Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Taxon Sampling
2.2. DNA Extraction, Mitochondrial Genome Sequencing, and Assembly
2.3. Genome Annotation and Analyses
2.4. Phylogenetic Analysis
3. Results
3.1. Genomic Structure and Base Compositions
3.2. Protein-Coding Genes
3.3. Transfer and Ribosomal RNA Genes
3.4. Control Region
3.5. Phylogenetic Analysis
4. Discussion
4.1. Features of Mitochondrial Genomes in Lampyridae
4.2. Phylogenetic Implications of Mitochondrial Genomes in Lampyridae
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Branhm, M.A. Lampyridae Latreille, 1817. In Coleoptera, Beetles: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim); Leschen, R.A.B., Beutel, R.G., Lawrence, J.F., Eds.; Walter de Gruyter: Berlin, Germany, 2010; Volume 2, pp. 141–149. [Google Scholar]
- Chen, X.; Dong, Z.; Liu, G.; He, J.; Zhao, R.; Wang, W.; Peng, Y.; Li, X. Phylogenetic analysis provides insights into the evolution of Asian fireflies and adult bioluminescence. Mol. Phylogenet. Evol. 2019, 140, 1–14. [Google Scholar] [CrossRef]
- Martin, G.J.; Stanger-Hall, K.F.; Branham, M.A.; Silveira, L.F.L.; Lower, S.E.; Hall, D.W.; Li, X.Y.; Lemmon, A.R.; Lemmon, E.M.; Bybee, S.M. Higher-level phylogeny and reclassification of Lampyridae (Coleoptera: Elateroidea). Insect Syst. Divers. 2019, 3, 1–15. [Google Scholar] [CrossRef]
- Jeng, M.L.; Yang, P.S.; Satô, M. The genus Cyphonocerus (Coleoptera, Lampyridae) from Taiwan and Japan, withnotes on the subfamily Cyphonocerinae. Elytra 1998, 26, 379–398. [Google Scholar]
- Jeng, M.L.; Yang, P.S.; Satô, M. Synopsis of Cyphonocerus (Coleoptera: Lampyridae) with the description of four new species and a key to the genus. Zool. Stud. 2006, 45, 157–167. [Google Scholar]
- Lewis, G. On the Dascillidae and Malacoderm Coleoptera of Japan. Ann. Mag. Nat. Hist. 1895, 16, 98–122. [Google Scholar] [CrossRef] [Green Version]
- Olivier, E. Lampyridae. In Coleopterorum Catalogus; Pars. 9; Schenkling, S., Ed.; W Junk: Berlin, Germany, 1910; pp. 1–68. [Google Scholar]
- Pic, M. Coléoptèresexotiques nouveaux oupeuconnus. Échange 1911, 27, 142–144. [Google Scholar]
- Pic, M. Coléoptèresnouvaeux de Chine. Bull. Soc. Entomol. Mulhouse 1955, 1955, 25–26. [Google Scholar]
- Wittmer, W. Catalogue des Drilidae, E. Oliv. (Coleoptera, Malacodermata). Rev. Soc. Entomol. Argentina 1944, 12, 203–221. [Google Scholar]
- Kundrata, R.; Bocak, L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): Is there a common tendency of click beetles to soft-bodiedness and neoteny? Zoologica Scripta. 2011, 40, 364–378. [Google Scholar] [CrossRef]
- Nakane, T. On the genus Cyphonocerus Kiesenwetter in Japan and Formosa (Insecta, Coleoptera, Lampyridae). Bull. Nat. Sci. Mus. Tokyo 1967, 10, 7–9. [Google Scholar]
- Nakane, T. The classification of Lampyridae. Nat. Insects. 1968, 3, 3–6. [Google Scholar]
- Crowson, R.A. A review of the classification of Cantharoidea (Coleoptera), with the definition of two newfamilies, Cneoglossidae and Omethidae. Rev. Univ. Madrid. 1972, 21, 35–77. [Google Scholar] [CrossRef]
- Lawrence, J.F.; Hastings, A.M.; Dallwitz, M.J.; Paine, T.A.; Zurcher, E.J. 2000 (onwards). Elateriformia (Coleoptera): Descriptions, illustrations, identification, and information retrieval for families and sub-families. Version: 9th October 2005. Available online: http://delta-intkey.com./delta/elateria/www/lamplamp.htm (accessed on 20 March 2021).
