The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America
Abstract
:Simple Summary
Abstract
1. Introduction
2. Deforestation in Central America
3. Urbanization in Central America
4. Mosquito-Borne and Tick-Borne Diseases in Central America
4.1. Mosquito-Borne Arboviral Diseases in Central America
4.1.1. West Nile Virus Disease
4.1.2. Saint Louis Encephalitis
4.1.3. Venezuelan Equine Encephalitis
4.1.4. Madariaga Virus
4.1.5. Yellow Fever
4.1.6. Zika Fever
4.1.7. Chikungunya
4.1.8. Dengue Fever
4.1.9. Mayaro Fever
4.2. Malaria in Central America
4.3. Tick-Borne Diseases in Central America
4.3.1. Rickettsioses
4.3.2. Ehrlichiosis and Anaplasmosis
4.3.3. Borrelioses
5. Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America
5.1. Impact on Mosquito-Borne Arboviral Diseases
5.2. Impact on Malaria
5.3. Impact on Tick-Borne Diseases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bos, R. New Approaches to Disease Vector Control in the Context of Sustainable Development. Cad. Saúde Públ. 1992, 8, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Gubler, D.J. The Global Threat of Emergent/Re-Emergent Vector-Borne Diseases. Vector Biol. Ecol. Control 2010, 39–62. [Google Scholar] [CrossRef]
- Burkett-Cadena, N.; Vittor, A.Y. Deforestation and Vector-Borne Disease: Forest Conversion Favors Important Mosquito Vectors of Human Pathogens. Basic Appl. Ecol. 2018, 26, 101–110. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). Vector-Borne Diseases Factsheet. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 5 October 2021).
- Wilke, A.B.B.; Beier, J.C.; Benelli, G. Complexity of the Relationship between Global Warming and Urbanization—An Obscure Future for Predicting Increases in Vector-Borne Infectious Diseases. Curr. Opin. Insect Sci. 2019, 35, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Damania, A.; Bottazzi, M.E. Central Latin America: Two Decades of Challenges in Neglected Tropical Disease Control. PLoS Negl. Trop. Dis. 2020, 14, e0007962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, W.K. Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy—Brazil, 2015. MMWR Morb. Mortal. Wkl. Rep. 2019, 65. [Google Scholar] [CrossRef]
- Lorenz, C.; Azevedo, T.S.; Virginio, F.; Aguiar, B.S.; Chiaravalloti-Neto, F.; Suesdek, L. Impact of Environmental Factors on Neglected Emerging Arboviral Diseases. PLoS Negl. Trop. Dis. 2017, 11, e0005959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, R. Vital Signs: Trends in Reported Vectorborne Disease Cases—United States and Territories, 2004–2016. MMWR Morb. Mortal. Wkl. Rep. 2019, 67, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Morse, S.S. Factors in the Emergence of Infectious Diseases. Emerg. Infect. Dis. 1995, 1, 7–15. [Google Scholar] [CrossRef]
- Institute of Medicine. Microbial Threats to Health: Emergence, Detection, and Response. In Microbial Threats to Health; National Academies Press (US): Washington, DC, USA, 2003. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Hassell, J.M.; Begon, M.; Ward, M.J.; Fèvre, E.M. Urbanization and Disease Emergence: Dynamics at the Wildlife–Livestock–Human Interface. Trends Ecol. Evol. 2017, 32, 55–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, E.; Petrosillo, N.; Koopmans, M.; Beeching, N.; di Caro, A.; Gkrania-Klotsas, E.; Kantele, A.; Kohlmann, R.; Koopmans, M.; Lim, P.-L.; et al. Emerging Infections—An Increasingly Important Topic: Review by the Emerging Infections Task Force. Clin. Microbiol. Infect. 2018, 24, 369–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratz, N.G. Emerging and Resurging Vector-Borne Diseases. Annu. Rev. Entomol 1999, 44, 51–75. [Google Scholar] [CrossRef]
- Swei, A.; Couper, L.I.; Coffey, L.L.; Kapan, D.; Bennett, S. Patterns, Drivers, and Challenges of Vector-Borne Disease Emergence. Vector Borne Zoonotic Dis. 2020, 20, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Juliano, S.A.; Philip Lounibos, L. Ecology of Invasive Mosquitoes: Effects on Resident Species and on Human Health. Ecol. Lett. 2005, 8, 558–574. [Google Scholar] [CrossRef] [Green Version]
- Medlock, J.M.; Hansford, K.M.; Schaffner, F.; Versteirt, V.; Hendrickx, G.; Zeller, H.; van Bortel, W. A Review of the Invasive Mosquitoes in Europe: Ecology, Public Health Risks, and Control Options. Vector Borne Zoonotic Dis. 2012, 12, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özer, N. Emerging Vector-Borne Diseases in a Changing Environment. Turk. J. Biol. 2005, 29, 125–135. [Google Scholar]
- Dantas-Torres, F. Climate Change, Biodiversity, Ticks and Tick-Borne Diseases: The Butterfly Effect. Int. J. Parasitol. Parasites Wildl. 2015, 4, 452–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheela, A.M.; Ghermandi, A.; Vineetha, P.; Sheeja, R.V.; Justus, J.; Ajayakrishna, K. Assessment of Relation of Land Use Characteristics with Vector-Borne Diseases in Tropical Areas. Land Use Policy 2017, 63, 369–380. [Google Scholar] [CrossRef]
- Devine, J.A.; Wrathall, D.; Aguilar-González, B.; Benessaiah, K.; Tellman, B.; Ghaffari, Z.; Ponstingel, D. Narco-Degradation: Cocaine Trafficking’s Environmental Impacts in Central America’s Protected Areas. World Dev. 2021, 144, 105474. [Google Scholar] [CrossRef]
- Gottdenker, N.L.; Streicker, D.G.; Faust, C.L.; Carroll, C.R. Anthropogenic Land Use Change and Infectious Diseases: A Review of the Evidence. EcoHealth 2014, 11, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Berglee, R. World Regional Geography: People, Places, and Globalization v2.0; FlatWorld: Boston, MA, USA, 2017. [Google Scholar]
- Myers, N.; Tucker, R. Deforestation in Central America: Spanish Legacy and North American Consumers. Environ. Hist. Rev. 1987, 11, 55–71. [Google Scholar] [CrossRef]
- De Clerck, F.A.J.; Chazdon, R.; Holl, K.D.; Milder, J.C.; Finegan, B.; Martinez-Salinas, A.; Imbach, P.; Canet, L.; Ramos, Z. Biodiversity Conservation in Human-Modified Landscapes of Mesoamerica: Past, Present and Future. Biol. Conserv. 2010, 143, 2301–2313. [Google Scholar] [CrossRef]
- Kim, D.-H.; Sexton, J.O.; Townshend, J.R. Accelerated Deforestation in the Humid Tropics from the 1990s to the 2000s. Geophys. Res. Lett. 2015, 42, 3495–3501. [Google Scholar] [CrossRef] [PubMed]
- Douglass Biodiversity and Deforestation in Central America. Available online: https://storymaps.arcgis.com/stories/b21e1154ae354c9d8629626a5f80ee88 (accessed on 20 September 2021).
- Tellman, B.; Sesnie, S.E.; Magliocca, N.R.; Nielsen, E.A.; Devine, J.A.; McSweeney, K.; Jain, M.; Wrathall, D.J.; Dávila, A.; Benessaiah, K.; et al. Illicit Drivers of Land Use Change: Narcotrafficking and Forest Loss in Central America. Glob. Environ. Chang. 2020, 63, 102092. [Google Scholar] [CrossRef]
- Maria, A.; Acero, J.L.; Aguilera, A.I.; Garcia Lozano, M. Central America Urbanization Review: Making Cities Work for Central America; World Bank: Washington, DC, USA, 2017; ISBN 978-1-4648-0985-9. [Google Scholar]
- Belli, A.; Zeledon, R.; de Carreira, P.; Ponce, C.; Arana, B. Epidemiological Aspects of the Leishmaniasis in Central America. Arch. Inst. Pasteur Tunis 1993, 70, 489. [Google Scholar] [PubMed]
- Romero, G.A.S.; Boelaert, M. Control of Visceral Leishmaniasis in Latin America—A Systematic Review. PLoS Negl. Trop. Dis. 2010, 4, e584. [Google Scholar] [CrossRef] [PubMed]
- Ponce, C. Current Situation of Chagas Disease in Central America. Mem. Inst. Oswaldo Cruz 2007, 102, 41–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeledón, R.; Ponce, C.; Méndez-Galván, J.F. Group Discussion: Epidemiological, Social, and Control Determinants of Chagas Disease in Central America and Mexico. Mem. Inst. Oswaldo Cruz 2007, 102, 45–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, J.L.; Távora, F.R.F.; Sobral, M.G.V.; Vasconcelos, G.G.; Almeida, G.P.L.; Fernandes, J.R.; da Escóssia Marinho, L.L.; de Mendonça Trompieri, D.F.; de Souza Neto, J.D.; Mejia, J.A.C. Chagas Cardiomyopathy in Latin America Review. Curr. Cardiol. Rep. 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Independent Evaluation Group (The World Bang Group). The Mesoamerican Biological Corridor; Regional Program Review; The World Bank Group: Washington, DC, USA, 2011; Volume 5, 80p, Available online: https://ieg.worldbankgroup.org/sites/default/files/Data/reports/mbc_rpr.pdf (accessed on 15 November 2021).
