Using Matching Traits to Study the Impacts of Land-Use Intensification on Plant–Pollinator Interactions in European Grasslands: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
- (1)
- Does grassland intensification lead to more generalised floral traits and a decrease in flower reward production?
- (2)
- Can changes in floral traits generate shifts in pollinator community composition?
- (3)
- Can shifts in pollinator community composition affect pollination function on grasslands, both quantitatively and qualitatively?
2. Materials and Methods
3. Effects of Intensification on Plant–Pollinator Matching Traits
3.1. Effects of Intensification on Pollination Signals
3.1.1. Flower Colour
3.1.2. Flower Odours
3.2. Effects of Intensification on Barriers to the Exploitation of Floral Rewards
Nectar Tube Depth
3.3. Effects of Intensification on Rewards
3.3.1. Nectar and Pollen Production
3.3.2. Pollen Quality
4. Potential Effects of Intensification on Pollination Function on Grasslands
4.1. Grassland Intensification and Degree of Network Specialisation
4.2. Grassland Intensification and Pollination Visitation Frequency
4.3. Grassland Intensification and Body Traits of Pollinators Influencing the Quality of Pollination Interactions
4.4. Factors That May Limit Predicted Changes in Plant and Pollinator Communities Due to Grassland Intensification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Huyghe, C.; De Vliegher, A.; Van Gils, B.; Peeters, A. Grasslands and Herbivore Production in Europe and Effects of Common Policies; éditions Quae: Versailles, France, 2014; ISBN 978-2-7592-2157-8. [Google Scholar]
- Poutaraud, A.; Michelot-Antalik, A.; Plantureux, S. Grasslands: A Source of Secondary Metabolites for Livestock Health. J. Agric. Food Chem. 2017, 65, 6535–6553. [Google Scholar] [CrossRef]
- Ollerton, J.; Winfree, R.; Tarrant, S. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Møller, A.P. Quantifying rapidly declining abundance of insects in Europe using a paired experimental design. Ecol. Evol. 2020, 10, 2446–2451. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- van Strien, A.J.; van Swaay, C.A.M.; van Strien-van Liempt, W.T.F.H.; Poot, M.J.M.; WallisDeVries, M.F. Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv. 2019, 234, 116–122. [Google Scholar] [CrossRef]
- Nieto, A.; Roberts, S.P.M.; Kemp, J.; Rasmont, P.; Kuhlmann, M.; García Criado, M.; Biesmeijer, J.C.; Bogusch, P.; Dathe, H.H.; De la Rúa, P.; et al. European Red List of Bees; Publications Office: Luxembourg, 2014; ISBN 978-92-79-44512-5. [Google Scholar]
- Thomas, C.D.; Jones, T.H.; Hartley, S.E. “Insectageddon”: A call for more robust data and rigorous analyses. Glob. Chang. Biol. 2019, 25, 1891–1892. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, C.; Dajoz, I.; Meriguet, J.; Loreau, M. Functional Diversity of Plant—Pollinator Interaction Webs Enhances the Persistence of Plant Communities. PLoS Biol. 2005, 4, e1. [Google Scholar] [CrossRef]
- Fründ, J.; Dormann, C.F.; Holzschuh, A.; Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 2013, 94, 2042–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundgren, R.; Totland, Ø.; Lázaro, A. Experimental simulation of pollinator decline causes community-wide reductions in seedling diversity and abundance. Ecology 2016, 97, 1420–1430. [Google Scholar] [CrossRef] [PubMed]
- Violle, C.; Navas, M.-L.; Vile, D.; Kazakou, E.; Fortunel, C.; Hummel, I.; Garnier, E. Let the concept of trait be functional! Oikos 2007, 116, 882–892. [Google Scholar] [CrossRef]
- Schleuning, M.; Fründ, J.; García, D. Predicting ecosystem functions from biodiversity and mutualistic networks: An extension of trait-based concepts to plant-animal interactions. Ecography 2015, 38, 380–392. [Google Scholar] [CrossRef]
- Le Provost, G.; Gross, N.; Börger, L.; Deraison, H.; Roncoroni, M.; Badenhausser, I. Trait-matching and mass effect determine the functional response of herbivore communities to land-use intensification. Funct. Ecol. 2017, 31, 1600–1611. [Google Scholar] [CrossRef]