- Branham, M.A.; Wenzel, J.W. The evolution of bioluminescence in cantharoids (Coleoptera: Elateroidea). Fla. Entomol. 2001, 84, 565–586. [Google Scholar] [CrossRef]
- Branham, M.A.; Wenzel, J.W. The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 2003, 19, 1–22. [Google Scholar] [CrossRef]
- Stanger-Hall, K.F.; Lloyd, J.E.; Hillis, D.M. Phylogeny of North American fireflies (Coleoptera: Lampyridae): Implications for the evolution of light signals. Mol. Phylogenet. Evol. 2007, 45, 33–49. [Google Scholar] [CrossRef]
- Sriboonlert, A.; Wonnapinij, P. Comparative mitochondrial genome analysis of the firefly, Inflata indica (Coleoptera: Lampyridae) and the first evidence of heteroplasmy in fireflies. Int. J. Biol. Macromol. 2019, 121, 671–676. [Google Scholar] [CrossRef]
- Martin, G.J.; Branham, M.A.; Whiting, M.F.; Bybee, S.M. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae). Mol. Phylogenet. Evol. 2017, 107, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H. Molecular phylogenetic studies of Japanese fireflies and their mating systems (Coleoptera: Cantharoidea). Tokyo Metro. Univ. Bull. Nat. Hist. 1997, 3, 1–53. [Google Scholar]
- Bocakova, M.; Bocak, L.; Hunt, T.; Teraväinen, M.; Vogler, A.P. Molecular phylogenetics of Elateriformia (Coleoptera): Evolution of bioluminescence and neoteny. Cladistics 2007, 23, 477–496. [Google Scholar] [CrossRef]
- Oba, Y.; Branham, M.A. The terrestrial bioluminescent animals of Japan. Zool Sci. 2011, 28, 771–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [Green Version]
- Boore, J.L.; Collins, T.M.; Stanton, D.; Daehler, L.L.; Brown, W.M. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 1995, 376, 163–165. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, F.; Li, H.; Jiang, P.; Zhou, X.; Liu, J.; Sun, C.; Vogler, A.P.; Cai, W. Capturing the phylogeny of holometabola with mitochondrial genome data and Bayesian siteheterogeneous mixture models. Genome Biol. Evol. 2016, 8, 1411–1426. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Leavengood, J.M.; Chapman, E.G.; Burkhardt, D.; Song, F.; Jiang, P.; Liu, J.; Zhou, X.; Cai, W. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc. R. Soc. B Biol. Sci. 2017, 284. [Google Scholar] [CrossRef] [PubMed]
- Castro, L.R.; Austin, A.D.; Dowton, M. Contrasting rates of mitochondrial molecular evolution in parasitic Diptera and Hymenoptera. Mol. Biol. Evol. 2002, 19, 1100–1113. [Google Scholar] [CrossRef]
- Oliveira, D.C.S.G.; Raychoudhury, R.; Lavrov, D.V.; Werren, J.H. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol. Biol. Evol. 2008, 25, 2167–2180. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yan, L.; Pape, T.; Gao, Y.; Zhang, D. Evolutionary insights into bot flies (Insecta: Diptera: Oestridae) from comparative analysis of the mitochondrial genome. Int. J. Biol. Macromol. 2020, 149, 371–380. [Google Scholar] [CrossRef]
- Cameron, S.L.; Lambkin, C.L.; Barker, S.C.; Whiting, M.F. A mitochondrial genome phylogeny of Diptera: Whole genome sequence data accurately resolve relationships over broad timescales with high precision. Syst. Entomol. 2007, 32, 40–59. [Google Scholar] [CrossRef]
- Du, Z.; Hasegawa, H.; Cooley, J.R.; Simon, C.; Yoshimura, J.; Cai, W.; Sota, T.; Li, H. Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups. Mol. Biol. Evol. 2019, 36, 1187–1200. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y.; Liu, S.; Yang, Q.; Su, X.; Zhou, L.; Tang, M.; Fu, R.; Li, J.; Huang, Q. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience 2013, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Donath, A.; Jühling, F.; Gärtner, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenetics Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Laslett, D.; Canbäck, B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2008, 24, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE. A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef]