- Grandia, L. Between Bolivar and Bureaucracy: The Mesoamerican Biological Corridor. Conserv. Soc. 2007, 5, 478–503. [Google Scholar]
- WCS (Wildlife Conservation Society). People and Wildlife Now Threatened by Rapid Destruction of Central America’s Forests. Available online: https://newsroom.wcs.org/News-Releases/articleType/ArticleView/articleId/10332/People-and-Wildlife-Now-Threatened-by-Rapid-Destruction-of-Central-Americas-Forests.aspx (accessed on 5 October 2021).
- Utting, P. Deforestation in Central America: Historical and Contemporary Dynamics. Sustain. Agric. Cent. Am. 1997, 9–29. [Google Scholar] [CrossRef]
- Carr, D.; Barbieri, A.; Pan, W.; Iranavi, H. Agricultural Change and Limits to Deforestation in Central America. In Agriculture and Climate beyond 2015: A New Perspective on Future Land Use Patterns; Brouwer, F., McCarl, B.A., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 46, pp. 91–107. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation: Tropical Forests Are Disappearing as the Result of Many Pressures, Both Local and Regional, Acting in Various Combinations in Different Geographical Locations. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Rudel, T.K.; Defries, R.; Asner, G.P.; Laurance, W.F. Changing Drivers of Deforestation and New Opportunities for Conservation. Conserv. Biol. 2009, 23, 1396–1405. [Google Scholar] [CrossRef]
- Clark, M.L.; Aide, T.M.; Riner, G. Land Change for All Municipalities in Latin America and the Caribbean Assessed from 250-m MODIS Imagery (2001–2010). Remote Sens. Environ. 2012, 126, 84–103. [Google Scholar] [CrossRef]
- Redo, D.J.; Grau, H.R.; Aide, T.M.; Clark, M.L. Asymmetric Forest Transition Driven by the Interaction of Socioeconomic Development and Environmental Heterogeneity in Central America. Proc. Natl. Acad. Sci. USA 2012, 109, 8839–8844. [Google Scholar] [CrossRef] [Green Version]
- Sesnie, S.E.; Tellman, B.; Wrathall, D.; McSweeney, K.; Nielsen, E.; Benessaiah, K.; Wang, O.; Rey, L. A Spatio-Temporal Analysis of Forest Loss Related to Cocaine Trafficking in Central America. Environ. Res. Lett. 2017, 12, 054015. [Google Scholar] [CrossRef] [Green Version]
- TWB (The World Bank); FAO (Food and Agriculture Organization). Forest Area (% of Land Area). 2021. Available online: https://data.worldbank.org/indicator/AG.LND.FRST.ZS?most_recent_value_desc=true (accessed on 5 October 2021).
- Blackman, A. Strict versus Mixed-Use Protected Areas: Guatemala’s Maya Biosphere Reserve. Ecol. Econ. 2015, 112, 14–24. [Google Scholar] [CrossRef]
- King, M.W.; Pastora, M.A.G.; Salazar, M.C.; Rodriguez, C.M. Environmental Governance and Peacebuilding in Post-Conflict Central America: Lessons from the Central American Commission for Environment and Development. Gov. Nat. Resour. Post-Confl. Peacebuild. 2016, 777–802. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Forest governance by indigenous and tribal peoples. In An Opportunity for Climate Action in Latin America and the Caribbean; FAO Regional Office for Latin America and Caribbean: Santiago, Chile, 2021; p. 170. [Google Scholar] [CrossRef]
- McSweeney, K.; Nielsen, E.A.; Taylor, M.J.; Wrathall, D.J.; Pearson, Z.; Wang, O.; Plumb, S.T. Drug Policy as Conservation Policy: Narco-Deforestation. Science 2014, 343, 489–490. [Google Scholar] [CrossRef]
- Dudley, S.S. Drug Trafficking Organizations in Central America: Transportistas, Mexican Cartels and Maras. In Organized Crime in Central America. The Northern Triangle; Arnson, C.J., Olson, E.L., Eds.; Woodrow Wilson International Center for Scholars: Washington, DC, USA, 2011; pp. 18–61. [Google Scholar]
- UNODC (United Nations Office of Drugs and Crime). Transnational Organized Crime in Central America and the Caribbean: A Threat Assessment; United Nations Office on Drug and Crime., UN: Vienna, Austria, 2012; 82p. [Google Scholar] [CrossRef]
- Richards, M.; Wells, A.; del Gatto, F.; Contreras Hermosilla, A.; Pommier, D. Impacts of Illegality and Barriers to Legality: A Diagnostic Analysis of Illegal Logging in Honduras and Nicaragua. Int. For. Rev. 2003, 5, 282–292. [Google Scholar] [CrossRef]
- PRISMA (Programa Regional de Investigación sobre Desarrollo y Medio Ambiente). Informe PRISMA: Pueblos Indígenas y Comunidades Rurales Defendiendo Derechos Territoriales. In Estudios de Caso Sobre Experiencias de Prevención y Defensa Ante Narcotráfico y El Crimen Organizado En Mesoamérica; Fundacion PRISMA: San Salvador, El Salvador, 2014. [Google Scholar]
- Hodgdon, B.D.; Hughell, D.; Ramos, V.H.; McNab, R.B. Deforestation Trends in the Maya Biosphere Reserve, Guatemala Rainforest (2000–2013). Report of the Rainforest Alliance, Consejo Nacional de Áreas Protegidas (CONAP), and the Wildlife Conservation Society. 2015. Available online: https://www.rainforest-alliance.org/wp-content/uploads/2021/07/MBR-Deforestation-Trends.pdf (accessed on 15 November 2021).
- McSweeney, K.; Pearson, Z. Prying Native People from Native Lands: Narco Business in Honduras. NACLA Rep. Am. 2013, 46, 7–12. [Google Scholar] [CrossRef]
- McSweeney, K.; Wrathall, D.J.; Nielsen, E.A.; Pearson, Z. Grounding Traffic: The Cocaine Commodity Chain and Land Grabbing in Eastern Honduras. Geoforum 2018, 95, 122–132. [Google Scholar] [CrossRef]
- Wrathall, D.J.; Devine, J.; Aguilar-González, B.; Benessaiah, K.; Tellman, E.; Sesnie, S.; Nielsen, E.; Magliocca, N.; McSweeney, K.; Pearson, Z.; et al. The Impacts of Cocaine-Trafficking on Conservation Governance in Central America. Glob. Environ. Chang. 2020, 63, 102098. [Google Scholar] [CrossRef]
- Grandia, L. Road Mapping: Megaprojects and Land Grabs in the Northern Guatemalan Lowlands. Dev. Chang. 2013, 44, 233–259. [Google Scholar] [CrossRef]
- Stocks, A.; McMahan, B.; Taber, P. Indigenous, Colonist, and Government Impacts on Nicaragua’s Bosawas Reserve. Conserv. Biol. 2007, 21, 1495–1505. [Google Scholar] [CrossRef]
- Radachowsky, J.; Ramos, V.H.; McNab, R.; Baur, E.H.; Kazakov, N. Forest Concessions in the Maya Biosphere Reserve, Guatemala: A Decade Later. For. Ecol. Manag. 2012, 268, 18–28. [Google Scholar] [CrossRef]
- Devine, J.A.; Wrathall, D.; Currit, N.; Tellman, B.; Langarica, Y.R. Narco-Cattle Ranching in Political Forests. Antipode 2020, 52, 1018–1038. [Google Scholar] [CrossRef]
- Devine, J.A.; Currit, N.; Reygadas, Y.; Liller, L.I.; Allen, G. Drug Trafficking, Cattle Ranching and Land Use and Land Cover Change in Guatemala’s Maya Biosphere Reserve. Land Use Policy 2020, 95, 104578. [Google Scholar] [CrossRef]
- WBG (World Bank Group). World Development Indicators 2015; International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- UNWFP (United Nations World Food Programme); IOM (International Organization for Migration). Hunger Without Borders, The Hidden Links between Food Insecurity, Violence and Migration in the Northern Triangle of Central America; UNWFP: Geneva, Switzerland, 2016; Available online: https://environmentalmigration.iom.int/hunger-without-borders-hidden-links-between-food-insecurity-violence-and-migration-northern-triangle (accessed on 15 November 2021).
- da Gama Torres, H. Environmental Implications of Peri-Urban Sprawl and the Urbanization of Secondary Cities in Latin America; Technical Report; Inter-American Development Bank: Washington, DC, USA, March 2011; Available online: https://publications.iadb.org/en/environmental-implications-peri-urban-sprawl-and-urbanization-secondary-cities-latin-america (accessed on 15 November 2021).