- Diaz, S.; Lavorel, S.; de Bello, F.; Quetier, F.; Grigulis, K.; Robson, T.M. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA 2007, 104, 20684–20689. [Google Scholar] [CrossRef] [Green Version]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2005, 111, 112–118. [Google Scholar] [CrossRef]
- Garnier, E.; Lavorel, S.; Ansquer, P.; Castro, H.; Cruz, P.; Dolezal, J.; Eriksson, O.; Fortunel, C.; Freitas, H.; Golodets, C.; et al. Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites. Ann. Bot. 2007, 99, 967–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavorel, S.; Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- Lavorel, S.; Storkey, J.; Bardgett, R.D.; de Bello, F.; Berg, M.P.; Le Roux, X.; Moretti, M.; Mulder, C.; Pakeman, R.J.; Díaz, S.; et al. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 2013, 24, 942–948. [Google Scholar] [CrossRef]
- Armbruster, W.S. The specialization continuum in pollination systems: Diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 2017, 31, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Pellissier, L.; Alvarez, N.; Guisan, A. Pollinators as drivers of plant distribution and assemblage into communities. In Evolution of Plant-Pollinator Relationships; Patiny, S., Ed.; Cambridge University Press: Cambridge, UK, 2011; pp. 392–413. ISBN 978-1-139-01411-3. [Google Scholar]
- Desaegher, J. Urbanization Effects on Floral Morphology and Plant-Pollinator Relationships. Ph.D. Thesis, Université Paris-Saclay, Gif-sur-Yvette, France, December 2017. [Google Scholar]
- Weiner, C.N. Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, May 2016. [Google Scholar]
- Weiner, C.N.; Werner, M.; Linsenmair, K.E.; Blüthgen, N. Land-use impacts on plant–pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology 2014, 95, 466–474. [Google Scholar] [CrossRef]
- Goulson, D. Bumblebees Behabiour, Ecology, and Conservation, Oxford Biology, 2nd ed.; Oxford University Press: Oxford, UK, 2010; ISBN 978-0-19-955307-5. [Google Scholar]
- Gaujour, E.; Amiaud, B.; Mignolet, C.; Plantureux, S. Factors and processes affecting plant biodiversity in permanent grasslands. A review. Agron. Sustain. Dev. 2012, 32, 133–160. [Google Scholar] [CrossRef] [Green Version]
- Hicks, D.M.; Ouvrard, P.; Baldock, K.C.R.; Baude, M.; Goddard, M.A.; Kunin, W.E.; Mitschunas, N.; Memmott, J.; Morse, H.; Nikolitsi, M.; et al. Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows. PLoS ONE 2016, 11, e0158117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartomeus, I.; Cariveau, D.P.; Harrison, T.; Winfree, R. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 2018, 127, 306–315. [Google Scholar] [CrossRef]
- Ballantyne, G.; Baldock, K.C.R.; Rendell, L.; Willmer, P.G. Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community. Sci. Rep. 2017, 7, 8389. [Google Scholar] [CrossRef] [Green Version]
- Junker, R.R.; Parachnowitsch, A.L. Working Towards a Holistic View on Flower Traits—How Floral Scents Mediate Plant-Animal Interactions in Concert with Other Floral Characters. J. Indian Inst. Sci. 2015, 95, 26. [Google Scholar]
- Song, B.-M.; Lee, C.-H. Toward a Mechanistic Understanding of Color Vision in Insects. Front. Neural Circuits 2018, 12, 16. [Google Scholar] [CrossRef]
- van der Kooi, C.J.; Dyer, A.G.; Kevan, P.G.; Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Ann. Bot. 2019, 123, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Binkenstein, J.; Renoult, J.P.; Schaefer, H.M. Increasing land-use intensity decreases floral colour diversity of plant communities in temperate grasslands. Oecologia 2013, 173, 461–471. [Google Scholar] [CrossRef]
- Renoult, J.P.; Blüthgen, N.; Binkenstein, J.; Weiner, C.N.; Werner, M.; Schaefer, H.M. The relative importance of color signaling for plant generalization in pollination networks. Oikos 2015, 124, 347–354. [Google Scholar] [CrossRef]
