyleDou, Xiaoyi, Sijun Liu, Victoria Soroker, Ally Harari, and Russell Jurenka. 2021. "Novel RNA Viruses from the Transcriptome of Pheromone Glands in the Pink Bollworm Moth, Pectinophora gossypiella" Insects 12, no. 6: 556. https://doi.org/10.3390/insects12060556
APA StyleDou, X., Liu, S., Soroker, V., Harari, A., & Jurenka, R. (2021). Novel RNA Viruses from the Transcriptome of Pheromone Glands in the Pink Bollworm Moth, Pectinophora gossypiella. Insects, 12(6), 556. https://doi.org/10.3390/insects12060556