Impact of Temperature on the Immune Interaction between a Parasitoid Wasp and Drosophila Host Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Samples Preparation for Identification of the Developmental Stage at Which Venom Synthesis Begins
2.3. Western Blot Analysis
2.4. Analysis of the Host-Parasitoid Interaction Outcomes
2.4.1. Dissection of Host Larvae
2.4.2. Statistical Analyses
2.5. Analysis of the Host Capacity to Encapsulate an Oil Drop
Statistical Analysis
2.6. Analysis of the Parasitoid Venom Composition
2.6.1. Statistical Analysis for the Global Analysis of Venom Composition
2.6.2. Statistical Analysis for the Specific Analysis of Venom Composition
2.6.3. Identification of Venom Proteins
3. Results
3.1. Impact of Temperature during Parasitism on the Outcome of the Interaction
3.2. Temperature Effect on the Host Capacity to Encapsulate
3.3. Impact of Temperature during Parasitoid Nymphal Development on Interaction Outcome
3.4. Impact of Temperature during Parasitoid Nymphal Development on Venom Composition
3.5. Identification of Venom Proteins Impacted by Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burkett, V.R.; Suarez, A.G.; Bindi, M.; Conde, C.; Mukerji, R.; Prather, M.J.; St. Clair, A.L.; Yohe, G.W. Point of Departure. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 169–194. [Google Scholar]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2075. [Google Scholar] [CrossRef] [Green Version]
- Chapin, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, B.P.; Little, T.J. Immunity in a variable world. Philos. Trans. R. Soc. B. Biol. Sci. 2009, 364, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Neven, L.G. Physiological responses of insects to heat. Postharvest Biol. Technol. 2000, 21, 103–111. [Google Scholar] [CrossRef]
- Sigsgaard, L. The temperature-dependent duration of development and parasitism of three cereal aphid parasitoids, Aphidius ervi, A. rhopalosiphi, and Praon volucre. Entomol. Exp. Appl. 2000, 95, 173–184. [Google Scholar] [CrossRef]
- Carton, Y.; Claret, J. Adaptative significance of a temperature induced diapause in a cosmopolitan parasitoid of Drosophila. Ecol. Entomol. 1982, 7, 239–247. [Google Scholar] [CrossRef]
- Moreteau, B.; Morin, J.P.; Gibert, P.; Pétavy, G.; Pla, É.; David, J.R. Evolutionary changes of nonlinear reaction norms according to thermal adaptation: A comparison of two Drosophila species. Comptes Rendus l’Academie Sci. Ser. III 1997, 320, 833–841. [Google Scholar] [CrossRef]
- Godfray, H.C.J. Parasitoids: Behavioral and Evolutionary Ecology; Princeton University Press: Princeton, NJ, USA, 1994; Volume 67. [Google Scholar]
- Thomas, M.B.; Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 2003, 18, 344–350. [Google Scholar] [CrossRef]
- de Sassi, C.; Tylianakis, J.M. Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS ONE 2012, 7, e40557. [Google Scholar] [CrossRef]
- Jeffs, C.T.; Lewis, O.T. Effects of climate warming on host-parasitoid interactions. Ecol. Entomol. 2013, 38, 209–218. [Google Scholar] [CrossRef]
- Harvey, J.A. Conserving host-parasitoid interactions in a warming world. Curr. Opin. Insect Sci. 2015, 12, 79–85. [Google Scholar] [CrossRef]
- Stoks, R.; Verheyen, J.; Van Dievel, M.; Tüzün, N. Daily temperature variation and extreme high temperatures drive performance and biotic interactions in a warming world. Curr. Opin. Insect Sci. 2017, 23, 35–42. [Google Scholar] [CrossRef]
- Thierry, M.; Hrček, J.; Lewis, O.T. Mechanisms structuring host–parasitoid networks in a global warming context: A review. Ecol. Entomol. 2019, 44, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Kraaijeveld, A.R.; Van Der Wel, N.N. Geographic variation in reproductive success of the parasitoid Asobara tabida in larvae of several Drosophila species. Ecol. Entomol. 1994, 19, 221–229. [Google Scholar] [CrossRef]
- Fellowes, M.D.E.; Kraaijeveld, A.R.; Godfray, H.C.J. Cross-resistance following artificial selection for increased defense against parasitoids in Drosoph. melanogaster. Evolution 1999, 53, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Fleury, F.; Ris, N.; Allemand, R.; Fouillet, P.; Carton, Y.; Boulétreau, M. Ecological and genetic interactions in Drosophila-parasitoids communities: A case study with D. melanogaster, D. simulans and their common Leptopilina parasitoids in south-eastern France. Genetica 2004, 120, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.H.; Soroka, J.J.; Dosdall, L.M. Constant versus fluctuating temperatures in the interactions between Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environ. Entomol. 2012, 41, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Furlong, M.J.; Zalucki, M.P. Climate change and biological control: The consequences of increasing temperatures on host–parasitoid interactions. Curr. Opin. Insect Sci. 2017, 20, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi Stacconi, M.V.; Panel, A.; Baser, N.; Ioriatti, C.; Pantezzi, T.; Anfora, G. Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biol. Control. 2017, 112, 20–27. [Google Scholar] [CrossRef]