- Manuel-Navarrete, D.; Gómez, J.J.; Gallopín, G. Syndromes of Sustainability of Development for Assessing the Vulnerability of Coupled Human–Environmental Systems. The Case of Hydrometeorological Disasters in Central America and the Caribbean. Glob. Environ. Chang. 2007, 17, 207–217. [Google Scholar] [CrossRef]
- Spencer, N.; Urquhart, M.-A. Hurricane Strikes and Migration: Evidence from Storms in Central America and the Caribbean. Weather Clim. Soc. 2018, 10, 569–577. [Google Scholar] [CrossRef]
- Gencer, E. An Overview of Urban Vulnerability to Natural Disasters and Climate Change in Central America & the Caribbean Region. SSRN Electron. J. 2013. [Google Scholar] [CrossRef] [Green Version]
- Beaubien, J. Back-to-Back Hurricanes Created an Unprecedented Disaster in Honduras: Goats and Soda: NPR. Available online: https://www.npr.org/sections/goatsandsoda/2020/12/14/945377248/even-disaster-veterans-are-stunned-by-whats-happening-in-honduras (accessed on 16 September 2021).
- Imbach, P.; Locatelli, B.; Zamora, J.C.; Fung, E.; Calderer, L.; Molina, L.; Ciais, P. Impacts of Climate Change on Ecosystem Hydrological Services of Central America: Water Availability—CIFOR Knowledge. In Climate Change Impacts on Tropical Forests in Central America: An Ecosystem Service Perspective; Chiabai, A., Ed.; Routledge: New York, NY, USA, 2015; pp. 65–90. [Google Scholar]
- OECD. Health at a Glance: Latin America and the Caribbean 2020. Health at a Glance: Latin America and the Caribbean 2020; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Kramer, L.D.; Ciota, A.T.; Kilpatrick, A.M. Introduction, Spread, and Establishment of West Nile Virus in the Americas. J. Med. Entomol. 2019, 56, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.; Cardenas, V.M.; Abarca, M.; Rodriguez, T.; Reyna, R.F.; Serpas, M.V.; Fontaine, R.E.; Beasley, D.W.C.; da Rosa, A.P.A.T.; WEAVER, S.C.; et al. Serological Evidence of West Nile Virus Activity in El Salvador. Am. J. Trop. Med. Hyg. 2005, 72, 612–615. [Google Scholar] [CrossRef] [PubMed]
- OIE (Organization for Animal Health). Update on West Nile Virus (WNV) in Belize—Vol. 2, No. 11 (18 March 2004)—PAHO/WHO|Pan American Health Organization. Emerg. Infect. Dis. Wkl. Updat. 2004, 2. Available online: https://www.paho.org/en/documents/update-west-nile-virus-wnv-belize-vol-2-no-11-18-march-2004 (accessed on 15 November 2021).
- Gubler, D.J. The Continuing Spread of West Nile Virus in the Western Hemisphere. Clin. Infect. Dis. Off. Pub. Infect. Dis. Soc. Am. 2007, 45, 1039–1046. [Google Scholar] [CrossRef]
- Komar, N.; Clark, G.G. West Nile Virus Activity in Latin America and the Caribbean. Rev. Panam. Salud Publica 2006, 19, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Monge Maillo, B.; López-Vélez, R.; Norman, F.; de Ory, F.; Sanchez-Seco, M.P.; Giovanni Fedele, C. Importation of West Nile Virus Infection from Nicaragua to Spain. Emerg. Infect. Dis. 2008, 14, 1171–1173. [Google Scholar] [CrossRef]
- Morales-Betoulle, M.E.; Komar, N.; Panella, N.A.; Álvarez, D.; López, M.R.; Betoulle, J.; Sosa, S.M.; Muller, M.L.; Kilpatrick, A.M.; Lanciotti, R.S.; et al. West Nile Virus Ecology in a Tropical Ecosystem in Guatemala. Am. J. Trop. Med. Hyg. 2013, 88, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Morales-Betoulle, M.E.; Morales, H.; Blitvich, B.J.; Powers, A.M.; Davis, E.A.; Klein, R.; Cordón-Rosales, C. West Nile Virus in Horses, Guatemala. Emerg. Infect. Dis. 2006, 12, 1038–1039. [Google Scholar] [CrossRef]
- Kading, R.C.; Reiche, A.S.; Morales-Betoulle, M.E.; Komar, N. Host Selection of Potential West Nile Virus Vectors in Puerto Barrios, Guatemala, 2007. Am. J. Trop. Med. Hyg. 2013, 88, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Carrera, J.-P.; Bagamian, K.H.; da Rosa, A.P.T.; Wang, E.; Beltran, D.; Gundaker, N.D.; Armien, B.; Arroyo, G.; Sosa, N.; Pascale, J.M.; et al. Human and Equine Infection with Alphaviruses and Flaviviruses in Panamá during 2010: A Cross-Sectional Study of Household Contacts during an Encephalitis Outbreak. Am. J. Trop. Med. Hyg. 2018, 98, 1798–1804. [Google Scholar] [CrossRef] [Green Version]
- Hobson-Peters, J.; Arévalo, C.; Cheah, W.Y.; Blitvich, B.J.; Tan, C.S.; Sandis, A.; Araya, L.N.; Hernández, J.L.; Toye, P.; Hall, R.A. Detection of Antibodies to West Nile Virus in Horses, Costa Rica, 2004. Vector Borne Zoonotic Dis. 2011, 11, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, C.; Romero, M.; Piche, M.; Baldi, M.; Alfaro, A.; Chaves, A.; Morales, J.; León, B.; Hutter, S.; Corrales-Aguilar, E. Arboviral Encephalitis in Costa Rican Horses: 2009–2016. Int. J. Infect. Dis. 2016, 53, 153. [Google Scholar] [CrossRef] [Green Version]
- Chaves, A.; Piche-Ovares, M.; Ibarra-Cerdeña, C.N.; Corrales-Aguilar, E.; Suzán, G.; Moreira-Soto, A.; Gutiérrez-Espeleta, G.A. Serosurvey of Nonhuman Primates in Costa Rica at the Human–Wildlife Interface Reveals High Exposure to Flaviviruses. Insects 2021, 12, 554. [Google Scholar] [CrossRef]
- Medlin, S.; Deardorff, E.R.; Hanley, C.S.; Vergneau-Grosset, C.; Siudak-Campfield, A.; Dallwig, R.; da Rosa, A.T.; Tesh, R.B.; Martin, M.P.; Weaver, S.C.; et al. Serosurvey of Selected Arboviral Pathogens in Free-Ranging, Two-Toed Sloths (Choloepus hoffmanni) and Three-Toed Sloths (Bradypus variegatus) in Costa Rica, 2005–2007. J. Wildl. Dis. 2016, 52, 883–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolz, G.; Chaves, A.; Gutiérrez-Espeleta, G.A.; Ortiz-Malavasi, E.; Bernal-Valle, S.; Herrero, M.V. Detection of Antibodies against Flavivirus over Time in Wild Non-Human Primates from the Lowlands of Costa Rica. PLoS ONE 2019, 14, e0219271. [Google Scholar] [CrossRef]
- Piche-Ovares, M.; Romero-Vega, M.; Vargas-Gonzalez, D.; Barrantes-Murillo, D.; Soto-Garita, C.; Francisco-Llamas, J.; Alfaro-Alarcon, A.; Jimenez, C.; Corrales-Aguilar, E. Serosurvey in Two Rural Areas Evidences Recent and Previously Undetected WNV and SLEV circulation in Costa Rica. medRxiv 2021. [Google Scholar] [CrossRef]
- Mores, C.N.; Turell, M.J.; Dohm, D.J.; Blow, J.A.; Carranza, M.T.; Quintana, M. Experimental Transmission of West Nile Virus by Culex nigripalpus from Honduras. Vector Borne Zoonotic Dis. 2007, 7, 279–284. [Google Scholar] [CrossRef]
- Kent, R.J.; Crabtree, M.B.; Miller, B.R. Transmission of West Nile Virus by Culex quinquefasciatus Say Infected with Culex Flavivirus Izabal. PLoS Negl. Trop. Dis. 2010, 4, e671. [Google Scholar] [CrossRef]
- Barzon, L.; Pacenti, M.; Ulbert, S.; Palù, G. Latest Developments and Challenges in the Diagnosis of Human West Nile Virus Infection. Expert Rev. Anti-Infect. Ther. 2015, 13, 327–342. [Google Scholar] [CrossRef]
- Lustig, Y.; Sofer, D.; Bucris, E.D.; Mendelson, E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front. Microbiol. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Moreira, J.; Barros, J.; Lapouble, O.; Lacerda, M.V.G.; Felger, I.; Brasil, P.; Dittrich, S.; Siqueira, A.M. When Fever Is Not Malaria in Latin America: A Systematic Review. BMC Med. 2020, 18, 1294. [Google Scholar] [CrossRef]
