Valorisation Potential of Using Organic Side Streams as Feed for Tenebrio molitor, Acheta domesticus and Locusta migratoria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Insect Production on Organic Side Streams
2.1. Vegetable By-Products in Insects Diet
2.1.1. Tenebrio molitor
Diet | Ingredients | Moisture (%) | Ash (%) | Fat (%) | Protein (%) | Crude Fibre (%) | Minerals | Carbo (%) | Starch (%) | NDF (%) | ADF (%) | ADL (%) | H-Cellulose (%) | Cellulose (%) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HPHS—High Protein High Starch | Maize DDGS 10% Beer Yeast 40% Bread remains 10% Potato steam peelings 40% | 4.0 1 | 24.1 1 | 28.4 1 | van Broekhoven et al. (2015) [11] | ||||||||||
HPLS—High Protein Low Starch | Maize DDGS 20% Beer Yeast 40% Bread remains 10% Spent grains 30% | 7.0 1 | 32.5 1 | 7.4 1 | |||||||||||
LPHS—Low Protein High Starch | Beer Yeast 5% Bread remains 10% Potato steam peelings 85% | 1.8 1 | 10.7 1 | 49.8 | |||||||||||
LPLS—Low Protein Low Starch | Beer Yeast 10% Bread remains 50% Spent grains 40% | 6.2 1 | 20.0 1 | 19.4 | |||||||||||
HPHF—Hi Protein High Fat | Spent grains 60% Beer Yeast 20% Cookie remains 20% | 5.0 | 9.5 | 21.9 | Oonincx et al. (2015) [12] | ||||||||||
HPLF—High Protein Low Fat | Beer Yeast 50% Potato steam peelings 30% Beet molasses 20% | 4.9 | 1.0 | 22.9 | |||||||||||
LPHF—Low Protein High Fat | Cookie remains 50% Bread 50% | 10.9 | 14.6 | 12.9 | |||||||||||
LPLF—Low Protein Low Fat | Potato steam peelings 30% Beet molasses 20% Bread 50% | 10.9 | 2.1 | 14.4 | |||||||||||
Diet A | Organic waste 2 70% Yeast 10% Excreta of T. molitor 20% | 16.86 | 12.5 | 3.88 | 4.67 | 62.64 | Ramos-Elorduy et al. (2002) [37] | ||||||||
Diet B | Organic waste 2 70% Yeast 5% Excreta of T. molitor 25% | 18.28 | 19.18 | 3.043 | 7.79 | 51.38 | |||||||||
Diet C | Organic waste 2 75% Yeast 10% Excreta of T. molitor 15% | 19.74 | 16.77 | 3.02 | 5.20 | 52.68 | |||||||||
Diet D | Organic waste 2 75% Yeast 5% Excreta of T. molitor 20% | 17.26 | 15.81 | 9.50 | 5.23 | 52.23 | |||||||||
Diet E | Organic waste 2 80% Yeast 5% Excreta of T. molitor 15% | 14.92 | 17.63 | 6.95 | 7.38 | 61.17 | |||||||||
Organic corn meal 30% Organic soy flour 30%Dry stover 40% | Stull et al. (2019) [38] | ||||||||||||||
Maize stover dry 100% | |||||||||||||||
SG | Spent grains 100% | 5.19 | 3.43 | 3.29 | 17.98 3 | 70.10 | Mancini et al. (2019) [39] | ||||||||
B | Bread 100% | 2.91 | 1.88 | 0.31 | 11.15 4 | 83.75 | |||||||||
C | Cookies 100% | 0.01 | 0.70 | 10.44 | 6.55 | 82.29 | |||||||||
SG-C | Spent grains 50% Cookies 50% | 2.96 | 2.065 | 6.865 | 12.265 | 76.195 | |||||||||
B-C | Bread 50% Cookies 50% | 1.46 | 1.29 | 5.375 | 8.85 | 83.02 | |||||||||
Chicken feed 10% Vegetable waste 90% (mixed peels of 10% onion, 25% potato, 25% sweet potato, 30% carrot and 10% cucumber) | 0.234 | 2.788 | 1.925 | Harsányi et al. (2020) [40] | |||||||||||
Chicken feed 10% Garden waste 90% (50% Poaceae species and other common weeds, 25% tree leaves and 25% branches (Populus, Salix, Pinus and Corylus species), a mixture of stone fruits and other ornamental plant parts) | 0.424 | 7.618 | 1.401 | ||||||||||||
Chicken feed 10% Cattle manure 90% (45% straw) | 0.319 | 3.965 | 1.335 | ||||||||||||
Chicken feed 10% Horse manure 90% (65% straw) | 0.558 | 5.033 | 1.690 | ||||||||||||
Fermented wheat straw | 22.0 | 30.09 | 5.51 | 29.13 | 30.06 | Li et al. (2013) [27] | |||||||||
MSCS | Mushroom spent corn stover | <10 | 6.91 | 12.81 | 3.90 | 76.38 | Zhang et al. (2019) [26] | ||||||||
SDG | Spirit distillers grains | <10 | 15.04 | 6.85 | 13.87 | 64.24 | |||||||||
HDSM | Highly denaturated soybean meal | <10 | 11.61 | 4.76 | 43.18 | 40.45 | |||||||||
BSG | Brewers’ spent grain | 22.0 | 3.82 | 7.30 | 22.45 | 57.95 | 22.94 | 8 | 35 | 15 | Melis et al. (2019) [44] | ||||
3:1 | Middlings (75%) Olive pomace (25%) | 21.96 | 4.76 | 6.18 | 15.42 | 16.77 | Ruschioni et al. (2020) [45] | ||||||||
1:1 | Middlings (50%) Olive pomace (50%) | 37.42 | 4.88 | 6.99 | 14.89 | 21.58 | |||||||||
1:3 | middlings (25%) Olive pomace (75%) | 53.16 | 5.25 | 7.44 | 11.76 | 31.45 |
2.1.2. Acheta domesticus
Diet | Ingredients | Moisture (%) | Ash (%) | Fat (%) | Crude Protein (%) | Crude Fibre (%) | Minerals | Carbo (%) | Starch (%) | NDF (%) | ADF (%) | ADL (%) | H-Cellulose (%) | Cellulose (%) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DCD—Dairy Cow Diet | Soybean flour Lucern Corn flour Wheat Silage corn Sugar beet | Collavo et al. (2005) [54] | |||||||||||||
DCD + Y—DCD + yeast | Soybean flour Lucern Corn flour Wheat flour Yeast Silo Sugar beet | ||||||||||||||