- Cornu, A.; Farruggia, A.; Leppik, E.; Pinier, C.; Fournier, F.; Genoud, D.; Frérot, B. Trapping the Pasture Odorscape Using Open-Air Solid-Phase Micro Extraction, a Tool to Assess Grassland Value. PLoS ONE 2015, 10, e0140600. [Google Scholar] [CrossRef]
- Vázquez, D.P.; Blüthgen, N.; Cagnolo, L.; Chacoff, N.P. Uniting pattern and process in plant-animal mutualistic networks: A review. Ann. Bot. 2009, 103, 1445–1457. [Google Scholar] [CrossRef] [PubMed]
- Stang, M.; Klinkhamer, P.G.L.; van der Meijden, E. Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web. Oikos 2006, 112, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Kühsel, S.; Blüthgen, N. High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat. Commun. 2015, 6, 7989. [Google Scholar] [CrossRef]
- Kühsel, S. Pollinator Trait Diversity: Functional Implications at Different Land-Use Intensities and Environmental Conditions. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, December 2015. [Google Scholar]
- Michener, C.D. The Bees of the World, 2nd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2007; ISBN 978-0-8018-8573-0. [Google Scholar]
- Vaudo, A.D.; Tooker, J.F.; Grozinger, C.M.; Patch, H.M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 2015, 10, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodcock, T.S.; Larson, B.M.; Kevan, P.G.; Inouye, D.W.; Lunau, K. Flies and flowers II: Floral attractants and rewards. J. Pollinat. Ecol. 2014, 12, 63–94. [Google Scholar] [CrossRef]
- Baude, M.; Kunin, W.E.; Boatman, N.D.; Conyers, S.; Davies, N.; Gillespie, M.A.K.; Morton, R.D.; Smart, S.M.; Memmott, J. Historical nectar assessment reveals the fall and rise of Britain in bloom. Nature 2016, 530, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakeman, R.J.; Hewison, R.L.; Riach, D.; Fisher, J.M.; Hurskainen, S.; Fielding, D.A.; Mitchell, R.J. Long-term functional structure and functional diversity changes in Scottish grasslands. Agric. Ecosyst. Environ. 2017, 247, 352–362. [Google Scholar] [CrossRef]
- Weiner, C.N.; Werner, M.; Linsenmair, K.E.; Blüthgen, N. Land use intensity in grasslands: Changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 2011, 12, 292–299. [Google Scholar] [CrossRef]
- Vázquez, D.P.; Morris, W.F.; Jordano, P. Interaction frequency as a surrogate for the total effect of animal mutualists on plants: Total effect of animal mutualists on plants. Ecol. Lett. 2005, 8, 1088–1094. [Google Scholar] [CrossRef]
- Nicolson, S.W.; Thornburg, R.W. Nectar chemistry. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 215–264. ISBN 978-1-4020-5936-0. [Google Scholar]
- Krenn, H.W.; Plant, J.D.; Szucsich, N.U. Mouthparts of flower-visiting insects. Arthropod Struct. Dev. 2005, 34, 1–40. [Google Scholar] [CrossRef]
- Filipiak, M. A Better Understanding of Bee Nutritional Ecology Is Needed to Optimize Conservation Strategies for Wild Bees—The Application of Ecological Stoichiometry. Insects 2018, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Lunau, K.; Maier, E.J. Innate colour preferences of flower visitors. J. Comp. Physiol. A 1995, 177, 1–19. [Google Scholar] [CrossRef]
- Kevan, P.; Giurfa, M.; Chittka, L. Why are there so many and so few white flowers? Trends Plant Sci. 1996, 1, 252. [Google Scholar] [CrossRef]
- Jürgens, A.; Bischoff, M. Changing odour landscapes: The effect of anthropogenic volatile pollutants on plant–pollinator olfactory communication. Funct. Ecol. 2017, 31, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Burkle, L.A.; Runyon, J.B. Floral volatiles structure plant—Pollinator interactions in a diverse community across the growing season. Funct. Ecol. 2019, 33, 2116–2129. [Google Scholar] [CrossRef]
- Wester, P.; Lunau, K. Plant–Pollinator Communication. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2017; Volume 82, pp. 225–257. ISBN 978-0-12-801431-8. [Google Scholar]