- Rappole, J.H.; Derrickson, S.R.; Hubálek, Z. Migratory Birds and Spread of West Nile Virus in the Western Hemisphere. Emerg. Infect. Dis. 2000, 6, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, P.D.; Bosco-Lauth, A.M.; Langevin, S.A.; Anishchenko, M.; Bowen, R.A.; Reisen, W.K.; Brault, A.C. West Nile and St. Louis Encephalitis Viral Genetic Determinants of Avian Host Competence. PLoS Negl. Trop. Dis. 2018, 12, e0006302. [Google Scholar] [CrossRef]
- Tesh, R.B.; Travassos da Rosa, A.P.; Guzman, H.; Araujo, T.P.; Xiao, S.Y. Immunization with Heterologous Flaviviruses Protective against Fatal West Nile Encephalitis. Emerg. Infect. Dis. 2002, 8, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Diaz, L.A.; Goñi, S.E.; Iserte, J.A.; Quaglia, A.I.; Singh, A.; Logue, C.H.; Powers, A.M.; Contigiani, M.S. Exploring Genomic, Geographic and Virulence Interactions among Epidemic and Non-Epidemic St. Louis Encephalitis Virus (Flavivirus) Strains. PLoS ONE 2015, 10, e0136316. [Google Scholar] [CrossRef] [Green Version]
- Galindo, P.; Peralta, P.H.; Mackenzie, R.B.; Beye, H. Saint Louis Encephalitis in Panama: A Review and Progress Report. Am. J. Trop. Med. Hyg. 1964, 13, 455. [Google Scholar] [CrossRef]
- de Rodaniche, E.; Galindo, P. St. Louis Encephalitis in Panama. III. Investigation of Local Mammals and Birds as Possible Reservoir Hosts. Am. J. Trop. Med. Hyg. 1961, 10, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Galindo, P.; Adames, A.; Peralta, P.; Johnson, C.; Read, R. Impacto de La Hidroeléctrica de Bayano En La Transmisión de Arbovirus. Rev. Méd. Panamá 1983, 8, 89–134. [Google Scholar] [CrossRef] [PubMed]
- Dutary, B.E.; Peralta, P.H.; Petersen, J.L. Estudios Biológicos Del Virus de La Encefalitis de San Luis En Mage, Bayano. Rev. Méd. Panamá 1984, 200–211. [Google Scholar]
- Cupp, E.W.; Scherer, W.F.; Lok, J.B.; Brenner, R.J.; Dziem, G.M.; Ordonez, J.V. Entomological Studies at an Enzootic Venezuelan Equine Encephalitis Virus Focus in Guatemala, 1977–1980. Am. J. Trop. Med. Hyg. 1986, 35, 851–859. [Google Scholar] [CrossRef]
- Weaver, S.C.; Ferro, C.; Barrera, R.; Boshell, J.; Navarro, J.C. Venezuelan equine encephalitis. Ann. Rev. Entomol. 2004, 49, 141–174. [Google Scholar] [CrossRef]
- Guzmán-Terán, C.; Calderón-Rangel, A.; Rodriguez-Morales, A.; Mattar, S. Venezuelan Equine Encephalitis Virus: The Problem Is Not Over for Tropical America. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 19. [Google Scholar] [CrossRef]
- Oberste, M.S.; Schmura, S.M.; Weaver, S.C.; Smith, J.F. Geographic Distribution of Venezuelan Equine Encephalitis Virus Subtype IE Genotypes in Central America and Mexico. Am. J. Trop. Med. Hyg. 1999, 60, 630–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franck, P.T.; Johnson, K.M. An Outbreak of Venezuelan Equine Encephalomyelitis in Central America. Evidence for Exogenous Source of a Virulent Virus Subtype. Am. J. Epidemiol. 1971, 94, 487–495. [Google Scholar] [CrossRef]
- de la Hoz Restrepo, F. Encefalitis Equina Venezolana. Rev. MVZ Córdoba 2000, 5, 18–22. [Google Scholar] [CrossRef]
- Sudia, W.D.; Lord, R.D.; Newhouse, V.F.; Miller, D.L.; Kissling, R.E. Vector-Host Studies of an Epizootic of Venezuelan Equine Encephalomyelitis in Guatemala, 1969. Am. J. Epidemiol. 1971, 93, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Eddy, G.A.; Sudia, W.D.; Reeves, W.C.; Newhouse, V.F.; Johnson, K. An Epidemiologic Study of Venezuelan Equine Encephalomyelitis in Costa Rica, 1970. Am. J. Epidemiol. 1972, 95, 565–578. [Google Scholar] [CrossRef]
- Lord, R.D. Encefalitis Equina Venezolana Su Historia y Distribución Geográfica. Bol. Oficina Sanit. Panam. 1973, 1973, 530–541. [Google Scholar]
- Weaver, S.C.; Kinney, R.M.; Kang, W.; Pfeffer, M.; Marriott, K. Genetic Evidence for the Origins of Venezuelan Equine Encephalitis Virus Subtype IAB Outbreaks. Am. J. Trop. Med. Hyg. 1999, 60, 630–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, P.V.; Estrada-Franco, J.G.; Navarro-Lopez, R.; Ferro, C.; Haddow, A.D.; Weaver, S.C. Endemic Venezuelan Equine Encephalitis in the Americas: Hidden under the Dengue Umbrella. Future Virol. 2011, 6, 721–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiroz, E.; Aguilar, P.V.; Cisneros, J.; Tesh, R.B.; Weaver, S.C. Venezuelan Equine Encephalitis in Panama: Fatal Endemic Disease and Genetic Diversity of Etiologic Viral Strains. PLoS Negl. Trop. Dis. 2009, 3, e472. [Google Scholar] [CrossRef]
- Vittor, A.Y.; Armien, B.; Gonzalez, P.; Carrera, J.P.; Dominguez, C.; Valderrama, A.; Glass, G.E.; Beltran, D.; Cisneros, J.; Wang, E.; et al. Epidemiology of Emergent Madariaga Encephalitis in a Region with Endemic Venezuelan Equine Encephalitis: Initial Host Studies and Human Cross-Sectional Study in Darien, Panama. PLoS Negl. Trop. Dis. 2016, 10, e0004554. [Google Scholar] [CrossRef] [PubMed]
- Turell, M.J.; Beaman, J.R. Experimental Transmission of Venezuelan Equine Encephalomyelitis Virus by a Strain of Aedes albopictus (Diptera: Culicidae) from New Orleans, Louisiana. J. Med. Entomol. 1992, 29, 802–805. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, D.I.; Kang, W.; Weaver, S.C. Susceptibility of Ae. aegypti (Diptera: Culicidae) to Infection with Epidemic (Subtype IC) and Enzootic (Subtypes ID, IIIC, IIID) Venezuelan Equine Encephalitis Complex Alphaviruses. J. Med. Entomol. 2008, 45, 1117–1125. [Google Scholar] [CrossRef]
- Johnson, K.M.; Shelokov, A.; Peralta, P.H.; Dammin, G.J.; Young, N.A. Recovery of Venezuelan Equine Encephalomyelitis Virus in Panamá: A Fatal Case in Man. Am. J. Trop. Med. Hyg. 1968, 17, 432–440. [Google Scholar] [CrossRef]
- Galindo, P.; Srihongse, S.; de Rodaniche, E.; Grayson, M.A. An Ecological Survey for Arboviruses in Almirante, Panama, 1959–1962. Am. J. Trop. Med. Hyg. 1966, 15, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Grayson, M.A.; Galindo, P. Epidemiologic Studies of Venezuelan Equine Encephalitis Virus in Almirante, Panama. Am. J. Epidemiol. 1968, 88, 80–86. [Google Scholar] [CrossRef]
- Grayson, M.A.; Galindo, P. Ecology of Venezuelan Equine Encephalitis Virus in Panama. J. Am. Vet. Med. Assoc. 1969, 155, 2141–2145. [Google Scholar] [PubMed]
- Seymour, C.; Dickerman, R.W.; Martin, M.S. Venezuelan Encephalitis Virus Infection in Neotropical Bats: I. Natural Infection in a Guatemalan Enzootic Focus. Am. J. Trop. Med. Hyg. 1978, 27, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Scherer, W.F.; Dickerman, R.W.; Cupp, E.W.; Ordonez, J.V. Ecologic Observations of Venezuelan Encephalitis Virus in Vertebrates and Isolations of Nepuyo and Patois Viruses from Sentinel Hamsters at Pacific and Atlantic Habitats in Guatemala, 1968–1980. Am. J. Trop. Med. Hyg. 1985, 34, 790–798. [Google Scholar] [CrossRef] [PubMed]
- León, B.; Jiménez, C.; González, R.; Ramirez-Carvajal, L. First Complete Coding Sequence of a Venezuelan Equine Encephalitis Virus Strain Isolated from an Equine Encephalitis Case in Costa Rica. Microbiol. Resour. Announc. 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- León, B.; Käsbohrer, A.; Hutter, S.E.; Baldi, M.; Firth, C.L.; Romero-Zúñiga, J.J.; Jiménez, C. National Seroprevalence and Risk Factors for Eastern Equine Encephalitis and Venezuelan Equine Encephalitis in Costa Rica. J. Equine Vet. Sci. 2020, 92, 103140. [Google Scholar] [CrossRef]