AAD—Aromatic Arboreal Diet | False acacia Yeast Basel leaves Sage leaves Hazel leaves Maple leaves | ||||||||||||||
HRD—Human Refuse Diet | Fruits and vegetables Rice and pasta Pork and beef meat Bread Cheese skins Yolk | ||||||||||||||
HPHF—High Protein High Fat | Spent grains 60% Beer yeast 20% Cookie remains 20% | 5.0 | 9.5 | 21.9 | Oonincx et al. (2015) [12] | ||||||||||
HPLF—High Protein Low Fat | Beer yeast 50% Potato steam peelings 30% Beet molasses 20% | 4.9 | 1.0 | 22.9 | |||||||||||
LPHF—Low Protein High Fat | Cookie remains 50% Bread 50% | 10.9 | 14.6 | 12.9 | |||||||||||
LPLF—Low Protein Low Fat | Potato steam peelings 30% Beet molasses 20% Bread 50% | 10.9 | 2.1 | 14.4 | |||||||||||
Potato-half | By-product of potato flour production (10%) | 4.0 | 30.5 | 51.2 | Sorjonen et al. (2019) [55] | ||||||||||
Potato-all | By-product of potato flour production (20%) | 4.1 | 30.5 | 52.2 | |||||||||||
Barley mash-High | By-product of beer production (29%) | 5.7 | 30.5 | 50.5 | |||||||||||
Barley mash-Medium | By-product of beer production (41%) | 6.5 | 22.5 | 58.0 | |||||||||||
Barley mash-Low | By-product of beer production (20%) | 5.4 | 15.0 | 66.0 | |||||||||||
Barley feed-High | By-product of ethanol production (15%) | 5.2 | 30.0 | 51.0 | |||||||||||
Barley feed-Medium | By-product of ethanol production (44%) | 7.4 | 22.5 | 58.2 | |||||||||||
Barley feed-Low | By-product of ethanol production (31%) | 6.5 | 15.0 | 66.0 | |||||||||||
Broad bean pea-High | By-products of plant protein source (30%) | 3.8 | 30.0 | 50.4 | |||||||||||
Broad bean pea-Medium | By-products of plant protein source (30%) | 3.9 | 22.5 | 58.2 | |||||||||||
Broad bean pea-Low | By-products of plant protein source (13%) | 4.2 | 15.0 | 66.0 | |||||||||||
Turnip rape-High | By-product of rapeseed oil production (23%) | 6.3 | 30.0 | 48.4 | |||||||||||
Turnip rape-Medium | By-product of rapeseed oil production (5%) | 5.9 | 22.5 | 56.8 | |||||||||||
Turnip rape-Low | By-product of rapeseed oil production (7%) | 5.0 | 15.0 | 66.0 | |||||||||||
Food Waste 1 | 7.2 | 19.3 | 28.8 1 | 24.7 | Lundy and Parrella (2015) [57] | ||||||||||
Food Waste 2 | 21.4 | 15.8 | 13.8 1 | 41.6 | |||||||||||
Crop Residu 1 | 6.4 | 2.8 | 9.4 1 | 25.3 | |||||||||||
Crop Residu 2 | 32.8 | 1.1 | 8.8 1 | 50.1 | |||||||||||
Chicken feed 10% Vegetable waste 90% (mixed peels of 10% onion, 25% potato, 25% sweet potato, 30% carrot and 10% cucumber) | 0.234 | 2.788 | 1.925 | Harsányi et al. (2020) [40] | |||||||||||
Chicken feed 10% Garden waste 90% (50% Poaceae species and other common weeds, 25% tree leaves and 25% branches (Populus, Salix, Pinus and Corylus species) and a mixture of stone fruits and other ornamental plant parts) | 0.424 | 7.618 | 1.401 | ||||||||||||
Chicken feed 10% Cattle manure 90% (45% straw) | 0.319 | 3.965 | 1.335 | ||||||||||||
Chicken feed 10% Horse manure 90% (65% straw) | 0.558 | 5.033 | 1.690 |
2.1.3. Locusta migratoria
2.2. Animal Co-Products in Insects Diet
3. Valorisation of Side Streams in Insect Feed
4. Dietary Requirements of the Insects in Scope
4.1. Tenebrio molitor
4.2. Acheta domesticus
4.3. Locusta migratoria
5. Influence of Diet on Nutritional Value of Insects
5.1. Tenebrio molitor
5.2. Acheta domesticus
5.3. Locusta migratoria
6. Agro-Food Side Streams Availability in the European Union
6.1. At Primary Production Level
6.2. At Processing and Manufacturing Level
6.3. At Wholesale and Retail Level
7. Discussion
7.1. Legal Aspects
7.2. Side Stream Value and Availability
7.3. Side Streams Produced at Different Levels
7.4. Insect Diet Requirements
7.5. Additional Issues and Opportunities
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walston, J.D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 2012, 24, 623–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Department of Economic and Social Affairs. World Population Prospects 2019: Highlights; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2019. [Google Scholar]
- Pelletier, N.; Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000–2050. Proc. Natl. Acad. Sci. USA 2010, 107, 18371–18374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Stenmarck, Å.; Jensen, C.; Quested, T.; Moates, G.; Buksti, M.; Cseh, B.; Juul, S.; Parry, A.; Politano, A.; Redlingshofer, B.; et al. Estimates of European Food Waste Levels; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2016. [Google Scholar]
- EFFPA Figures & Network. Available online: https://www.effpa.eu/figures-network/ (accessed on 10 February 2021).