- Grant, J.R.; Stothard, P. The CGView server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, 181–184. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 37, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Librado, P.; Rozas, J. DnaSPv5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Gao, F.; Jakovli’c, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Bowker, A.H. A test for symmetry in contingency tables. J. Am. Stat. Assoc. 1948, 43, 572–574. [Google Scholar] [CrossRef]
- Abascal, F.; Zardoya, R.; Telford, J.M. TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010, 38, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Lartillot, N.; Rodrigue, N.; Stubbs, D.; Richer, J. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 2013, 62, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [Green Version]
- Amaral, D.T.; Mitani, Y.; Ohmiya, Y.; Viviani, V.R. Organization and comparative analysis of the mitochondrial genomes of bioluminescent Elateroidea (Coleoptera: Polyphaga). Gene 2016, 586, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Ogoh, K.; Ohba, N.; Liang, X.-C.; Ohmiya, Y. Mitochondrial genomes of two luminous beetles, Rhagophthalmus lufengensis and R. ohbai (Arthropoda, Insecta, Coleoptera). Gene 2007, 392, 196–205. [Google Scholar] [CrossRef]
- Linard, B.; Crampton-Platt, A.; Morinière, J.; Timmermans, M.; Arribas, P.; Miller, K.; Lipecki, J.; Favreau, E.; Hunter, A. The contribution of mitochondrial metagenomics to large-scale data mining and phylogenetic analysis of Coleoptera. Mol. Phylogenet. Evol. 2018, 128, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallon, T.R.; Lower, S.E.; Chang, C.H.; Bessho-Uehara, M.; Weng, J.K. Firefly genomes illuminate parallel origins of bioluminescence in beetles. eLife 2018, 7. [Google Scholar] [CrossRef]
- Bae, J.S.; Kim, I.; Sohn, H.D.; Jin, B.R. The mitochondrial genome of the firefly, Pyrocoelia rufa: Complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol. Phylogenet. Evol. 2004, 32, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Fu, X. The complete mitochondrial genome of the firefly, Abscondita anceyi (Olivier) (Coleoptera: Lampyridae). Mitochondrial DNA B 2018, 3, 442–443. [Google Scholar] [CrossRef]
- Jiao, H.; Ding, M.; Zhao, H. Sequence and organization of complete mitochondrial genome of the firefly, Aquatica leii (Coleoptera: Lampyridae). Mitochondrial DNA 2015, 26, 775–776. [Google Scholar] [CrossRef]
- Wang, K.; Hong, W.; Jiao, H.; Zhao, H. Transcriptome sequencing and phylogenetic analysis of four species of luminescent beetles. Sci. Rep. 2017, 7, 1814. [Google Scholar] [CrossRef]
- Maeda, J.; Kato, D.I.; Arima, K.; Ito, Y.; Toyoda, A.; Noguchi, H. The complete mitochondrial genome sequence and phylogenetic analysis of Luciola lateralis, one of the most famous firefly in Japan (Coleoptera: Lampyridae). Mitochondrial DNA B 2017, 2, 546–547. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Fu, X. The complete mitochondrial genome of the firefly, Luciola curtithorax (Coleoptera: Lampyridae). Mitochondrial DNA B 2018, 3, 378–379. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Fu, X. The complete mitochondrial genome of the firefly, Pteroptyx maipo (Coleoptera: Lampyridae). Mitochondrial DNA B 2017, 2, 795–796. [Google Scholar] [CrossRef] [Green Version]