- Torres, R.; Samudio, R.; Carrera, J.-P.; Young, J.; Márquez, R.; Hurtado, L.; Weaver, S.; Chaves, L.F.; Tesh, R.; Cáceres, L. Enzootic Mosquito Vector Species at Equine Encephalitis Transmission Foci in the República de Panamá. PLoS ONE 2017, 12, e0185491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luciani, K.; Abadía, I.; Martínez-Torres, A.O.; Cisneros, J.; Guerra, I.; García, M.; Estripeaut, D.; Carrera, J.P. Madariaga Virus Infection Associated with a Case of Acute Disseminated Encephalomyelitis. Am. J. Trop. Med. Hyg. 2015, 92, 1130–1132. [Google Scholar] [CrossRef] [Green Version]
- Dietz, W.H.; Galindo, P.; Johnson, K.M. Eastern Equine Encephalomyelitis in Panama: The Epidemiology of the 1973 Epizootic. Am. J. Trop. Med. Hyg. 1980, 29, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Obaldia, N.; Dutary, J.; Clavel, F.; Zarate, J.; Alvarez, O.; Evans, E.; Molina, A.; Serrano, R.; Villareal, A.; Boyd, R.R.; et al. Encefalomielitis Equina Del Este, Epizootic de 1986 En Panama. Notas Vet. 1991, 1, 4–7. [Google Scholar]
- Carrera, J.-P.; Forrester, N.; Wang, E.; Vittor, A.Y.; Haddow, A.D.; López-Vergès, S.; Abadía, I.; Castaño, E.; Sosa, N.; Báez, C.; et al. Eastern Equine Encephalitis in Latin America. N. Engl. J. Med. 2013, 369, 732–744. [Google Scholar] [CrossRef] [Green Version]
- Azar, S.R.; Campos, R.K.; Bergren, N.A.; Camargos, V.N.; Rossi, S.L. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020, 8, 1167. [Google Scholar] [CrossRef] [PubMed]
- Srihongse, S.; Galindo, P. The Isolation of Eastern Equine Encephalitis Virus from Culex (Melanoconion) taeniopus Dyar and Knab in Panama. Mosq. News 1967, 27, 074–076. [Google Scholar]
- Carrera, J.-P.; Pittí, Y.; Molares-Martínez, J.C.; Casal, E.; Pereyra-Elias, R.; Saenz, L.; Guerrero, I.; Galué, J.; Rodriguez-Alvarez, F.; Jackman, C.; et al. Clinical and Serological Findings of Madariaga and Venezuelan Equine Encephalitis Viral Infections: A Follow-up Study 5 Years After an Outbreak in Panama. Open Forum Infect. Dis. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Carrera, J.-P.; Cucunubá, Z.M.; Neira, K.; Lambert, B.; Pittí, Y.; Liscano, J.; Garzón, J.L.; Beltran, D.; Collado-Mariscal, L.; Saenz, L.; et al. Endemic and Epidemic Human Alphavirus Infections in Eastern Panama: An Analysis of Population-Based Cross-Sectional Surveys. Am. J. Trop. Med. Hyg. 2020, 103, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- Monath, T.P.; Vasconcelos, P.F.C. Yellow Fever. J. Clin. Virol. 2015, 64, 160–173. [Google Scholar] [CrossRef] [PubMed]
- CDC. Areas with Risk of Yellow Fever Virus Transmission in Africa. Available online: https://www.cdc.gov/yellowfever/maps/africa.html (accessed on 20 September 2021).
- Cleary, R. Brazil. Sanitary Report from Rio—Sanarelli on the Yellow Fever Germ. Public Health Rep. 1897, 7, 53–750. [Google Scholar]
- Carter, H.R. Yellow Fever: An Epidemiological and Historical Study of Its Place of Origin; Williams & Wilkins: Baltimore, MA, USA, 1931. [Google Scholar]
- Elton, N.W. Sylvan Yellow Fever in Central America. Public Health Rep. 1952, 67, 426. [Google Scholar] [CrossRef] [PubMed]
- Littig, K.S.; Pratt, H.D. Handbook of General Information on Aedes Aegypti Eradication; Centers for Disease Control: Atlanta, GA, USA, 1967. [Google Scholar]
- Trapido, H.; Galindo, P. The Epidemiology of Yellow Fever in Middle America. Exp. Parasitol. 1956, 5, 285–323. [Google Scholar] [CrossRef]
- Romero, A.; Trejos, A. Clínica y Laboratorio de La Fiebre Amarilla En Costa Rica. Rev. Biol. Trop. 1954, 2, 113–168. [Google Scholar]
- Galindo, P.; Trapido, H. Forest Canopy Mosquitoes Associated with the Appearance of Sylvan Yellow Fever in Costa Rica, 1951. Am. J. Trop. Med. Hyg. 1955, 4, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Galindo, P.; Trapido, H. Forest Mosquitoes Associated with Sylvan Yellow Fever in Nicaragua. Am. J. Trop. Med. Hyg. 1957, 6, 145–152. [Google Scholar] [CrossRef] [PubMed]
- de Rodaniche, E.; Galindo, P.; Johnson, C.M. Isolation of Yellow Fever Virus from Haemagogus lucifer, H. equinus, H. spegazzinii Falco, Sabethes chloropterus and Anopheles neivai Captured in Panama in the Fall of 1956. Am. J. Trop. Med. Hyg. 1957, 6, 681–685. [Google Scholar] [CrossRef] [PubMed]
- de Rodaniche, E.; Galindo, P. Isolation of Yellow Fever Virus from Haemagogus mesodentatus, H. equinus and Sabethes chloropterus Captured in Guatemala in 1956. Am. J. Trop. Med. Hyg. 1957, 6, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Galindo, P.; de Rodaniche, E.; Trapido, H. Experimental Transmission of Yellow Fever by Central American Species of Haemagogus and Sabethes chloropterus. Am. J. Trop. Med. Hyg. 1956, 5, 1022–1031. [Google Scholar] [CrossRef]
- Soper, F.L. The 1964 Status of Aedes aegypti Eradication and Yellow Fever in the Americas. Am. J. Trop. Med. Hyg. 1965, 14, 887–891. [Google Scholar] [CrossRef]
- Dick, G.W.A.; Kitchen, S.F.; Haddow, A.J. Zika Virus (I). Isolations and Serological Specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef]
- Kindhauser, M.K.; Allen, T.; Frank, V.; Santhana, R.S.; Dye, C. Zika: The Origin and Spread of a Mosquito-Borne Virus. Bull. World Health Organ. 2016, 94, 675. [Google Scholar] [CrossRef]
- Vasilakis, N.; Weaver, S.C. Flavivirus Transmission Focusing on Zika. Curr. Opin. Virol. 2017, 22, 30–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaio, G.D.S.; Brites, C.; Drexler, J.F.; Moreira-Soto, A.; Miranda, F.; Martins, E. Expansão Da Circulação Do Vírus Zika Da África à América, 1947–2018: Revisão Da Literatura. Epidemiol. Serviços Saúde 2019, 28, e2018411. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Zika Epidemiology Update—July 2019. Available online: https://www.who.int/publications/m/item/zika-epidemiology-update (accessed on 5 October 2021).
- PAHO (Pan American Health Organization). Epidemiological Alert. Neurological Syndrome, Congenital Malformations, and Zika Virus Infection. Implications for Public Health in the Americas. 1 December 2015. Available online: https://iris.paho.org/bitstream/handle/10665.2/50697/EpiUpdate1December2015_eng.pdf?sequence=1&isAllowed=y (accessed on 4 October 2021).
- PAHO (Pan American Health Organization). Epidemiological Update. Neurological Syndrome, Congenital Anomalies, and Zika Virus Infection. 17 January 2016. Available online: https://www.paho.org/hq/dmdocuments/2016/2016-jan-17-cha-epi-update-zika-virus.pdf (accessed on 4 October 2021).
- PAHO (Pan American Health Organization). Epidemiological Update. Zika Virus Infection. 17 February 2016. Available online: https://iris.paho.org/bitstream/handle/10665.2/50658/EpiUpdate17February2016_eng.pdf?sequence=1&isAllowed=y (accessed on 4 October 2021).
- PAHO (Pan American Health Organization). Zika Epidemiological Update. 14 April 2016. Available online: https://www.paho.org/hq/dmdocuments/2016/2016-apr-14-cha-epi-update-zika-virus.pdf (accessed on 4 October 2021).