- Spaethe, J.; Brockmann, A.; Halbig, C.; Tautz, J. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 2007, 94, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Goulnik, J.; Plantureux, S.; Théry, M.; Baude, M.; Delattre, M.; van Reeth, C.; Villerd, J.; Michelot-Antalik, A. Floral trait functional diversity is related to soil characteristics and positively influences pollination function in semi-natural grasslands. Agric. Ecosyst. Environ. 2020, 301, 107033. [Google Scholar] [CrossRef]
- Klumpers, S.G.T.; Stang, M.; Klinkhamer, P.G.L. Foraging efficiency and size matching in a plant—Pollinator community: The importance of sugar content and tongue length. Ecol. Lett. 2019, 22, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Helsen, K.; Ceulemans, T.; Stevens, C.J.; Honnay, O. Increasing Soil Nutrient Loads of European Semi-natural Grasslands Strongly Alter Plant Functional Diversity Independently of Species Loss. Ecosystems 2014, 17, 169–181. [Google Scholar] [CrossRef]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward A Metabolic Theory of Ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Cane, J.H.; Tepedino, V.J. Gauging the Effect of Honey Bee Pollen Collection on Native Bee Communities: Apis pollen depletion and native bees. Conserv. Lett. 2017, 10, 205–210. [Google Scholar] [CrossRef] [Green Version]
- van Rijn, P.C.J.; Kooijman, J.; Wäckers, F.L. The contribution of floral resources and honeydew to the performance of predatory hoverflies (Diptera: Syrphidae). Biol. Control 2013, 67, 32–38. [Google Scholar] [CrossRef]
- Roulston, T.H.; Goodell, K. The Role of Resources and Risks in Regulating Wild Bee Populations. Annu. Rev. Entomol. 2011, 56, 293–312. [Google Scholar] [CrossRef] [Green Version]
- De Palma, A.; Kuhlmann, M.; Roberts, S.P.M.; Potts, S.G.; Börger, L.; Hudson, L.N.; Lysenko, I.; Newbold, T.; Purvis, A. Ecological traits affect the sensitivity of bees to land-use pressures in E uropean agricultural landscapes. J. Appl. Ecol. 2015, 52, 1567–1577. [Google Scholar] [CrossRef] [Green Version]
- Roger, N.; Michez, D.; Wattiez, R.; Sheridan, C.; Vanderplanck, M. Diet effects on bumblebee health. J. Insect Physiol. 2017, 96, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Hanley, M.E.; Franco, M.; Pichon, S.; Darvill, B.; Goulson, D. Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct. Ecol. 2008, 22, 592–598. [Google Scholar] [CrossRef]
- Weiner, C.N.; Hilpert, A.; Werner, M.; Linsenmair, K.E.; Blüthgen, N. Pollen amino acids and flower specialisation in solitary bees. Apidologie 2010, 41, 476–487. [Google Scholar] [CrossRef] [Green Version]
- González, A.L.; Dézerald, O.; Marquet, P.A.; Romero, G.Q.; Srivastava, D.S. The Multidimensional Stoichiometric Niche. Front. Ecol. Evol. 2017, 5, 110. [Google Scholar] [CrossRef] [Green Version]
- Filipiak, M.; Kuszewska, K.; Asselman, M.; Denisow, B.; Stawiarz, E.; Woyciechowski, M.; Weiner, J. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS ONE 2017, 12, e0183236. [Google Scholar] [CrossRef]
- Kämper, W.; Weiner, C.; Kühsel, S.; Storm, C.; Eltz, T.; Blüthgen, N. Evaluating the effects of floral resource specialisation and of nitrogen regulation on the vulnerability of social bees in agricultural landscapes. Apidologie 2017, 48, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Blüthgen, N. Why network analysis is often disconnected from community ecology: A critique and an ecologist’s guide. Basic Appl. Ecol. 2010, 11, 185–195. [Google Scholar] [CrossRef]
- Blüthgen, N.; Klein, A.-M. Functional complementarity and specialisation: The role of biodiversity in plant—Pollinator interactions. Basic Appl. Ecol. 2011, 12, 282–291. [Google Scholar] [CrossRef]
- Junker, R.R.; Blüthgen, N.; Brehm, T.; Binkenstein, J.; Paulus, J.; Martin Schaefer, H.; Stang, M. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct. Ecol. 2013, 27, 329–341. [Google Scholar] [CrossRef]