- Mu, F.J.; Liang, A.; Zhao, H.B.; Kai, W. Characterization of the complete mitochondrial genome of the firefly, Luciola substriata (Coleoptera: Lampyridae). Mitochondrial DNA A 2016, 27, 3360–3362. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, C.; Edwards, O.; Fuller, S.; Kang, L. The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: Large repetitive sequences between trnE and trnF in aphids. Gene 2014, 533, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Lavrov, D.V.; Boore, J.L.; Brown, W.M. The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Mol. Biol. Evol. 2000, 17, 813–824. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, Q.; Lu, C.; Deng, J.; Huang, X. The first complete mitochondrial genome of Lachninae species and comparative genomics provide new insights into the evolution of gene rearrangement and the repeat region. Insects 2021, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef]
- Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends Genet. 2002, 18, 486–487. [Google Scholar] [CrossRef]
- Yang, Z.; Bielawski, J.R. Statisticalmethods for detecting molecular adaptation. Trends Ecol. Evol. 2000, 15, 496–503. [Google Scholar] [CrossRef]
- Mori, S.; Matsunami, M.J.G. Signature of positive selection in mitochondrial DNA in Cetartiodactyla. Genes Genet. Syst. 2018, 93, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Lavrov, D.V.; Brown, W.M.; Boore, J.L. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc. Natl. Acad. Sci. USA 2000, 97, 13738–13742. [Google Scholar] [CrossRef] [Green Version]
- Masta, S.E.; Boore, J.L. The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Mol. Biol. Evol. 2004, 21, 893–902. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-X.; Hewitt, G.M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem. Syst. Ecol. 1997, 25, 99–120. [Google Scholar] [CrossRef]
- Yan, L.; Pape, T.; Elgar, M.A.; Gao, Y.; Zhang, D. Evolutionary history of stomach bot flies in the light of mitogenomics. Syst. Entomol. 2019, 44, 797–809. [Google Scholar] [CrossRef]
- Song, F.; Li, H.; Liu, G.; Wang, W.; James, P.; Colwell, D.D.; Tran, A.; Gong, S.; Cai, W.; Shao, R. Mitochondrial genome fragmentation unites the parasitic lice of Eutherian mammals. Syst. Biol. 2019, 68, 430–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foerstner, K.U.; von Mering, C.; Hooper, S.D.; Bork, P. Environments shape the nucleotide composition of genomes. EMBO Rep. 2005, 6, 1208–1213. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lu, G.; Bork, P.; Hu, S.; Lercher, M.J. Energy efficiency trade-offs drive nucleotide usage in transcribed regions. Nat. Commun. 2016, 7, 11334. [Google Scholar] [CrossRef] [Green Version]
- Rocha, E.P.C.; Danchin, A. Base composition bias might result from competition for metabolic resources. Trends Genet. 2002, 18, 291–294. [Google Scholar] [CrossRef]
- Kono, N.; Tomita, M.; Arakawa, K. Accelerated laboratory evolution reveals the influence of replication on the GC skew in Escherichia coli. Genome Biol. Evol. 2018, 10, 3110–3117. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.Z.; Yan, H.B.; Guo, A.J.; Zhu, X.Q.; Wang, Y.C.; Shi, W.G.; Chen, H.T.; Zhan, F.; Zhang, S.H. Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: Additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics 2010, 11, 447. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Easy, R.H.; King, S.D.; Cone, D.K.; You, P. Comparative analyses within Gyrodactylus (Platyhelminthes: Monogenea) mitochondrial genomes and conserved polymerase chain reaction primers for gyrodactylid mitochondrial DNA. J. Fish. Dis. 2017, 40, 541–555. [Google Scholar] [CrossRef]