- Lanciotti, R.; Lambert, A.J.; Holodniy, M.; Saavedra, S.; Signor, L. del C.C. Phylogeny of Zika Virus in Western Hemisphere. Emerg. Infect. Dis. 2016, 22, 933–935. [Google Scholar] [CrossRef]
- Thézé, J.; Li, T.; du Plessis, L.; Bouquet, J.; Kraemer, M.U.G.; Somasekar, S.; Yu, G.; de Cesare, M.; Balmaseda, A.; Kuan, G.; et al. Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host Microbe 2018, 23, 855–864.e7. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Arguedas, O.; Moreira-Soto, R.; Troyo, A. Zika Virus (ZIKA: New Emerging Pathogen Transmitted by Aedes Mosquitoes (Diptera: Culicidae) in the Latin American Subcontinent. Vector Biol. J. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Harris, M.; Caldwell, J.M.; Mordecai, E.A. Climate Drives Spatial Variation in Zika Epidemics in Latin America. Proc. R. Soc. B 2019, 286, 20191578. [Google Scholar] [CrossRef] [Green Version]
- PAHO (Pan American Health Organization). Casos de La Enfermedad Del Virus Del Zika. Por País, Territorio o Subregión. Casos Acumulados. Available online: https://www3.paho.org/data/index.php/es/?option=com_content&view=article&id=528:zika-weekly-es&Itemid=353 (accessed on 4 October 2021).
- Norman, F.F.; Chamorro, S.; Vázquez, A.; Sánchez-Seco, M.-P.; Pérez-Molina, J.-A.; Monge-Maillo, B.; Vivancos, M.-J.; Rodríguez-Dominguez, M.; Galán, J.-C.; de Ory, F.; et al. Sequential Chikungunya and Zika Virus Infections in a Traveler from Honduras. Am. J. Trop. Med. Hyg. 2016, 95, 1166–1168. [Google Scholar] [CrossRef] [Green Version]
- Brooks, T.; Roy-Burman, A.; Tuholske, C.; Busch, M.P.; Bakkour, S.; Stone, M.; Linnen, J.M.; Gao, K.; Coleman, J.; Bloch, E.M. Real-Time Evolution of Zika Virus Disease Outbreak, Roatán, Honduras. Emerg. Infect. Dis. 2017, 23, 1360–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, N.M.; Cucunubá, Z.M.; Dorigatti, I.; Nedjati-Gilani, G.L.; Donnelly, C.A.; Basáñez, M.G.; Nouvellet, P.; Lessler, J. Countering the Zika Epidemic in Latin America. Science 2016, 353, 353–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, G.S.; Hamer, G.L.; Diallo, M.; Kitron, U.; Ko, A.I.; Weaver, S.C. Influence of Herd Immunity in the Cyclical Nature of Arboviruses. Curr. Opin. Virol. 2020, 40, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Bugallo, G.; Piedra, L.A.; Rodriguez, M.; Bisset, J.A.; Lourenço-de-Oliveira, R.; Weaver, S.C.; Vasilakis, N.; Vega-Rúa, A. Vector-Borne Transmission and Evolution of Zika Virus. Nat. Ecol. Evol. 2019, 3, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorou, R. Zika Virus, Vectors, Reservoirs, Amplifying Hosts, and Their Potential to Spread Worldwide: What We Know and What We Should Investigate Urgently. Int. J. Infect. Dis. 2016, 48, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Rylands, A.B.; Groves, C.P.; Mittermeier, R.A.; Cortés-Ortiz, L.; Hines, J.J.H. Taxonomy and Distributions of Mesoamerican Primates. New Perspect. Study Mesoam. Primates 2006, 29–79. [Google Scholar] [CrossRef]
- Vanchiere, J.A.; Ruiz, J.C.; Brady, A.G.; Kuehl, T.J.; Williams, L.E.; Baze, W.B.; Wilkerson, G.K.; Nehete, P.N.; McClure, G.B.; Rogers, D.L.; et al. Experimental Zika Virus Infection of Neotropical Primates. Am. J. Trop. Med. Hyg. 2017, 98, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Terzian, A.C.B.; Zini, N.; Sacchetto, L.; Rocha, R.F.; Parra, M.C.P.; del Sarto, J.L.; Dias, A.C.F.; Coutinho, F.; Rayra, J.; da Silva, R.A.; et al. Evidence of Natural Zika Virus Infection in Neotropical Non-Human Primates in Brazil. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.S.; Bersot, M.I.; Castro, M.G.; Telleria, E.L.; Ferreira-de-Brito, A.; Raphael, L.M.; Bonaldo, M.C.; Lourenço-de-Oliveira, R. Low Vector Competence in Sylvatic Mosquitoes Limits Zika Virus to Initiate an Enzootic Cycle in South America. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Karna, A.K.; Azar, S.R.; Plante, J.A.; Yun, R.; Vasilakis, N.; Weaver, S.C.; Hansen, I.A.; Hanley, K.A. Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti. Viruses 2018, 10, 434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezza, G.; Weaver, S.C. Chikungunya as a Paradigm for Emerging Viral Diseases: Evaluating Disease Impact and Hurdles to Vaccine Development. PLoS Negl. Trop. Dis. 2019, 13, e0006919. [Google Scholar] [CrossRef]
- Cunha, M.S.; Costa, P.A.G.; Correa, I.A.; de Souza, M.R.M.; Calil, P.T.; da Silva, G.P.D.; Costa, S.M.; Fonseca, V.W.P.; Costa, L.J. da Chikungunya Virus: An Emergent Arbovirus to the South American Continent and a Continuous Threat to the World. Front. Microbiol. 2020, 11, 1297. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Signor, L.D.C.C.; Williams, C.; Donis, E.; Cuevas, L.E.; Adams, E.R. Co-Infections with Chikungunya and Dengue Viruses, Guatemala, 2015. Emerg. Infect. Dis. 2016, 22, 2003–2005. [Google Scholar] [CrossRef] [Green Version]
- PAHO (Pan American Health Organization). New Cases of Chikungunya in the Americas, 2013–2017. Available online: https://ais.paho.org/phip/viz/ed_chikungunya_amro.asp (accessed on 4 October 2021).
- Díaz, Y.; Carrera, J.-P.; Cerezo, L.; Arauz, D.; Guerra, I.; Cisneros, J.; Armién, B.; Botello, A.M.; Araúz, A.B.; Gonzalez, V.; et al. Chikungunya Virus Infection: First Detection of Imported and Autochthonous Cases in Panama. Am. J. Trop. Med. Hyg. 2015, 92, 482–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrera, J.-P.; Díaz, Y.; Denis, B.; de Mosca, I.B.; Rodriguez, D.; Cedeño, I.; Arauz, D.; González, P.; Cerezo, L.; Moreno, L.; et al. Unusual Pattern of Chikungunya Virus Epidemic in the Americas, the Panamanian Experience. PLoS Negl. Trop. Dis. 2017, 11, e0005338. [Google Scholar] [CrossRef]
- Whiteman, A.; Gomez, C.; Rovira, J.; Chen, G.; McMillan, W.O.; Loaiza, J. Aedes Mosquito Infestation in Socioeconomically Contrasting Neighborhoods of Panama City. EcoHealth 2019, 16, 210–221. [Google Scholar] [CrossRef]
- Ministerio del Poder Ciudadano para la Salud de Nicaragua Seroprevalencia y Tasa de Ataque Clínica Por Chikungunya En Nicaragua, 2014–2015. Rev. Panam. Salud Publica 2017, 41, e59.