- Seehausen, M.L.; Régnière, J.; Martel, V.; Smith, S.M. Developmental and reproductive responses of the spruce budworm (Lepidoptera: Tortricidae) parasitoid Tranosema rostrale (Hymenoptera: Ichneumonidae) to temperature. J. Insect Physiol. 2017, 98, 38–46. [Google Scholar] [CrossRef]
- Van Driesche, R.G.; Bellotti, A.; Herrera, C.J.; Castillo, J.A. Encapsulation rates of two encyrtid parasitoids by two Phenacoccus spp. of cassava mealybugs in Colombia. Entomol. Exp. Appl. 1986, 42, 79–82. [Google Scholar] [CrossRef]
- Bensadia, F.; Boudreault, S.; Michaud, D.; Cloutier, C. Aphid clonal resistance to a parasitoid fails under heat stress. J. Insect Physiol. 2006, 52, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.X.; Tong, C.; Liu, T.X. Influence of larval rearing temperature on the quality of cold-stored Oomyzus sokolowskii Kurdjumov (Hymenoptera: Eulophidae). J. Appl. Entomol. 2017, 141, 172–180. [Google Scholar] [CrossRef]
- Lynn, D.C.; Vinson, S. Effects of temperature, host age, and hormones upon the encapsulation of Cardiochiles nigriceps eggs by Heliothis spp. J. Invertebr. Pathol. 1977, 29, 50–55. [Google Scholar] [CrossRef]
- Gherlenda, A.N.; Haigh, A.M.; Moore, B.D.; Johnson, S.N.; Riegler, M. Climate change, nutrition and immunity: Effects of elevated CO2 and temperature on the immune function of an insect herbivore. J. Insect Physiol. 2016, 85, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Seehausen, M.L.; Cusson, M.; Régnière, J.; Bory, M.; Stewart, D.; Djoumad, A.; Smith, S.M.; Martel, V. High temperature induces downregulation of polydnavirus gene transcription in lepidopteran host and enhances accumulation of host immunity gene transcripts. J. Insect Physiol. 2017, 98, 126–133. [Google Scholar] [CrossRef]
- Colinet, D.; Deleury, E.; Anselme, C.; Cazes, D.; Poulain, J.; Azema-Dossat, C.; Belghazi, M.; Gatti, J.L.; Poirié, M. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: The case of Leptopilina parasitoids of Drosophila. Insect Biochem. Mol. Biol. 2013, 43, 601–611. [Google Scholar] [CrossRef]
- Poirié, M.; Colinet, D.; Gatti, J.L. Insights into function and evolution of parasitoid wasp venoms. Curr. Opin. Insect Sci. 2014, 6, 52–60. [Google Scholar] [CrossRef]
- Carton, Y.; Poirié, M.; Nappi, A.J. Insect immune resistance to parasitoids. Insect Sci. 2008, 15, 67–87. [Google Scholar] [CrossRef]
- Nappi, A.J. Cellular immunity and pathogen strategies in combative interactions involving Drosophila hosts and their endoparasitic wasps. Invertebr. Surviv. J. 2010, 7, 198–210. [Google Scholar]
- Vlisidou, I.; Wood, W. Drosophila blood cells and their role in immune responses. FEBS J. 2015, 282, 1368–1382. [Google Scholar] [CrossRef]
- Dubuffet, A.; Doury, G.; Labrousse, C.; Drezen, J.M.; Carton, Y.; Poirié, M. Variation of success of Leptopilina boulardi in Drosophila yakuba: The mechanisms explored. Dev. Comp. Immunol. 2008, 32, 597–602. [Google Scholar] [CrossRef]
- Eslin, P.; Doury, G. The fly Drosophila subobscura: A natural case of innate immunity deficiency. Dev. Comp. Immunol. 2006, 30, 977–983. [Google Scholar] [CrossRef]
- Mathé-Hubert, H.; Gatti, J.L.; Colinet, D.; Poirié, M.; Malausa, T. Statistical analysis of the individual variability of 1D protein profiles as a tool in ecology: An application to parasitoid venom. Mol. Ecol. Resour. 2015, 15, 1120–1132. [Google Scholar] [CrossRef]
- Cavigliasso, F.; Mathé-Hubert, H.; Kremmer, L.; Rebuf, C.; Gatti, J.; Malausa, T.; Colinet, D.; Poirié, M. Rapid and differential evolution of the venom composition of a parasitoid wasp depending on the host strain. Toxins 2019, 11, 629. [Google Scholar] [CrossRef] [Green Version]
- Cavigliasso, F.; Mathé-Hubert, H.; Gatti, J.L.; Colinet, D.; Poirié, M. Parasitic success and venom composition evolve upon specialization of parasitoid wasps to different host species. bioRxiv 2021. [Google Scholar] [CrossRef]
- Mathé-Hubert, H.; Kremmer, L.; Colinet, D.; Gatti, J.L.; Van Baaren, J.; Delava, É.; Poirié, M. Variation in the venom of parasitic wasps, drift, or selection? Insights from a multivariate QST analysis. Front. Ecol. Evol. 2019, 7, 256. [Google Scholar] [CrossRef] [Green Version]