- Godfray, H.C.J.; Pretty, J.; Thomas, S.M.; Warham, E.J.; Beddington, J.R. Linking policy on climate and food. Science 2011, 331, 1013–1014. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, J.; Bos-Brouwers, H.; Timmermans, T.; Hansen, O.-J.; Møller, H.; Anderson, G.; O’connor, C.; Soethoudt, H.; Quested, T.; Easteal, S.; et al. FUSIONS Definitional Framework for Food Waste; CCSD: Las Vegas, NV, USA, 2014. [Google Scholar]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Van Broekhoven, S.; Van Huis, A.; Van Loon, J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bessa, L.W.; Pieterse, E.; Sigge, G.; Hoffman, L.C. Insects as Human Food; From Farm to Fork. J. Sci. Food Agric. 2017, 100, 5017–5022. [Google Scholar] [CrossRef]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Benno Meyer-Rochow, V. Can insects help to ease the problem of world food shortage? Search 1975, 6, 261–262. [Google Scholar]
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef] [Green Version]
- Bjørge, J.D.; Overgaard, J.; Malte, H.; Gianotten, N.; Heckmann, L.H. Role of temperature on growth and metabolic rate in the tenebrionid beetles Alphitobius diaperinus and Tenebrio molitor. J. Insect Physiol. 2018, 107, 89–96. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, P.P.; De Leo, F.; Ruberti, M.; Massari, S. Mealworms for food: A water footprint perspective. Water 2015, 7, 6190–6203. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Surendra, K.C.; Tomberlin, J.K.; van Huis, A.; Cammack, J.A.; Heckmann, L.H.L.; Khanal, S.K. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). Waste Manag. 2020, 117, 58–80. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06343. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of frozen and dried formulations from migratory locust (Locusta migratoria) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06667. [Google Scholar] [CrossRef]
- Montanari, F.; Pinto de Moura, A.; Miguel Cunha, L. The EU Regulatory Framework for Insects as Food and Feed and Its Current Constraints. In Production and Commercialization of Insects as Food and Feed; Springer: Cham, Switzerland, 2021; pp. 41–78. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, H.; Chen, G.; Qiao, L.; Li, J.; Liu, B.; Liu, Z.; Li, M.; Liu, X. Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. Eur. Food Res. Technol. 2019, 245, 2631–2640. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Z.; Liu, H. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut. 2013, 92, 103–109. [Google Scholar] [CrossRef]
- Law, Y.; Wein, L. Reversing the nutrient drain through urban insect farming—Opportunities and challenges. AIMS Bioeng. 2018, 5, 226–237. [Google Scholar] [CrossRef]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef]
- Poveda, J. Insect frass in the development of sustainable agriculture. A review. Agron. Sustain. Dev. 2021, 41, 5. [Google Scholar] [CrossRef]
- Robinson, W.H. Urban Insects and Arachnids—A Handbook of Urban Entomology; Cambridge University Press: New York, NY, USA, 2005; ISBN 9780521812535. [Google Scholar]
- Meireles, E.A.; Carneiro, C.N.B.; DaMatta, R.A.; Samuels, R.I.; Silva, C.P. Digestion of starch granules from maize, potato and wheat by larvae of the the yellow mealworm, Tenebrio molitor and the Mexican bean weevil, Zabrotes subfasciatus. J. Insect Sci. 2009, 9, 43. [Google Scholar] [CrossRef]
- Applebaum, S.W. Digestion of potato starch by larvae of the flour beetle, Tribolium castaneum. J. Nutr. 1966, 90, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Po, E.; Sinha, N.K. Potatoes: Production, Quality, and Major Processed Products. In Handbook of Vegetables and Vegetable Processing; Blackwell Publishing Ltd.: Ames, IA, USA, 2011; pp. 683–703. [Google Scholar]
- Nenaah, G. Individual and synergistic toxicity of solanaceous glycoalkaloids against two coleopteran stored-product insects. J. Pest Sci. 2011, 84, 77–86. [Google Scholar] [CrossRef]
- Ventrella, E.; Marciniak, P.; Adamski, Z.; Rosiński, G.; Chowański, S.; Falabella, P.; Scrano, L.; Bufo, S.A. Cardioactive properties of Solanaceae plant extracts and pure glycoalkaloids on Zophobas atratus. Insect Sci. 2015, 22, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Stull, V.J.; Kersten, M.; Bergmans, R.S.; Patz, J.A.; Paskewitz, S. Crude Protein, Amino Acid, and Iron Content of Tenebrio molitor (Coleoptera, Tenebrionidae) Reared on an Agricultural Byproduct from Maize Production: An Exploratory Study. Ann. Entomol. Soc. Am. 2019, 112, 533–543. [Google Scholar] [CrossRef]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals 2019, 9, 484. [Google Scholar] [CrossRef] [Green Version]
- Harsányi, E.; Juhász, C.; Kovács, E.; Huzsvai, L.; Pintér, R.; Fekete, G.; Varga, Z.I.; Aleksza, L.; Gyuricza, C. Evaluation of organic wastes as substrates for rearing zophobas morio, Tenebrio molitor, and Acheta domesticus larvae as alternative feed supplements. Insects 2020, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Chen, H. Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour. Technol. 2008, 99, 3885–3889. [Google Scholar] [CrossRef] [PubMed]
- House, H.L. Effects of Low Levels of the Nutrient Content of a Food and of Nutrient Imbalance on the Feeding and the Nutrition of a Phytophagous Larva, Celerio euphorbiae (Linnaeus) (Lepidoptera: Sphingidae). Can. Entomol. 1965, 97, 62–68. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G.; Shapiro-Llan, D.I.; Tedders, W.L. Use of nutrient self-selection as a diet refining tool in Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2013, 48, 206–221. [Google Scholar] [CrossRef]