- Brabec, J.; Kostadinova, A.; Scholz, T.; Littlewood, D.T.J. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): A molecular resource for taxonomy and molecular epidemiology of important fish pathogens. Parasit. Vectors. 2015, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Demari-Silva, B.; Foster, P.G.; de Oliveira, T.M.P.; Bergo, E.S.; Sanabani, S.S.; Pessôa, R.; Sallum, M.A.M. Mitochondrial genomes and comparative analyses of Culex camposi, Culex coronator, Culex usquatus and Culex usquatissimus (Diptera:Culicidae), members of the coronator group. BMC Genomics 2015, 16, 831. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Dai, W.; Dietrich, C.H. Mitochondrial genomic variation and phylogenetic relationships of three groups in the genus Scaphoideus (Hemiptera: Cicadellidae: Deltocephalinae). Sci. Rep. 2017, 7, 16908. [Google Scholar] [CrossRef] [Green Version]
- Nunes, V.C.S.; Souto, P.M.; Minelli, A.; Stanger-Hall, K.F.; Silveira, L.F.L. Antennomere numbers in fireflies (Coleoptera: Lampyridae): Unique patterns and tentative explanations. Zool. Anz. 2020, 286, 1–10. [Google Scholar] [CrossRef]
- Green, J.W. Revision of the Species of Microphotus, with an emendation of the Lampyrini (Lampyridae). Coleopt. Bull. 1959, 13, 80–96. [Google Scholar]
- McDermott, F.A. Coleopterorum Catalogus Supplementa, Pars 9: Lampyridae, 2nd ed.; Steel, W.O., Ed.; W Junk: The Hague, The Netherlands, 1966; pp. 1–149. [Google Scholar]
- Nakane, T. Lampyrid insects of the world. In The Reconstruction of Firefly Environments. Special No. 1; The Association of Natural Restoration of Japan, Ed.; Saiteku: Tokyo, Japan, 1991; pp. 3–11. [Google Scholar]
- Lawrence, J.F.; Newton, A.F. Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names). In Biology, Phylogeny, and the Classification of Coleoptera: Papers Celebrating the 80th Birthday of Roy A. Crowson; Pakaluk, J., Ślipiński, S.A., Eds.; Muzeum I InstytutZoologii PAN: Warsaw, Poland, 1995; pp. 779–1092. [Google Scholar]
- McDermott, F.A. The taxonomy of the Lampyridae (Coleoptera). Trans. Am. Entomol. Soc. 1964, 90, 1–72. [Google Scholar] [CrossRef]
- Brancucci, M.; Geiser, M. A revision of the genus Lamellipalpus Maulik, 1921 (Coleoptera, Lampoyridae). Zootaxa 2009, 2080, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Sagegami-Oba, R.; Takahashi, N.; Oba, Y. The evolutionary process of bioluminescence and aposematism in cantharoid beetles (Coleoptera: Elateroidea) inferred by the analysis of 18S ribosomal DNA. Gene 2007, 400, 104–113. [Google Scholar] [CrossRef]
- Geisthardt, M.; Satô, M. Lampyridae. In Catalogue of Palaearctic Coleoptera; Löbl, I., Smetana, A., Eds.; Apollo Books: Stenstrup, Denmark, 2007; Volume 4, pp. 225–233. [Google Scholar]
- Janisova, K.; Bocakova, M. Revision of the subfamily Ototretinae (Coleoptera: Lampyridae). Zool. Anz. 2013, 252, 1–19. [Google Scholar] [CrossRef]
- Li, X.Y.; Yang, S.; Xie, M.; Liang, X.C. Phylogeny of fireflies (Coleoptera: Lampyridae) inferred from mitochondrial 16S ribosomal DNA, with references to morphological and ethological traits. Prog. Nat. Sci. 2006, 16, 817–826. [Google Scholar] [CrossRef]
- Jeng, M.L. Comprehensive phylogenetics, systematics, and evolution of neoteny of Lampyridae (Insecta: Coleoptera). Ph.D. Thesis, University of Kansas, Lawrence, KS, USA, 2008; 388p. [Google Scholar]
