Evaluation of Reference Genes and Expression Level of Genes Potentially Involved in the Mode of Action of Cry1Ac and Cry1F in a Susceptible Reference Strain of Chrysodeixis includens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Insects
2.2. Cry1Ac and Cry1F Bioassays
2.3. RNA Extraction and cDNA Synthesis
2.4. Screening for Reference Genes
2.5. Expression Analysis of Possible Bt Protein Target Genes
3. Results
3.1. Bioassays
3.2. Screening for Reference Genes
3.3. Expression Analysis of Potential Bt Protein Target Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herzog, D.C. Sampling Soybean Looper on Soybean. In Sampling Methods in Soybean Entomology; Kogan, M., Herzog, D.C., Eds.; Springer: New York, NY, USA, 1980; pp. 141–168. [Google Scholar] [CrossRef]
- Di Oliveira, J.R.G.; Ferreira, M.D.C.; Román, R.A.A. Diferentes diâmetros de gotas e equipamentos para aplicação de inseticida no controle de Pseudoplusia includens. Eng. Agrícola 2010, 30, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Boernel, D.J.; Mink, J.S.; Wier, A.T.; Thomas, J.D.; Leonard, B.R.; Gallardo, F. Management of Insecticide Resistant Soybean Loopers (Pseudoplusia Includens) in the Southern United States. In Pest Management in Soybean; Copping, L.G., Green, M.B.M., Rees, R.T., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 66–87. [Google Scholar]
- Owen, L.N.; Catchot, A.; Musser, F.; Gore, J.; Cook, D.; Jackson, R. Susceptibility ofChrysodeixis includens(Lepidoptera: Noctuidae) to Reduced-Risk Insecticides. Fla. Èntomol. 2013, 96, 554–559. [Google Scholar] [CrossRef]
- Stacke, R.F.; Godoy, D.; Pretto, V.E.; Führ, F.M.; Gubiani, P.D.S.; Hettwer, B.L.; Garlet, C.G.; Somavilla, J.C.; Muraro, D.S.; Bernardi, O. Field-evolved resistance to chitin synthesis inhibitor insecticides by soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae), in Brazil. Chemosphere 2020, 259, 127499. [Google Scholar] [CrossRef]
- Rodrigues-Silva, N.; Canuto, A.F.; Oliveira, D.F.; Teixeira, A.F.; Amaya, O.F.S.; Picanço, M.C.; Pereira, E.J.G. Negative cross-resistance between structurally different Bacillus thuringiensis toxins may favor resistance management of soybean looper in transgenic Bt cultivars. Sci. Rep. 2019, 9, 199. [Google Scholar] [CrossRef] [PubMed]
- Heckel, D.G.; Gahan, L.J.; Baxter, S.W.; Zhao, J.; Shelton, A.M.; Gould, F.; Tabashnik, B.E. The diversity of Bt resistance genes in species of Lepidoptera. J. Invertebr. Pathol. 2007, 95, 192–197. [Google Scholar] [CrossRef]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiewsiri, K.; Wang, P. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Proc. Natl. Acad. Sci. USA 2011, 108, 14037–14042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Zhang, T.; Liu, C.; Heckel, D.; Li, X.; Tabashnik, B.E.; Wu, K. Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Sci. Rep. 2014, 4, 6184. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, H.; Gao, Y.; Wang, G.; Liang, G.; Wu, K. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem. Mol. Biol. 2009, 39, 421–429. [Google Scholar] [CrossRef]
- Jin, T.; Chang, X.; Gatehouse, A.M.R.; Wang, Z.; Edwards, M.G.; He, K. Downregulation and Mutation of a Cadherin Gene Associated with Cry1Ac Resistance in the Asian Corn Borer, Ostrinia furnacalis (Guenée). Toxins 2014, 6, 2676–2693. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Kang, S.; Chen, D.; Wu, Q.; Wang, S.; Xie, W.; Zhu, X.; Baxter, S.W.; Zhou, X.; Jurat-Fuentes, J.L.; et al. MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth. PLoS Genet. 2015, 11, e1005124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boaventura, D.; Ulrich, J.; Lueke, B.; Bolzan, A.; Okuma, D.; Gutbrod, O.; Geibel, S.; Zeng, Q.; Dourado, P.M.; Martinelli, S.; et al. Molecular characterization of Cry1F resistance in fall armyworm, Spodoptera frugiperda from Brazil. Insect Biochem. Mol. Biol. 2020, 116, 103280. [Google Scholar] [CrossRef]