- Melis, R.; Braca, A.; Sanna, R.; Spada, S.; Mulas, G.; Fadda, M.L.; Sassu, M.M.; Serra, G.; Anedda, R. Metabolic response of yellow mealworm larvae to two alternative rearing substrates. Metabolomics 2019, 15. [Google Scholar] [CrossRef]
- Ruschioni, S.; Loreto, N.; Foligni, R.; Mannozzi, C.; Raffaelli, N.; Zamporlini, F.; Pasquini, M.; Roncolini, A.; Cardinali, F.; Osimani, A.; et al. Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) larvae. Foods 2020, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Coudron, C.; Sprangher, T.; Elliot, D.; Halstead, J. Insect Breeding: Lab Scale and Pilot Scale Experiments with Mealworm and Black Soldier Fly; BioBoost: Roeselare, Belgium, 2019. [Google Scholar]
- Cornelis, Y. Verhakselde witloofwortels, een lekkernij voor meelwormen. Proeftuinnieuws 2019, 21, 18–19. [Google Scholar]
- Wadhwa, M.; Bakshi, M.P.S. Utilization of Fruit and Vegetable Wastes as Livestock Feed and as Substrates for Generation of Other Value-Added Products; FAO: Rome, Italy, 2013. [Google Scholar]
- Mussoline, W.; Esposito, G.; Giordano, A.; Lens, P. The Anaerobic Digestion of Rice Straw: A Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 895–915. [Google Scholar] [CrossRef]
- Yang, S.S.; Chen, Y.D.; Zhang, Y.; Zhou, H.M.; Ji, X.Y.; He, L.; Xing, D.F.; Ren, N.Q.; Ho, S.H.; Wu, W.M. A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal. Environ. Pollut. 2019, 252, 1142–1153. [Google Scholar] [CrossRef]
- Weissman, D.B.; Rentz, D.C.F. Feral house crickets Acheta domesticus (L.) (Orthoptera:Gryllidae) in Southern California. Entomol. News 1977, 88, 246–248. [Google Scholar]
- Ghouri, A.S.K. Home and Distribution of the House Cricket Acheta domesticus L. Nature 1961, 191, 1000. [Google Scholar] [CrossRef]
- Clifford, C.W.; Woodring, J.P. Methods for rearing the house cricket, Acheta domesticus (L.), along with baseline values for feeding rates, growth rates, development times, and blood composition. J. Appl. Entomol. 1990, 109, 1–14. [Google Scholar] [CrossRef]
- Collavo, A.; Glew, R.H.; Huang, Y.S.; Chuang, L.T.; Bosse, R.; Paoletti, M.G. House Cricket Small-scale Farming. In Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails; Paoletti, M.G., Ed.; Science Publishers: Enfield, NH, USA, 2005; pp. 515–540. [Google Scholar]
- Sorjonen, J.M.; Valtonen, A.; Hirvisalo, E.; Karhapää, M.; Lehtovaara, V.J.; Lindgren, J.; Marnila, P.; Mooney, P.; Mäki, M.; Siljander-Rasi, H.; et al. The plant-based by-product diets for the mass-rearing of Acheta domesticus and Gryllus bimaculatus. PLoS ONE 2019, 14, e0218830. [Google Scholar] [CrossRef] [Green Version]
- Patton, R.L. Oligidic Diets for Acheta domesticus (Orthoptera: Gryllidae). Ann. Entomol. Soc. Am. 1967, 60, 1238–1242. [Google Scholar] [CrossRef]
- Lundy, M.E.; Parrella, M.P. Crickets are not a free lunch: Protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS ONE 2015, 10, e0118785. [Google Scholar] [CrossRef]
- Song, P.; Zheng, X.; Li, Y.; Zhang, K.; Huang, J.; Li, H.; Zhang, H.; Liu, L.; Wei, C.; Mansaray, L.R.; et al. Estimating reed loss caused by Locusta migratoria manilensis using UAV-based hyperspectral data. Sci. Total Environ. 2020, 719, 137519. [Google Scholar] [CrossRef]
- Waloff, Z. The Distribution and Migrations of Locusta in Europe. Bull. Entomol. Res. 1940, 31, 211–246. [Google Scholar] [CrossRef]
- Raubenheimer, D.; Simpson, S.J. Nutrient balancing in grasshoppers: Behavioural and physiological correlates of dietary breadth. J. Exp. Biol. 2003, 206, 1669–1681. [Google Scholar] [CrossRef] [Green Version]
- Scanlan, J.C.; Grant, W.E.; Hunter, D.M.; Milner, R.J. Habitat and environmental factors influencing the control of migratory locusts (Locusta migratoria) with an entomopathogenic fungus (Metarhizium anisopliae). Ecol. Modell. 2001, 136, 223–236. [Google Scholar] [CrossRef]
- Dadd, R.H. The nutritional requirements of locusts-I Development of synthetic diets and lipid requirements. J. Insect Physiol. 1960, 4, 319–347. [Google Scholar] [CrossRef]
- Dadd, R.H. Observations on the palatability and utilisation of food by locusts, with particular reference to the interpretation of performances in growth trials using synthetic diets. Entomol. Exp. Appl. 1960, 3, 283–304. [Google Scholar] [CrossRef]
- Dadd, R.H. The nutritional requirements of locusts—III carbohydrate requirements and utilization. J. Insect Physiol. 1960, 5, 301–316. [Google Scholar] [CrossRef]
- Dadd, R.H. The nutritional requirements of locusts—V: Observations on essential fatty acids, chlorophyll, nutritional salt mixtures, and the protein or amino acid components of synthetic diets. J. Insect Physiol. 1961, 6, 126–145. [Google Scholar] [CrossRef]
- Dadd, R.H. The nutritional requirements of locusts—IV. Requirements for vitamins of the B complex. J. Insect Physiol. 1961, 6, 1–12. [Google Scholar] [CrossRef]
- Mehrotra, K.N.; Rao, P.J.; Farooqi, T.N.A. The consumption, digestion and utilization of food by locusts. Entomol. Exp. Appl. 1972, 15, 90–96. [Google Scholar] [CrossRef]
- Bernays, E.A.; Chapman, R.F.; Macdonald, J.; Salter, J.E.R. The degree of oligophagy in Locusta migratoria (L.). Ecol. Entomol. 1976, 1, 223–230. [Google Scholar] [CrossRef]
- Blunt, D.L.; Wilkinson, H.; Edwards, D.C. Report on the 1931 Locust Invasion of Kenya; Bulletin of the Department of Agriculture of Kenya: Kenya, South Africa, 1931.