- Dubuffet, A.; Colinet, D.; Anselme, C.; Dupas, S.; Carton, Y.; Poirié, M. Variation of Leptopilina boulardi success in Drosophila hosts. What is inside the black box? Adv. Parasitol. 2009, 70, 147–188. [Google Scholar] [PubMed]
- Dupas, S.; Carton, Y.; Poirié, M. Genetic dimension of the coevolution of virulence-resistance in Drosophila–parasitoid wasp relationships. Heredity (Edinb) 2003, 90, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Colinet, D.; Schmitz, A.; Cazes, D.; Gatti, J.L.; Poirié, M. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog. 2010, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labrosse, C.; Stasiak, K.; Lesobre, J.; Grangeia, A.; Huguet, E.; Drezen, J.M.; Poirié, M. A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)-Drosophila melanogaster interaction. Insect Biochem. Mol. Biol. 2005, 35, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Labrosse, C.; Eslin, P.; Doury, G.; Drezen, J.M.; Poirié, M. Haemocyte changes in D. melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: A Rho-GAP protein as an important factor. J. Insect Physiol. 2005, 51, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Colinet, D.; Schmitz, A.; Depoix, D.; Crochard, D.; Poirié, M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 2007, 3, e203. [Google Scholar] [CrossRef] [Green Version]
- Wan, B.; Goguet, E.; Ravallec, M.; Pierre, O.; Lemauf, S.; Volkoff, A.-N.; Gatti, J.-L.; Poirié, M. Venom atypical extracellular vesicles as interspecies vehicles of virulence factors involved in host specificity: The case of a Drosophila parasitoid wasp. Front. Immunol. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Colinet, D.; Dubuffet, A.; Cazes, D.; Moreau, S.; Drezen, J.M.; Poirié, M. A serpin from the parasitoid wasp Leptopilina boulardi targets the Drosophila phenoloxidase cascade. Dev. Comp. Immunol. 2009, 33, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Frazier, M.R.; Woods, H.A.; Harrison, J.F. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster. Physiol. Biochem. Zool. 2001, 74, 641–650. [Google Scholar] [CrossRef]
- Hertlein, M.B. Seasonal development of Leptopilina boulardi (Hymenoptera: Eucoilidae) and its hosts, Drosophila melanogaster and D. simulans (Diptera: Drosophilidae), in California. Environ. Entomol. 1986, 15, 859–866. [Google Scholar] [CrossRef]
- Petavy, G.; David, J.R.; Gibert, P.; Moreteau, B. Viability and rate of development at different temperatures in Drosophila: A comparison of constant and alternating thermal regimes. J. Therm. Biol. 2001, 26, 29–39. [Google Scholar] [CrossRef]
- Dupas, S.; Frey, F.; Carton, Y. A single parasitoid segregating factor controls immune suppression in Drosophila. J. Hered. 1998, 89, 306–311. [Google Scholar] [CrossRef]
- Poirié, M.; Frey, F.; Hita, M.; Huguet, E.; Lemeunier, F.; Periquet, G.; Carton, Y. Drosophila resistance genes to parasitoids: Chromosomal location and linkage analysis. Proc. R. Soc. B Biol. Sci. 2000, 267, 1417–1421. [Google Scholar] [CrossRef] [Green Version]
- Kim-Jo, C.; Gatti, J.L.; Poirié, M. Drosophila cellular immunity against parasitoid wasps: A complex and time-dependent process. Front. Physiol. 2019, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 1979, 76, 4350–4354. [Google Scholar] [CrossRef] [Green Version]
- Colinet, D.; Kremmer, L.; Lemauf, S.; Rebuf, C.; Gatti, J.L.; Poirié, M. Development of RNAi in a Drosophila endoparasitoid wasp and demonstration of its efficiency in impairing venom protein production. J. Insect Physiol. 2014, 63, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Dupas, S.; Boscaro, M. Geographic variation and evolution of immunosuppressive genes in a Drosophila parasitoid. Ecography (Cop.) 1999, 22, 284–291. [Google Scholar] [CrossRef]
- Carton, Y.; Frey, F.; Nappi, A. Genetic determinism of the cellular immune reaction in Drosophila melanogaster. Heredity (Edinb) 1992, 69, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Fellowes, M.D.E.; Kraaijeveld, A.R.; Godfray, H.C.J. Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster. Proc. R. Soc. B. Biol. Sci. 1998, 265, 1553–1558. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67. [Google Scholar] [CrossRef]
- Harrison, X.A. A comparison of observation-level random effect and Beta-Binomial models for modelling overdispersion in Binomial data in ecology & evolution. PeerJ 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2019. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 13 November 2020).