- Valentine, M.J.; Murdock, C.C.; Kelly, P.J. Sylvatic Cycles of Arboviruses in Non-Human Primates. Parasites Vectors 2019, 12, 1–18. [Google Scholar] [CrossRef]
- Bosco-Lauth, A.M.; Hartwig, A.E.; Bowen, R.A. Reptiles and Amphibians as Potential Reservoir Hosts of Chikungunya Virus. Am. J. Trop. Med. Hyg. 2018, 98, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Moreira-Soto, A.; Carneiro, I.D.O.; Fischer, C.; Feldmann, M.; Kümmerer, B.M.; Silva, N.S.; Santos, U.G.; Souza, B.F.D.C.D.; Liborio, F.D.A.; Valença-Montenegro, M.M.; et al. Limited Evidence for Infection of Urban and Peri-Urban Nonhuman Primates with Zika and Chikungunya Viruses in Brazil. mSphere 2018, 3, e00523-17. [Google Scholar] [CrossRef] [Green Version]
- Lourenço-de-Oliveira, R.; Failloux, A.-B. High Risk for Chikungunya Virus to Initiate an Enzootic Sylvatic Cycle in the Tropical Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005698. [Google Scholar] [CrossRef] [Green Version]
- Gratz, N.G. Critical Review of the Vector Status of Aedes albopictus. Med. Vet. Entomol. 2004, 18, 215–227. [Google Scholar] [CrossRef]
- Calderón-Arguedas, O.; Troyo, A.; Moreira-Soto, R.D.; Marín, R.; Taylor, L. Dengue Viruses in Aedes albopictus Skuse from a Pineapple Plantation in Costa Rica. J. Vector Ecol. 2015, 40, 184–186. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, L.; Scott, T.W.; Gubler, D.J. Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission. PLoS Negl. Trop. Dis. 2010, 4, e646. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rejon, J.E.; Navarro, J.-C.; Cigarroa-Toledo, N.; Baak-Baak, C.M. An Updated Review of the Invasive Aedes albopictus in the Americas; The Minimum Infection Rate Suggests That Is More Efficient in the Vertical than Horizontal Transmission of Arboviruses. Preprints 2021, 2021070339. [Google Scholar] [CrossRef]
- Carpenter, D.N.; Sutton, R.L. Dengue in the Isthmian Canal Zone. Including a Report on the Laboratory Findings. J. Am. Med. Assoc. 1905, XLIV, 214–216. [Google Scholar] [CrossRef] [Green Version]
- Dick, O.B.; Martín, J.L.S.; Montoya, R.H.; del Diego, J.; Zambrano, B.; Dayan, G.H. The History of Dengue Outbreaks in the Americas. Am. J. Trop. Med. Hyg. 2012, 87, 584–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, M.E.; Chen, L.H. Dengue in the Americas. Dengue Bull. 2002, 26, 44–61. [Google Scholar]
- Hayes, J.M.; García-Rivera, E.; Flores-Reyna, R.; Suárez-Rangel, G.; Rodríguez-Mata, T.; Coto-Portillo, R.; Baltrons-Orellana, R.; Mendoza-Rodríguez, E.; de Garay, B.F.; Jubis-Estrada, J.; et al. Risk Factors for Infection During a Severe Dengue Outbreak in El Salvador in 2000. Am. J. Trop. Med. Hyg. 2003, 69, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Kouri, G.; Valdéz, M.; Arguello, L.; Guzmán, M.G.; Valdés, L.; Soler, M.; Bravo, J. Epidemic Dengue in Nicaragua 1985. Rev. Inst. Med. Trop. São Paulo 1991, 33, 365–371. [Google Scholar] [CrossRef]
- PAHO (Pan American Health Organization). Dengue Fever in Costa Rica and Panama. Epidemiol. Bull. 1994, 15, 9–11. [Google Scholar]
- Díaz, Y.; Chen-Germán, M.; Quiroz, E.; Carrera, J.-P.; Cisneros, J.; Moreno, B.; Cerezo, L.; Martinez-Torres, A.O.; Moreno, L.; de Mosca, I.B.; et al. Molecular Epidemiology of Dengue in Panama: 25 Years of Circulation. Viruses 2019, 11, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Garita, C.; Somogyi, T.; Vicente-Santos, A.; Corrales-Aguilar, E. Molecular Characterization of Two Major Dengue Outbreaks in Costa Rica. Am. J. Trop. Med. Hyg. 2016, 95, 201–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PAHO. Dengue in the Americas: The Epidemics of 2000. Epidemiol. Bull. 2000, 21, 4–8. [Google Scholar]
- Pinheiro, F.; Nelson, M. Re-Emergence of Dengue and Emergence of Dengue Haemorrhagic Fever in the Americas. Dengue Bull. 1997, 21, 24. [Google Scholar]
- Alirol, E.; Getaz, L.; Stoll, B.; Chappuis, F.; Loutan, L. Urbanisation and Infectious Diseases in a Globalised World. Lancet Infect. Dis. 2011, 11, 131–141. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Gasperi, G.; Chen, X.; James, A.A. The Invasive Mosquito Species Aedes albopictus: Current Knowledge and Future Perspectives. Trends Parasitol. 2013, 29, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Rosen, L. Observations on the Epidemiology of Dengue in Panama. Am. J. Epidemiol. 1958, 68, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L. Experimental Infection of New World Monkeys with Dengue and Yellow Fever Viruses. Am. J. Trop. Med. Hyg. 1958, 7, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.T.d.O.; Ribeiro, M.R.; Vedovello, D.; Nogueira, M.L. Mayaro Virus: A Neglected Arbovirus of the Americas. Future Virol. 2015, 10, 1109–1122. [Google Scholar] [CrossRef]
- Acosta-Ampudia, Y.; Monsalve, D.M.; Rodríguez, Y.; Pacheco, Y.; Anaya, J.-M.; Ramírez-Santana, C. Mayaro: An Emerging Viral Threat? Emerg. Microbes Infect. 2018, 7, 163. [Google Scholar] [CrossRef]
- Seymour, C.; Peralta, P.H.; Montgomery, G.G. Serologic Evidence of Natural Togavirus Infections in Panamanian Sloths and Other Vertebrates. Am. J. Trop. Med. Hyg. 1983, 32, 854–861. [Google Scholar] [CrossRef]
- Muñoz, M.; Navarro, J.C. Virus Mayaro: Un Arbovirus Reemergente En Venezuela y Latinoamérica. Biomédica 2012, 32, 286–302. [Google Scholar] [CrossRef] [Green Version]
- Pauvolid-Corrêa, A.; Juliano, R.S.; Campos, Z.; Velez, J.; Nogueira, R.M.R.; Komar, N. Neutralising Antibodies for Mayaro Virus in Pantanal, Brazil. Mem. Inst. Oswaldo Cruz 2015, 110, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiggins, K.; Eastmond, B.; Alto, B.W. Transmission Potential of Mayaro Virus in Florida Aedes aegypti and Aedes albopictus Mosquitoes. Med. Vet. Entomol. 2018, 32, 436–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srihongse, S.; Stacy, H.G.; Gauld, J.R. A Survey to Assess Potential Human Disease Hazards along Proposed Sea Level Canal Routes in Panamà and Colombia. IV. Arbovirus Surveillance in Man. Mil. Med. 1973, 138, 422–426. [Google Scholar] [CrossRef]
- Ganjian, N.; Riviere-Cinnamond, A. Mayaro Virus in Latin America and the Caribbean. Rev. Panam. Salud Publica/Pan Am. J. Public Health 2020, 44, e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, F.; LeDuc, J. The Arboviruses: Epidemiology and Ecology. In The Arboviruses: Epidemiology and Ecology; Monath, T.P., Ed.; CRC Press: Boca Raton, FL, USA, 2019; Volume 3, pp. 137–150. [Google Scholar]
- Galindo, P.; Srihongse, S. Transmission of Arboviruses to Hamsters by the Bite of Naturally Infected Culex (Melanoconion) Mosquitoes. Am. J. Trop. Med. Hyg. 1967, 16, 525–530. [Google Scholar] [CrossRef]
- Long, K.C.; Ziegler, S.A.; Thangamani, S.; Hausser, N.L.; Kochel, T.J.; Higgs, S.; Tesh, R.B. Experimental Transmission of Mayaro Virus by Aedes aegypti. Am. J. Trop. Med. Hyg. 2011, 85, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Mackay, I.M.; Arden, K.E. Mayaro Virus: A Forest Virus Primed for a Trip to the City? Microbes Infect. 2016, 18, 724–734. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). World Malaria Report: 20 Years of Global Progress and Challenges; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; et al. A Global Map of Dominant Malaria Vectors. Parasites Vectors 2012, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Loaiza, J.R.; Bermingham, E.; Scott, M.E.; Rovira, J.R.; Conn, J.E. Species Composition and Distribution of Adult Anopheles (Diptera: Culicidae) in Panama. J. Med. Entomol. 2008, 45, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Hiwat, H.; Bretas, G. Ecology of Anopheles darlingi Root with Respect to Vector Importance: A Review. Parasites Vectors 2011, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, M.; Mason, J.; Hobbs, J. Natural Infections of Anopheles albimanus with Plasmodium in a Small Malaria Focus. Am. J. Trop. Med. Hyg. 1975, 24, 545–546. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.R.; Paris, J.F.; Manguin, S.; Harbach, R.E.; Woodruff, R.; Rejmankova, E.; Polanco, J.; Wullschleger, B.; Legters, L.J. Predictions of Malaria Vector Distribution in Belize Based on Multispectral Satellite Data. Am. J. Trop. Med. Hyg. 1996, 54, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Escobar, D.; Ascencio, K.; Ortiz, A.; Palma, A.; Fontecha, G. Distribution and Phylogenetic Diversity of Anopheles Species in Malaria Endemic Areas of Honduras in an Elimination Setting. Parasites Vectors 2020, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Malaria Atlas Project Trends in Global Malaria Burden. Available online: https://www.malariaatlas.org/ (accessed on 30 September 2021).
- PAHO (Pan American Health Organization). El Salvador Certified as Malaria-Free by WHO. Available online: https://www.paho.org/en/news/25-2-2021-salvador-certified-malaria-free-who (accessed on 4 October 2021).
- WHO (World Health Organization). Zeroing in on Malaria Elimination: Final Report of the E-2020 Initiative; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- WHO (World Health Organization). Global Technical Strategy for Malaria 2016–2030; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- WHO (World Health Organization). A Framework for Malaria Elimination Global Malaria Programme; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- PAHO (Pan American Health Organization). Epidemiological Update: Malaria in the Americas in the Context of COVID-19 Pandemic. 2020. Available online: https://www.paho.org/en/documents/epidemiological-update-malaria-10-june-2020 (accessed on 4 October 2021).