- Beenakkers, A.M.T.; Meisen, M.A.H.Q.; Scheres, J.M.J.C. Influence of temperature and food on growth and digestion in fifth instar larvae and adults of Locusta. J. Insect Physiol. 1971, 17, 871–880. [Google Scholar] [CrossRef]
- Kwak, K.W.; Kim, S.Y.; An, K.S.; Kim, Y.S.; Park, K.; Kim, E.; Hwang, J.S.; Kim, M.A.; Ryu, H.Y.; Yoon, H.J. Subacute Oral Toxicity Evaluation of Freeze-Dried Powder of Locusta migratoria. Food Sci. Anim. Resour. 2020, 40, 795–812. [Google Scholar] [CrossRef]
- Lynch, S.A.; Mullen, A.M.; O’Neill, E.; Drummond, L.; Álvarez, C. Opportunities and perspectives for utilisation of co-products in the meat industry. Meat Sci. 2018, 144, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Mullen, A.M.; Álvarez, C.; Pojić, M.; Hadnadev, T.D.; Papageorgiou, M. Chapter 2—Classification and target compounds. In Food Waste Recovery; Academic Press: Cambridge, MA, USA, 2015; pp. 25–57. [Google Scholar] [CrossRef]
- Woodring, J.P.; Clifford, C.W.; Beckman, B.R. Food utilization and metabolic efficiency in larval and adult house crickets. J. Insect Physiol. 1979, 25, 903–912. [Google Scholar] [CrossRef]
- Davis, G.R.F. Essential Dietary Amino Acids for Growth of Larvae of the Yellow Mealworm. J. Nutr. 1975, 105, 1071–1075. [Google Scholar] [CrossRef] [Green Version]
- House, H.L. Effects of different proportions of nutrients on insects. Entomol. Exp. Appl. 1969, 12, 651–669. [Google Scholar] [CrossRef]
- Kraus, S.; Monchanin, C.; Gomez-Moracho, T.; Lihoreau, M. Insect Diet. In Encyclopedia of Animal Cognition and Behavior; Springer: Cham, Switzerland, 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Kips, L.; Van Droogenbroeck, B. Valorisatie Van Groente- en Fruitreststromen: Opportuniteiten en Knelpunten; ILVO: Merelbeke, Belgium, 2014. [Google Scholar]
- IPIFF EU Legislation. Available online: https://ipiff.org/insects-eu-legislation/ (accessed on 10 February 2021).
- Bos-Brouwers, H.E.; Langelaan, H.C.; Sanders, J.P.; van Dijk, M.; van Vuuren, A. Chances for Biomass: Integrated Valorisation of Biomass Resources; Wageningen UR: Wageningen, The Netherlands, 2012. [Google Scholar]
- EFFPA Reducing Food Waste. Available online: https://www.effpa.eu/reducing-food-waste/ (accessed on 10 February 2021).