- Junker, R.R.; Blüthgen, N.; Keller, A. Functional and phylogenetic diversity of plant communities differently affect the structure of flower-visitor interactions and reveal convergences in floral traits. Evol. Ecol. 2015, 29, 437–450. [Google Scholar] [CrossRef]
- Blüthgen, N.; Menzel, F.; Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 2006, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Fornoff, F.; Klein, A.-M.; Hartig, F.; Benadi, G.; Venjakob, C.; Schaefer, H.M.; Ebeling, A. Functional flower traits and their diversity drive pollinator visitation. Oikos 2017, 126, 1020–1030. [Google Scholar] [CrossRef]
- Fründ, J.; Linsenmair, K.E.; Blüthgen, N. Pollinator diversity and specialization in relation to flower diversity. Oikos 2010, 119, 1581–1590. [Google Scholar] [CrossRef]
- Brosi, B.J.; Briggs, H.M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl. Acad. Sci. USA 2013, 110, 13044–13048. [Google Scholar] [CrossRef] [Green Version]
- Bartholomée, O.; Lavorel, S. Disentangling the diversity of definitions for the pollination ecosystem service and associated estimation methods. Ecol. Indic. 2019, 107, 105576. [Google Scholar] [CrossRef]
- King, C.; Ballantyne, G.; Willmer, P.G. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 2013, 4, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Hegland, S.J.; Totland, Ø. Relationships between species’ floral traits and pollinator visitation in a temperate grassland. Oecologia 2005, 145, 586–594. [Google Scholar] [CrossRef]
- Chittka, L.; Raine, N.E. Recognition of flowers by pollinators. Curr. Opin. Plant. Biol. 2006, 9, 428–435. [Google Scholar] [CrossRef]
- Uyttenbroeck, R.; Piqueray, J.; Hatt, S.; Mahy, G.; Monty, A. Increasing plant functional diversity is not the key for supporting pollinators in wildflower strips. Agric. Ecosyst. Environ. 2017, 249, 144–155. [Google Scholar] [CrossRef]
- Chittka, L.; Thomson, J.D. (Eds.) Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution; Cambridge University Press: Cambridge, UK, 2001; ISBN 978-0-521-78195-4. [Google Scholar]
- Mouchet, M.A.; Villéger, S.; Mason, N.W.H.; Mouillot, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules: Functional diversity measures. Funct. Ecol. 2010, 24, 867–876. [Google Scholar] [CrossRef]
- Stavert, J.R.; Liñán-Cembrano, G.; Beggs, J.R.; Howlett, B.G.; Pattemore, D.E.; Bartomeus, I. Hairiness: The missing link between pollinators and pollination. PeerJ 2016, 4, e2779. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.B.; Williams, A.; Osborne, J.L.; Shaw, R.F. Shared traits make flies and bees effective pollinators of oilseed rape (Brassica napus L.). Basic Appl. Ecol. 2018, 32, 66–76. [Google Scholar] [CrossRef]
- Goulnik, J.; Plantureux, S.; Van Reeth, C.; Baude, M.; Mesbahi, G.; Michelot-Antalik, A. Facial area and hairiness of pollinators visiting semi-natural grassland wild plants predict their facial pollen load: Pollinator facial area, hairiness and pollen load. Ecol. Entomol. 2020, 45, 1296–1306. [Google Scholar] [CrossRef]
- Innouye, D.W.; Larson, B.M.H.; Ssymank, A.; Kevan, P.G. Flies and flowers III: Ecology of foraging and pollination. J. Pollinat. Ecol. 2015, 16, 115–133. [Google Scholar] [CrossRef]
- Briscoe Runquist, R.; Grossenbacher, D.; Porter, S.; Kay, K.; Smith, J. Pollinator-mediated assemblage processes in California wildflowers. J. Evol. Biol. 2016, 29, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Senapathi, D.; Goddard, M.A.; Kunin, W.E.; Baldock, K.C.R. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 2017, 31, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Steffan-Dewenter, I.; Nzenberg, U.M.; Rger, C.B.; Thies, C.; Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 2002, 83, 12. [Google Scholar] [CrossRef]
- Gámez-Virués, S.; Perović, D.J.; Gossner, M.M.; Börschig, C.; Blüthgen, N.; de Jong, H.; Simons, N.K.; Klein, A.-M.; Krauss, J.; Maier, G.; et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 2015, 6, 8568. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, W. Color vision and color choice behavior of the honey bee. Apidologie 1993, 24, 309–331. [Google Scholar] [CrossRef] [Green Version]