- Morrissey, J.H. Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity. Anal. Biochem. 1981, 117, 307–310. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online 2017, 1–15. [Google Scholar] [CrossRef]
- Dray, S.; Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Blumberg, D. Parasitoid encapsulation as a defense mechanism in the Coccoidea (Homoptera) and its importance in biological control. Biol. Control. 1997, 8, 225–236. [Google Scholar] [CrossRef]
- Ris, N.; Allemand, R.; Fouillet, P.; Fleury, F. The joint effect of temperature and host species induce complex genotype-by-environment interactions in the larval parasitoid of Drosophila, Leptopilina heterotoma (Hymenoptera: Figitidae). Oikos 2004, 106, 451–456. [Google Scholar] [CrossRef]
- Doury, G.; Rojas-Rousse, D.; Periquet, G. Ability of Eupelmus orientalis ectoparasitoid larvae to develop on an unparalysed host in the absence of female stinging behaviour. J. Insect Physiol. 1995, 41, 287–296. [Google Scholar] [CrossRef]
- Strand, M.R. Teratocytes and their functions in parasitoids. Curr. Opin. Insect Sci. 2014, 6, 68–73. [Google Scholar] [CrossRef]
- Eslin, P.; Prévost, G. Hemocyte load and immune resistance to Asobara tabida are correlated in species of the Drosophila melanogaster subgroup. J. Insect Physiol. 1998, 44, 807–816. [Google Scholar] [CrossRef]
- Lazzaro, B.P.; Flores, H.A.; Lorigan, J.G.; Yourth, C.P. Genotype-by-environment interactions and adaptation to local temperature affect immunity and fecundity in Drosophila melanogaster. PLoS Pathog. 2008, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kutch, I.C.; Sevgili, H.; Wittman, T.; Fedorka, K.M. Thermoregulatory strategy may shape immune investment in Drosophila melanogaster. J. Exp. Biol. 2014, 217, 3664–3669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linder, J.E.; Owers, K.A.; Promislow, D.E.L. The effects of temperature on host-pathogen interactions in D. melanogaster: Who benefits? J. Insect Physiol. 2008, 54, 297–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zera, A.J.; Harshman, L.G. The physiology of life history trade-offs in animals. Annu. Rev. Ecolocy Syst. 2001, 32, 95–126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.B.; Zhang, G.F.; Liu, W.X.; Wan, F.H. Variable temperatures across different stages have novel effects on behavioral response and population viability in a host-feeding parasitoid. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.J.; Hopkins, R.J.; Chen, X.Y.; Chen, Z.M.; Wang, X.; Huang, G.H. Effects of temperature on the development and fecundity of Microplitis similis (Hymenoptera: Braconidae), a parasitoid of Spodoptera litura (Lepidoptera: Noctuidae). Physiol. Entomol. 2020, 45, 95–102. [Google Scholar] [CrossRef]
- James, D.G.; Warren, G.N. Effect of temperature on development, survival, longevity and fecundity of Trissolcus Oenone dodd (Hymenoptera: Scelionidae). Aust. J. Entomol. 1991, 30, 303–306. [Google Scholar] [CrossRef]
- Scott, M.; Berrigan, D.; Hoffmann, A.A. Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomol. Exp. Appl. 1997, 85, 211–219. [Google Scholar] [CrossRef]
- Tobassum, S.; Tahir, H.M.; Zahid, M.T.; Gardner, Q.A.; Ahsan, M.M. Effect of milking method, diet, and temperature on venom production in scorpions. J. Insect Sci. 2018, 18, 1–7. [Google Scholar] [CrossRef]