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of insect use for feed and food: Life Cycle Assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Liu, C.; Masri, J.; Perez, V.; Maya, C.; Zhao, J. Growth performance and nutrient composition of mealworms (Tenebrio molitor) fed on fresh plant materials-supplemented diets. Foods 2020, 9, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, N.; Abelho, M.; Costa, R. A Review of the Scientific Literature for Optimal Conditions for Mass Rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2018, 53, 434–454. [Google Scholar] [CrossRef]
- Davis, G.R.; Sosulski, F.W. Nutritional quality of oilseed protein isolates as determined with larvae of the yellow mealworm, Tenebrio molitor L. J. Nutr. 1974, 104, 1172–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Ramos, J.A.; Rojas, M.G.; Dossey, A.T.; Berhow, M. Self-selection of food ingredients and agricultural by-products by the house cricket, Acheta domesticus (Orthoptera: Gryllidae): A holistic approach to develop optimized diets. PLoS ONE 2020, 15, e0227400. [Google Scholar] [CrossRef] [PubMed]
- Hinks, C.F.; Erlandson, M.A. Rearing Grasshoppers and Locusts: Review, Rationale and Update. J. Orthoptera Res. 1994, 3, 1–10. [Google Scholar] [CrossRef]
- Mulkern, G.B. Behavioral influences on food selection in grasshoppers (Orthoptera: Acrididae). Entomol. Exp. Appl. 1969, 12, 509–523. [Google Scholar] [CrossRef]
- Gangwere, S.K. Notes on drinking and the need for water in Orthoptera. Can. Entomol. 1960, 92, 911–915. [Google Scholar] [CrossRef]
- Veenenbos, M.E.; Oonincx, D.G.A.B. Carrot supplementation does not affect house cricket performance (Acheta domesticus). J. Insects Food Feed 2017, 3, 217–221. [Google Scholar] [CrossRef]
- Benno Meyer-Rochow, V.; Gahukar, R.T.; Ghosh, S.; Jung, C.; Smith, J. Foods Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Melgar-Lalanne, G.; Hernandez-Alvarez, A.J.; Salinas-Castro, A. Edible insects processing: Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kröncke, N.; Grebenteuch, S.; Keil, C.; Demtröder, S.; Kroh, L.; Thünemann, A.F.; Benning, R.; Haase, H. Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.). Insects 2019, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Lenaerts, S.; Van Der Borght, M.; Callens, A.; Van Campenhout, L. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour. Food Chem. 2018, 254, 129–136. [Google Scholar] [CrossRef]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Effect of Diet on the Growth Performance, Feed Conversion, and Nutrient Content of the House Cricket. J. Insect Sci. 2020, 20. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Van Der Poel, A.F.B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 2011, 30, 9–16. [Google Scholar] [CrossRef]
- Corrado, S.; Sala, S. Food waste accounting along global and European food supply chains: State of the art and outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef]
- Caldeira, C.; De Laurentiis, V.; Corrado, S.; van Holsteijn, F.; Sala, S. Quantification of food waste per product group along the food supply chain in the European Union: A mass flow analysis. Resour. Conserv. Recycl. 2019, 149, 479–488. [Google Scholar] [CrossRef]
- Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–584. [Google Scholar] [CrossRef]
- Searle, S.; Malins, C. Availability of Cellulosic Residues and Wastes in the EU; International Council on Clean Transportation: Washington, DC, USA, 2013. [Google Scholar]
- Ronzon, T.; Piotrowski, S.; Carus, M. DataM—Biomass Estimates (v3): A New Database to Quantify Biomass Availability in the European Union; Institute for Prospective and Technological Studies, Joint Research Centre: Luxembourg, 2015. [Google Scholar]
- FAO FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 11 February 2021).
- Wirsenius, S. Human Use of Land and Organic Materials: Modeling the Turnover of Biomass in the Global Food System; Göteborg University: Göteborg, Sweden, 2000. [Google Scholar]
- Pinotti, L.; Giromini, C.; Ottoboni, M.; Tretola, M.; Marchis, D. Insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals. Animal 2019, 13, 1365–1375. [Google Scholar] [CrossRef] [Green Version]
- Searle, S.Y.; Malins, C.J. Waste and residue availability for advanced biofuel production in EU Member States. Biomass Bioenergy 2016, 89, 2–10. [Google Scholar] [CrossRef]
- Kemna, R.; Holsteijn, F.V.; Lee, P.; Sims, E. Optimal Food Storage Conditions in Refrigeration Appliances; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Jackson, A.; Newton, R. Project to Model the Use of Fisheries By-Products in the Production of Marine Ingredients, with Special Reference the Omega 3 Fatty Acids EPA and DHA; University of Stirling: Stirling, UK, 2016. [Google Scholar]
- Pearson, A.M.; Dutson, T.R. Inedible Meat By-Products; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- MLC Services Angiestuff. Available online: http://www.angiestuff.com/ADNet/index_htm_files/3a.WalshMLCAdnet.pdf (accessed on 21 December 2020).
- Gac, A.; Lapasin, C.; Laspière, P.T.; Guardia, S.; Ponchant, P.; Chevillon, P.; Nassy, G. Co-Products from Meat Processing: The Allocation Issue; ACLCA: San Francisco, CA, USA, 2014. [Google Scholar]
- Chahine, M.; de Haro Marti, M.E.; Matuk, C.; Aris, A.; Campbell, J.; Polo, J.; Bach, A. Effects of spray-dried plasma protein in diets of early lactation dairy cows on health, milking and reproductive performance. Anim. Feed Sci. Technol. 2019, 257, 114266. [Google Scholar] [CrossRef]
- Tapia-Paniagua, S.T.; Balebona, M.D.C.; Firmino, J.P.; Rodríguez, C.; Polo, J.; Moriñigo, M.A.; Gisbert, E. The effect of spray-dried porcine plasma on gilthead seabream (Sparus aurata) intestinal microbiota. Aquac. Nutr. 2020, 26, 801–811. [Google Scholar] [CrossRef]
- Zhang, R.J.; Lee, B.; Chang, H.H. What Is Missing in Food Loss and Waste Analyses? A Close Look at Fruit and Vegetable Wholesale Markets. Sustainability 2019, 11, 7146. [Google Scholar] [CrossRef] [Green Version]
- Roels, K.; van Gijseghem, D. The Impact of Cosmetic Quality Standards on Food Losses in the Flemish Fruit and Vegetable Sector: Summary Report; Department of Agriculture and Fisheries: Brussels, Belgium, 2017.