- Fu, X.H.; Ballantyne, L.A.; Lambkin, C.L. Emeia gen. nov., a new genus of Luciolinae fireflies from China (Coleoptera: Lampyridae) with an unusual trilobite-like larva, and a redescription of the genus Curtos Motschulsky. Zootaxa 2012, 3403, 1–53. [Google Scholar] [CrossRef]
Family | Subfamily | Species | Accession Number | Reference |
---|---|---|---|---|
Phengodidae | Phrixothrix hirtus | KM923891.1 | [54] | |
Rhagophthalmidae | Rhagophthalmus ohbai | NC_010964.1 | [55] | |
Lampyridae | Lampyrinae | Diaphanes nubilus | MK292094.1 | [2] |
Diaphanes sp. | MK292095.1 | [2] | ||
Diaphanes citrinus | MK292103.1 | [2] | ||
Diaphanes mendax | MK292116.1 | [2] | ||
Diaphanes pectinealis | MK292118.1 | [2] | ||
Ellychnia corrusca | MG242622.1 | Unpublished | ||
Lampyris noctiluca | KX087302.1 | [56] | ||
Photinus pyralis | KY778696.1 | [57] | ||
Pyrocoelia rufa | AF452048.1 | [58] | ||
Pyrocoelia praetexta | MK292115.1 | [2] | ||
Pyrocoelia thibetana | MK292117.1 | [2] | ||
Luciolinae | Abscondita anceyi | MH020192.1 | [59] | |
Abscondita terminalis | MK292092.1 | [2] | ||
Aquatica leii | KF667531.1 | [60] | ||
Aquatica ficta | KX758085.1 | [61] | ||
Aquatica wuhana | KX758086.1 | [61] | ||
Aquatica lateralis | NC_035755.1 | [62] | ||
Asymmetricata circumdata | MK292113.1 | [2] | ||
Curtos bilineatus | MK292114.1 | [2] | ||
Emeia pseudosauteri | MK292112.1 | [2] | ||
Luciola curtithorax | MG770613.1 | [63] | ||
Luciola cruciata | NC_022472.1 | [19] | ||
Pristolycus sp. | MK292099.1 | [2] | ||
Pteroptyx maipo | MF686051.1 | [64] | ||
Pygoluciola qingyu | MK292093.1 | [2] | ||
Pygoluciola sp. | MK292102.1 | [2] | ||
Luciola substriata | KP313820.1 | [65] | ||
Incertae sedis | Vesta saturnalis | MK292111.1 | [2] | |
Lamprigera yunnana | MK292091.1 | [2] | ||
Photurinae | Bicellonycha lividipennis | KJ922151.1 | [53] | |
Ototretinae | Drilaster sp. | MK292100.1 | [2] | |
Stenocladius sp. | MK292101.1 | [2] | ||
Cyphonocerinae | Cyphonocerus sanguineus klapperichi | MW365445 | In this study |
Regions | Size (bp) | A (%) | C (%) | G (%) | T (%) | AT (%) | GC (%) | AT Skew | GC Skew |
---|---|---|---|---|---|---|---|---|---|
Full genome | 16,443 | 42.5 | 13.9 | 9.4 | 34.2 | 76.7 | 23.3 | 0.11 | −0.19 |
PCGs | 11,008 | 41.1 | 14.6 | 10.3 | 34 | 75.1 | 24.9 | 0.09 | −0.17 |
1st codon position | 3669 | 33.2 | 12.2 | 15.5 | 39.1 | 72.3 | 27.7 | −0.08 | 0.12 |
2nd codon position | 3669 | 25.2 | 14.9 | 12.3 | 47.7 | 72.9 | 27.2 | −0.31 | −0.10 |
3rd codon position | 3669 | 37.8 | 10.6 | 9.3 | 42.4 | 80.2 | 19.9 | −0.06 | −0.07 |
tRNAs | 1432 | 41.6 | 12.9 | 9.6 | 35.9 | 77.5 | 22.5 | 0.07 | −0.15 |
rRNAs | 2034 | 47 | 13.1 | 6.4 | 33.5 | 80.5 | 19.5 | 0.17 | −0.34 |
CR | 1776 | 45.6 | 11.6 | 7.2 | 35.6 | 81.2 | 18.8 | 0.12 | −0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, X.; Yuan, L.; Kang, Y.; Liu, T.; Liu, H.; Yang, Y. Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies. Insects 2021, 12, 570. https://doi.org/10.3390/insects12070570
Ge X, Yuan L, Kang Y, Liu T, Liu H, Yang Y. Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies. Insects. 2021; 12(7):570. https://doi.org/10.3390/insects12070570
Chicago/Turabian StyleGe, Xueying, Lilan Yuan, Ya Kang, Tong Liu, Haoyu Liu, and Yuxia Yang. 2021. "Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies" Insects 12, no. 7: 570. https://doi.org/10.3390/insects12070570
APA StyleGe, X., Yuan, L., Kang, Y., Liu, T., Liu, H., & Yang, Y. (2021). Characterization of the First Complete Mitochondrial Genome of Cyphonocerinae (Coleoptera: Lampyridae) with Implications for Phylogeny and Evolution of Fireflies. Insects, 12(7), 570. https://doi.org/10.3390/insects12070570