- Yin, X.; Guo, S.; Gao, J.; Luo, L.; Liao, X.; Li, M.; Su, H.; Huang, Z.; Xu, J.; Pei, J.; et al. Kinetic analysis of effects of temperature and time on the regulation of venom expression in Bungarus multicinctus. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Wiener, S. The Australian red back spider (Latrodectus hasseltii). II. Effect of temperature on the toxicity of venom. Med. J. Aust. 1956, 43, 1–21. [Google Scholar]
- Dudzic, J.P.; Kondo, S.; Ueda, R.; Bergman, C.M.; Lemaitre, B. Drosophila innate immunity: Regional and functional specialization of prophenoloxidases. BMC Biol. 2015, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Blanford, S.; Thomas, M.B.; Pugh, C.; Pell, J.K. Temperature checks the Red Queen? Resistance and virulence in a fluctuating environment. Ecol. Lett. 2003, 6, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Delava, E.; Fleury, F.; Gibert, P. Effects of daily fluctuating temperatures on the Drosophila–Leptopilina boulardi parasitoid association. J. Therm. Biol. 2016, 60, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Iltis, C.; Moreau, J.; Manière, C.; Thiéry, D.; Delbac, L.; Louâpre, P. Where you come from matters: Temperature influences host–parasitoid interaction through parental effects. Oecologia 2020, 192, 853–863. [Google Scholar] [CrossRef] [PubMed]
Reference Band | Number of Abundant Proteins | Putative Function | Number of Peptide Matches | Band Intensity in Response to Increasing Temperature |
---|---|---|---|---|
2 | 1 | Unknown | 12 | ↗ |
3 | 2 | Unknown | 33 | ↗ |
Unknown | 34 | |||
5 | 0 | NA | NA | ↘ |
6 | 0 | NA | NA | ↘ |
10 | 0 | NA | NA | ↘ |
14 | 2 | Unknown | 39 | ↘ |
Unknown | 36 | |||
22 | 5 | RhoGAP (LbGAP) | 52 | ↘ |
Unknown | 21 | |||
Serpin (LbSPNm) | 17 | |||
RhoGAP | 11 | |||
(LbGAPy) | ||||
23 | NA | NA | NA | ↘ |
(not analyzed in [29]) | ||||
27 | 2 | RhoGAP (LbGAP2) | 20 | ↘ |
Unknown | 18 | |||
30 | 1 | Unknown | 19 | ↗ |
35 | 0 | NA | NA | ↗ |
Reference Band | Number of Abundant Proteins | Putative Function | Number of Peptide Matches | Band Intensity in Response to Increasing Temperature |
---|---|---|---|---|
1 | NA | NA | NA | ↗ |
(not analyzed in [29] | ||||
10 | 2 | Unknown | 10 | ↗ |
Unknown | 10 | |||
11 | 0 | NA | NA | ↘ |
16 | 1 | Unknown | 16 | ↘ |
18 and 19 | 1 | Serpin (LbSPNy) | 81 | ↘(18) |
(not separated in [29]) | ↗(19) | |||
21 | 1 | Unknown | 25 | ↗ |
24 | 1 | RhoGAP (LbGAPy4) | 24 | ↗ |
28 | 2 | Unknown | 20 | ↘ |
RhoGAP (LbGAPy2) | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavigliasso, F.; Gatti, J.-L.; Colinet, D.; Poirié, M. Impact of Temperature on the Immune Interaction between a Parasitoid Wasp and Drosophila Host Species. Insects 2021, 12, 647. https://doi.org/10.3390/insects12070647
Cavigliasso F, Gatti J-L, Colinet D, Poirié M. Impact of Temperature on the Immune Interaction between a Parasitoid Wasp and Drosophila Host Species. Insects. 2021; 12(7):647. https://doi.org/10.3390/insects12070647
Chicago/Turabian StyleCavigliasso, Fanny, Jean-Luc Gatti, Dominique Colinet, and Marylène Poirié. 2021. "Impact of Temperature on the Immune Interaction between a Parasitoid Wasp and Drosophila Host Species" Insects 12, no. 7: 647. https://doi.org/10.3390/insects12070647
APA StyleCavigliasso, F., Gatti, J.-L., Colinet, D., & Poirié, M. (2021). Impact of Temperature on the Immune Interaction between a Parasitoid Wasp and Drosophila Host Species. Insects, 12(7), 647. https://doi.org/10.3390/insects12070647