- Flemish Food Supply Chain Platform for Food Loss. Food Waste and Food Losses: Prevention and Valorisation; FAO: Rome, Italy, 2017. [Google Scholar]
- Van Verbond, B.T. Overview of Received Products and Their Destination for Belgian Fruit and Vegetable Auctions. Unpublished Work. 2019. [Google Scholar]
- Rentizelas, A.A.; Tolis, A.J.; Tatsiopoulos, I.P. Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renew. Sustain. Energy Rev. 2009, 13, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Skoulou, V.; Zabaniotou, A. Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production. Renew. Sustain. Energy Rev. 2007, 11, 698–719. [Google Scholar] [CrossRef]
- Allen, J.; Browne, M.; Hunter, A.; Boyd, J.; Palmer, H. Logistics management and costs of biomass fuel supply. Int. J. Phys. Distrib. Logist. Manag. 1998, 28, 63–77. [Google Scholar] [CrossRef]
- Straub, P.; Tanga, C.M.; Osuga, I.; Windisch, W.; Subramanian, S. Experimental feeding studies with crickets and locusts on the use of feed mixtures composed of storable feed materials commonly used in livestock production. Anim. Feed Sci. Technol. 2019, 255, 114215. [Google Scholar] [CrossRef]
- Louveaux, A.; Mainguet, A.M.; Gillon, Y. Feeding Locusts on Freeze-Dried Plants: A New Rearing Method for Herbivorous Insects. Entomol. Exp. Appl. 1980, 27, 255–259. [Google Scholar] [CrossRef]
- FEFAC. Annual Report 2018–2019; FEFAC: Brussels, Belgium, 2019. [Google Scholar]
- Álvarez, C.; Mullen, A.M.; Pojić, M.; Hadnađev, T.D.; Papageorgiou, M. Classification and target compounds. In Food Waste Recovery; Academic Press: Cambridge, MA, USA, 2021; pp. 21–49. [Google Scholar]
- Cheng, J.Y.; Chiu, S.L.; Lo, I.M. Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Manag. 2017, 67, 315–323. [Google Scholar] [CrossRef]
- Fowles, T.M.; Nansen, C. Insect-Based Bioconversion: Value from Food Waste. Cham. In Food Waste Management; Närvänen, E., Mesiranta, N., Mattila, M., Heikkinen, A., Eds.; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 321–346. [Google Scholar]
- Zhan, S.; Fang, G.; Cai, M.; Kou, Z.; Xu, J.; Cao, Y.; Bai, L.; Zhang, Y.; Jiang, Y.; Luo, X.; et al. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Res. 2020, 30, 50–60. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Adamaki-Sotiraki, C.; Gourgouta, M.; Karapanagiotidis, I.T.; Asimaki, A.; Mente, E.; Athanassiou, C.G. Strain matters: Strain effect on the larval growth and performance of the yellow mealworm, Tenebrio molitor L. J. Insects Food Feed 2021, 0, 1–12. [Google Scholar] [CrossRef]
- Chieco, C.; Morrone, L.; Bertazza, G.; Cappellozza, S.; Saviane, A.; Gai, F.; Di Virgilio, N.; Rossi, F. The Effect of Strain and Rearing Medium on the Chemical Composition, Fatty Acid Profile and Carotenoid Content in Silkworm (Bombyx mori) Pupae. Animals 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, K.; Kristensen, T.N.; Heckmann, L.L.; Sørensen, J.G. Breeding and maintaining high-quality insects Insects as food and feed. In Insects as Food and Feed: From Production to Consumption; van Huis, A., Tomberlin, J.K., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; pp. 174–198. [Google Scholar]
- Kaya, C.; Generalovic, T.N.; Ståhls, G.; Hauser, M.; Samayoa, A.C.; Nunes-Silva, C.G.; Roxburgh, H.; Wohlfahrt, J.; Ewusie, E.A.; Kenis, M.; et al. Global population genetic structure and demographic trajectories of the black soldier fly, Hermetia illucens. BMC Biol. 2021, 19, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Lee, J.J.L.; Chen, W.N. Analysis of improved nutritional composition of potential functional food (Okara) after probiotic solid-state fermentation. J. Agric. Food Chem. 2018, 66, 5373–5381. [Google Scholar] [CrossRef] [PubMed]
- Lievens, S.; Poma, G.; De Smet, J.; Van Campenhout, L.; Covaci, A.; Van Der Borght, M. Chemical safety of black soldier fly larvae (Hermetia illucens ), knowledge gaps and recommendations for future research: A critical review. J. Insects Food Feed 2021, 7, 383–396. [Google Scholar] [CrossRef]
- Wynants, E.; Frooninckx, L.; Crauwels, S.; Verreth, C.; De Smet, J.; Sandrock, C.; Wohlfart, J.; Van Schelt, J.; Depraetere, S.; Lievens, B.; et al. Assessing the Microbiota of Black Soldier Fly Larvae (Hermetia illucens) Reared on Organic Waste Streams on Four Different Locations at Laboratory and Large Scale. Microb. Ecol. 2019, 77, 913–930. [Google Scholar] [CrossRef]
- EAAP. Available online: https://www.eaap.org/study-commissions/insects/ (accessed on 21 June 2021).