- Flagel, L.; Lee, Y.W.; Wanjugi, H.; Swarup, S.; Brown, A.; Wang, J.; Kraft, E.; Greenplate, J.; Simmons, J.; Adams, N.; et al. Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecticidal proteins. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Panizzi, A.R. History and Contemporary Perspectives of the Integrated Pest Management of Soybean in Brazil. Neotrop. Èntomol. 2013, 42, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Funichello, M.; Fern, J.; Grigolli, o.J.; de Souza, B.H.S.; Boiccedil, A.L.; Junior, A.; Busoli, A.C. Effect of transgenic and non-transgenic cotton cultivars on the development and survival of Pseudoplusia includens (Walker) (Lepidoptera: Noctu-idae). AJAR 2013, 8, 5424–5428. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Gould, F.; Carriere, Y. Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability. J. Evol. Biol. 2004, 17, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.H.; Castro, B.A.; Rossetto, J.; Silva, O.A.B.N.; Moscardini, V.F.; Zobiole, L.H.S.; Santos, A.C.; Valverde-Garcia, P.; Babcock, J.M.; Rule, D.M.; et al. Efficacy of Soybean’s Event DAS-81419-2 Expressing Cry1F and Cry1Ac to Manage Key Tropical Lepidopteran Pests Under Field Conditions in Brazil. J. Econ. Èntomol. 2016, 109, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Tindall, K.V.; Siebert, M.W.; Leonard, B.R.; All, J.; Haile, F.J. Efficacy of Cry1Ac:Cry1F proteins in cotton leaf tissue against fall armyworm, beet armyworm, and soybean looper (Lepidoptera: Noctuidae). J. Econ. Èntomol. 2009, 102, 1497–1505. [Google Scholar] [CrossRef] [Green Version]
- Bel, Y.; Sheets, J.J.; Tan, S.Y.; Narva, K.E.; Escriche, B. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Appl. Environ. Microbiol. 2017, 83, e00326-17. [Google Scholar] [CrossRef] [Green Version]
- Jurat-Fuentes, J.L.; Heckel, D.G.; Ferré, J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. Annu. Rev. Entomol. 2021, 66, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perini, C.R.; Tabuloc, C.A.; Chiu, J.C.; Zalom, F.G.; Stacke, R.F.; Bernardi, O.; Nelson, D.R.; Guedes, J.C. Transcriptome Analysis of Pyrethroid-Resistant Chrysodeixis includens (Lepidoptera: Noctuidae) Reveals Overexpression of Metabolic Detoxification Genes. J. Econ. Èntomol. 2021, 114, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Coates, B.S.; Siegfried, B.D. Linkage of an ABCC transporter to a single QTL that controls Ostrinia nubilalis larval resistance to the Bacillus thuringiensis Cry1Fa toxin. Insect Biochem. Mol. Biol. 2015, 63, 86–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caccia, S.; Moar, W.J.; Chandrashekhar, J.; Oppert, C.; Anilkumar, K.J.; Jurat-Fuentes, J.L.; Ferré, J. Association of Cry1Ac Toxin Resistance in Helicoverpa zea (Boddie) with Increased Alkaline Phosphatase Levels in the Midgut Lumen. Appl. Environ. Microbiol. 2012, 78, 5690–5698. [Google Scholar] [CrossRef] [Green Version]
- Pigott, C.R.; Ellar, D.J. Role of Receptors in Bacillus thuringiensis Crystal Toxin Activity. Microbiol. Mol. Biol. Rev. 2007, 71, 255–281. [Google Scholar] [CrossRef] [Green Version]
Method | EF1 | RPL10 | GAPDH | ACT1 |
---|---|---|---|---|
geNorm | 0.519 | 0.458 | 0.559 | 0.637 |
NormFinder | 0.242 | 0.244 | 0.309 | 0.351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, M.; Boaventura, D.; Nauen, R. Evaluation of Reference Genes and Expression Level of Genes Potentially Involved in the Mode of Action of Cry1Ac and Cry1F in a Susceptible Reference Strain of Chrysodeixis includens. Insects 2021, 12, 598. https://doi.org/10.3390/insects12070598
Martin M, Boaventura D, Nauen R. Evaluation of Reference Genes and Expression Level of Genes Potentially Involved in the Mode of Action of Cry1Ac and Cry1F in a Susceptible Reference Strain of Chrysodeixis includens. Insects. 2021; 12(7):598. https://doi.org/10.3390/insects12070598
Chicago/Turabian StyleMartin, Macarena, Debora Boaventura, and Ralf Nauen. 2021. "Evaluation of Reference Genes and Expression Level of Genes Potentially Involved in the Mode of Action of Cry1Ac and Cry1F in a Susceptible Reference Strain of Chrysodeixis includens" Insects 12, no. 7: 598. https://doi.org/10.3390/insects12070598
APA StyleMartin, M., Boaventura, D., & Nauen, R. (2021). Evaluation of Reference Genes and Expression Level of Genes Potentially Involved in the Mode of Action of Cry1Ac and Cry1F in a Susceptible Reference Strain of Chrysodeixis includens. Insects, 12(7), 598. https://doi.org/10.3390/insects12070598