Matching Traits Categories | Matching Traits | Function | Agricultural Practices or Land-Use Index | Effect | Number of Grasslands | Knowledge Level | Country | References |
---|---|---|---|---|---|---|---|---|
Signals | Allow communication between plants and pollinators and thus interaction between them. Signals generate sensory experiences for pollinators that are different from an animal species to another | [31,32] | ||||||
Colour (hue) | Detection from background [33] | LUI | Shift toward white | 69 | T—D | Germany | [34] | |
Photoreceptors and visual system | Matching level between visual system and colour | LUI | - | 119 | NT—I | Germany | [35] | |
VOC emitted | Detection of flower [31] | Grazing and fertilization | None | 2 | T—D | France | [36] | |
ND | Odour preferences | Not tested | ND | NT—I | ||||
Exploitation Barrier | Prohibit interaction with a pollinator if its own matching traits are not adapted | [37] | ||||||
Nectar tube depth | Threshold to be reached by pollinator mouthpart length [38] | LUI | - | 40 | NT—D | Germany | [24,39] | |
Relative proboscis length | Depth of exploitable flowers | LUI | - | 40 | T—D | Germany | [40] | |
Rewards | Essential food for pollinators. They gather mainly nectar as source of carbohydrates and pollen as source of proteins. Rewards are linked with pollinator matching traits which inform for instance on their food needs | [41,42,43] | ||||||
Nectar production | Total quantity of sugar in a grassland [28] | Nitrogen deposition | - | 768 | T—I | Great-Britain | [44] | |
Livestock Unit/ha/year | - | 561 | T—D | Scotland | [45] | |||
Pollen production | Total quantity of pollen in a grassland | LUI | - | 119 | T—I | Germany | [25,46] | |
Livestock Unit/ha/year | - | 561 | T—D | Scotland | [45] | |||
Body size | Quantity of pollinator food needs | LUI | - | 40 | T—D | Germany | [40] | |
Phenology | Temporal availability of rewards [47] | Mowing, grazing, fertilization | (i.e., advances) or none | 33 | T—D | France | [18] | |
Livestock Unit/ha/year | 561 | T—D | Scotland | [45] | ||||
Sociability level | Duration of the breeding period | Not tested | - | NT—I | ||||
Nectar sugar concentration and nectar viscosity | Nectar feeding rate [48] | Not tested | + | NT—I | ||||
Anatomy of mouthpart | Adaptation to liquid viscosity | LUI | Shift toward sponging-sucking | 40 | NT—I | Germany | [40,49] | |
Pollen amino acid concentration and protein content | Pollen quality [50] | LUI | - | 40 | NT—I | Germany | [39] | |
Pollinator stoichiometric niche | Quality of pollinator food needs | Not tested | - | NT—I |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulnik, J.; Plantureux, S.; Dajoz, I.; Michelot-Antalik, A. Using Matching Traits to Study the Impacts of Land-Use Intensification on Plant–Pollinator Interactions in European Grasslands: A Review. Insects 2021, 12, 680. https://doi.org/10.3390/insects12080680
Goulnik J, Plantureux S, Dajoz I, Michelot-Antalik A. Using Matching Traits to Study the Impacts of Land-Use Intensification on Plant–Pollinator Interactions in European Grasslands: A Review. Insects. 2021; 12(8):680. https://doi.org/10.3390/insects12080680
Chicago/Turabian StyleGoulnik, Jérémie, Sylvain Plantureux, Isabelle Dajoz, and Alice Michelot-Antalik. 2021. "Using Matching Traits to Study the Impacts of Land-Use Intensification on Plant–Pollinator Interactions in European Grasslands: A Review" Insects 12, no. 8: 680. https://doi.org/10.3390/insects12080680
APA StyleGoulnik, J., Plantureux, S., Dajoz, I., & Michelot-Antalik, A. (2021). Using Matching Traits to Study the Impacts of Land-Use Intensification on Plant–Pollinator Interactions in European Grasslands: A Review. Insects, 12(8), 680. https://doi.org/10.3390/insects12080680