- Bosch, G.; Oonincx, D.G.A.B.; Jordan, H.R.; Zhang, J.; van Loon, J.J.A.; van Huis, A.; Tomberlin, J.K. Standardisation of quantitative resource conversion studies with black soldier fly larvae. J. Insects Food Feed 2020, 6, 95–109. [Google Scholar] [CrossRef]
Agricultural Side Stream | Production | RTP-Ratio | Residue Production |
---|---|---|---|
Apples | 13,849,593 | 0.20 | 2,769,919 |
Pears | 2,582,274 | 0.20 | 516,455 |
Strawberries | 1,271,750 | 0.20 | 254,350 |
Grapes | 27,619,792 | 0.20 | 5,523,958 |
Oranges | 6,515,370 | 0.20 | 1,303,074 |
Fruit total | 71,654,301 | 0.20 | 14,330,860 |
Sugar beet | 119,579,910 | 0.54 | 64,573,151 |
Sugar crops total | 121,860,062 | 0.61 | 74,334,638 |
Chilies and pepper | 2,588,420 | 0.20 | 517,684 |
Cabbages and other Brassicas | 4,614,668 | 0.20 | 922,934 |
Cauliflowers and broccoli | 2,387,488 | 0.20 | 477,498 |
Lettuce and chicory | 2,842,937 | 0.20 | 568,587 |
Chicory roots | 571,994 | 1.00 | 571,994 |
Cucumbers and gherkins | 2,829,509 | 0.20 | 565,902 |
Eggplants | 866,356 | 0.20 | 173,271 |
Leeks, other Alliaceous vegetables | 752,681 | 0.20 | 150,536 |
Tomatoes | 17,058,138 | 0.20 | 3,411,628 |
Lentils | 115,340 | 0.20 | 23,068 |
Onions (dry) | 5,942,422 | 0.20 | 1,188,484 |
Carrots | 5,353,961 | 0.20 | 1,070,792 |
Vegetables total | 61,698,004 | 0.20 | 12,339,601 |
Wheat | 138,049,231 | 1.25 | 172,561,539 |
Barley | 56,659,810 | 1.22 | 69,124,968 |
Triticale | 9,845,068 | 1.39 | 13,635,419 |
Oats | 7,785,890 | 1.18 | 9,187,350 |
Rye | 6,236,406 | 1.18 | 7,358,959 |
Corn | 2,725,683 | 1.54 | 4,197,552 |
Grain, mixed | 3,131,853 | 1.39 | 4,337,616 |
Cereals total | 295,305,279 | 1.39 | 408,997,811 |
Olives | 13,778,370 | 1.60 | 21,976,500 |
Sunflower | 10,003,030 | 1.86 | 18,605,636 |
Rapeseed | 19,928,570 | 1.86 | 37,067,140 |
Soybean | 2,912,120 | 1.36 | 3,960,483 |
Oil crops total | 47,980,763 | 1.60 | 76,529,317 |
Potatoes | 52,253,108 | 1.00 | 52,253,108 |
Livestock | 2010 | 2018 | Variation |
---|---|---|---|
Porcine | 256,799,114 | 261,647,761 | 1.89% |
Cattle | 29,020,397 | 26,850,232 | −7.48% |
Poultry | 6,289,886 | 7,285,469 | 15.83% |
Livestock | 2010 | 2018 |
---|---|---|
Porcine | 5,135,982 | 5,232,955 |
Cattle | 4,389,335 | 4,061,098 |
Poultry | 471,741 | 546,410 |
Co-Product | Commercial Product |
---|---|
Bile | Detergent and pharmaceuticals |
Bones | Adhesives, animal feed, calcium and phosphorous source (bone meal), glycerine, glue and collagen |
Blood | Spray dried plasma, iron supplement, functional ingredient and fat replacer |
Brains and spinal cords | Steroid, cholesterol, lecithin and cephalin |
Fats and fatty acids | Biodegradable detergents, animal feed, biodiesel, cosmetics, lubricants, plasticisers, emulsifiers and solvents |
Glands: | |
Adrenal | Cortisone, epinephrine and norepinephrine |
Liver | Heparin, vitamin B12, pet food and bile (detergent and pharmaceuticals) |
Pancreas | Chymotrypsin, insulin, pancreatin, trypsin and glucagon |
Pituitary glands | ACTH and prolactin |
Spleen | Ferritin |
Thymus | Thymosin |
Thyroid | TSH, hormones and so on |
Kidney | Pet food |
Hides and skins | Gelatin, collagen based adhesives and leather |
Hairs, wool, skins, feathers, nails, horns and hooves | Fibers, collagen and glue |
Hearts | Pet food |
Intestines | Sausage casings, strings, heparin and small intestinal sub mucosa materials for clinical applications |
Lungs | Pet food and heparin |
Ovaries | Estrogen |
Stomach and tripe | Pet food, glue, pepsin, rennin, lipase and trypsin |
Trachea | Chondroitin sulphate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Peer, M.; Frooninckx, L.; Coudron, C.; Berrens, S.; Álvarez, C.; Deruytter, D.; Verheyen, G.; Van Miert, S. Valorisation Potential of Using Organic Side Streams as Feed for Tenebrio molitor, Acheta domesticus and Locusta migratoria. Insects 2021, 12, 796. https://doi.org/10.3390/insects12090796
Van Peer M, Frooninckx L, Coudron C, Berrens S, Álvarez C, Deruytter D, Verheyen G, Van Miert S. Valorisation Potential of Using Organic Side Streams as Feed for Tenebrio molitor, Acheta domesticus and Locusta migratoria. Insects. 2021; 12(9):796. https://doi.org/10.3390/insects12090796
Chicago/Turabian StyleVan Peer, Meggie, Lotte Frooninckx, Carl Coudron, Siebe Berrens, Carlos Álvarez, David Deruytter, Geert Verheyen, and Sabine Van Miert. 2021. "Valorisation Potential of Using Organic Side Streams as Feed for Tenebrio molitor, Acheta domesticus and Locusta migratoria" Insects 12, no. 9: 796. https://doi.org/10.3390/insects12090796
APA StyleVan Peer, M., Frooninckx, L., Coudron, C., Berrens, S., Álvarez, C., Deruytter, D., Verheyen, G., & Van Miert, S. (2021). Valorisation Potential of Using Organic Side Streams as Feed for Tenebrio molitor, Acheta domesticus and Locusta migratoria. Insects, 12(9), 796. https://doi.org/10.3390/insects12090796