- Ferreira, M.U.; Castro, M.C. Malaria Situation in Latin America and the Caribbean: Residual and Resurgent Transmission and Challenges for Control and Elimination. Methods Mol. Biol. 2019, 2013, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Herrera, S.; Quiñones, M.L.; Quintero, J.P.; Corredor, V.; Fuller, D.O.; Mateus, J.C.; Calzada, J.E.; Gutierrez, J.B.; Llanos, A.; Soto, E.; et al. Prospects for Malaria Elimination in Non-Amazonian Regions of Latin America. Acta Trop. 2012, 121, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminade, C.; Kovats, S.; Rocklov, J.; Tompkins, A.M.; Morse, A.P.; Colón-González, F.J.; Stenlund, H.; Martens, P.; Lloyd, S.J. Impact of Climate Change on Global Malaria Distribution. Proc. Natl. Acad. Sci. USA 2014, 111, 3286–3291. [Google Scholar] [CrossRef] [Green Version]
- Payne, R.C.; Scott, J.M. Anaplasmosis and Babesiosis in El Salvador. Trop. Anim. Health Prod. 1982, 14, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Guglielmone, A.A. Epidemiology of Babesiosis and Anaplasmosis in South and Central America. Vet. Parasitol. 1995, 57, 109–119. [Google Scholar] [CrossRef]
- van Andel, J.M.; Dwinger, R.H.; Alvarez, J.A. Etude Du Taux d’infection Du Bétail et Des Tiques Associées Par Anaplasma et Babesia Sur La Côte Sud Du Guatemala. Rev. Élev. Méd. Vét. Pays Trop. 1997, 50, 284–292. [Google Scholar] [CrossRef]
- Teglas, M.; Matern, E.; Lein, S.; Foley, P.; Mahan, S.M.; Foley, J. Ticks and Tick-Borne Disease in Guatemalan Cattle and Horses. Vet. Parasitol. 2005, 131, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Heerdink, G.; Petit, P.L.C.; Hofwegen, H.; van Genderen, P.J.J. Een Patiënt Met Koorts Na Een Bezoek Aan de Tropen: “Tick-Borne Relapsing Fever” Ontdekt in Een Dikkedruppelpreparaat [A Patient with Fever Following a Visit to the Tropics: Tick-Borne Relapsing Fever Discovered in a Thick Blood Smear Preparation]. Ned. Tijdschr. Geneeskd. 2006, 150, 2386–2389. [Google Scholar] [PubMed]
- Eremeeva, M.E.; Karpathy, S.E.; Levin, M.L.; Caballero, C.M.; Bermudez, S.; Dasch, G.A.; Motta, J.A. Spotted Fever Rickettsiae, Ehrlichia and Anaplasma, in Ticks from Peridomestic Environments in Panama. Clin. Microbiol. Infect. 2009, 15, 12–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermúdez, S.E.; Eremeeva, M.E.; Karpathy, S.E.; Samudio, F.; Zambrano, M.L.; Zaldivar, Y.; Motta, J.A.; Dasch, G.A. Detection and Identification of Rickettsial Agents in Ticks from Domestic Mammals in Eastern Panama. J. Med. Entomol. 2009, 46, 856–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shebish, E.; Vemulapalli, R.; Oseto, C. Prevalence and Molecular Detection of Anaplasma marginale, Babesia bovis and Babesia bigemina in Cattle from Puntarenas Province, Costa Rica. Vet. Parasitol. 2012, 188, 164–167. [Google Scholar] [CrossRef]
- Dolz, G.; Abrego, L.; Romero, L.E.; Campos-Calderon, L.; Bouza-Mora, L.; Jiménez-Rocha, A.E. Ehrlichiosis y Anaplasmosis en Costa Rica. Acta Méd. Costarric. 2013, 55, 34–40. [Google Scholar]
- Mehrkens, L.R.; Shender, L.A.; Yabsley, M.J.; Shock, B.C.; Chinchilla, F.A.; Suarez, J.; Gilardi, K.V.K. White-Nosed Coatis (Nasua Narica) Are a Potential Reservoir of Trypanosoma cruzi and Other Potentially Zoonotic Pathogens in Monteverde, Costa Rica. J. Wildl. Dis. 2013, 49, 1014–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, A.; Rojas, D.; Montenegro, V.; Gutiérrez, R.; Yasur-Landau, D.; Baneth, G. Vector-Borne Pathogens in Dogs from Costa Rica: First Molecular Description of Babesia vogeli and Hepatozoon canis Infections with a High Prevalence of Monocytic Ehrlichiosis and the Manifestations of Co-Infection. Vet. Parasitol. 2014, 199, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, A.; Calzada, J.E.; Saldaña, A.; Yabsley, M.J.; Gottdenker, N.L. Molecular Diagnosis and Species Identification of Ehrlichia and Anaplasma Infections in Dogs from Panama, Central America. Vector Borne Zoonotic Dis. 2014, 14, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Kelly, P.; Ackerson, K.; El-Mahallawy, H.S.; Kaltenboeck, B.; Wang, C. Molecular Detection of Dirofilaria immitis, Hepatozoon canis, Babesia spp., Anaplasma platys and Ehrlichia canis in Dogs on Costa Rica. Acta Parasitol. 2014, 60, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Kelly, P.; Ackerson, K.; Zhang, J.; El-Mahallawy, H.S.; Kaltenboeck, B.; Wang, C. First Report of Babesia gibsoni in Central America and Survey for Vector-Borne Infections in Dogs from Nicaragua. Parasites Vectors 2014, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rojas, N.; Castillo, D.; Marin, P. Molecular Detection of Ehrlichia chaffeensis in Humans, Costa Rica. Emerg. Infect. Dis. 2015, 21, 532–534. [Google Scholar] [CrossRef]
- O’Nion, V.L.; Montilla, H.J.; Qurollo, B.A.; Maggi, R.G.; Hegarty, B.C.; Tornquist, S.J.; Breitschwerdt, E.B. Potentially Novel Ehrlichia Species in Horses, Nicaragua. Emerg. Infect. Dis. 2015, 21, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Posada-Guzmán, M.F.; Dolz, G.; Romero-Zúñiga, J.J.; Jiménez-Rocha, A.E. Detection of Babesia caballi and Theileria equi in Blood from Equines from Four Indigenous Communities in Costa Rica. Vet. Med. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.E.; Krishnavahjala, A.; Garcia, M.N.; Bermudez, S. Tick-Borne Relapsing Fever Spirochetes in the Americas. Vet. Sci. 2016, 3, 16. [Google Scholar] [CrossRef]
- Campos-Calderón, L.; Ábrego-Sánchez, L.; Solórzano-Morales, A.; Alberti, A.; Tore, G.; Zobba, R.; Jiménez-Rocha, A.E.; Dolz, G. Molecular Detection and Identification of Rickettsiales Pathogens in Dog Ticks from Costa Rica. Ticks Tick-Borne Dis. 2016, 7, 1198–1202. [Google Scholar] [CrossRef]
- Chikeka, I.; Matute, A.J.; Dumler, J.S.; Woods, C.W.; Mayorga, O.; Reller, M.E. Use of Peptide-Based Enzyme-Linked Immunosorbent Assay Followed by Immunofluorescence Assay to Document Ehrlichia chaffeensis as a Cause of Febrile Illness in Nicaragua. J. Clin. Microbiol. 2016, 54, 1581–1585. [Google Scholar] [CrossRef] [Green Version]
- Bouza-Mora, L.; Dolz, G.; Solórzano-Morales, A.; Romero-Zuñiga, J.J.; Salazar-Sánchez, L.; Labruna, M.B.; Aguiar, D.M. Novel Genotype of Ehrlichia canis Detected in Samples of Human Blood Bank Donors in Costa Rica. Ticks Tick-Borne Dis. 2017, 8, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, C.S.; Troyo, A. A Review of the Genus Rickettsia in Central America. Res. Rep. Trop. Med. 2018, 9, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimbaud Giambruno, E.; Mayorga-Escobar, M.I.; González, D.; Sequeira Valle, E.J.; Torres, H.; Montoya, C.; Ramírez, S. Estudio Epidemiológico de La Prevalencia y Evolución de Hemoparásitos En Burros Del Norte de Nicaragua. Calera 2018, 18, 26–28. [Google Scholar] [CrossRef] [Green Version]
- Vogel, H.; Foley, J.; Fiorello, C.V. Rickettsia africae and Novel Rickettsial Strain in Amblyomma spp. Ticks, Nicaragua, 2013. Emerg. Infect. Dis. 2018, 24, 385–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, A.; Montenegro, V.M.; Schicht, S.; Pantchev, N.; Strube, C. Seroprevalence and Current Infections of Canine Vector-Borne Diseases in Nicaragua. Parasites Vectors 2018, 11, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, A.; Montenegro, V.M.; Schicht, S.; Wölfel, S.; Schaper, S.R.; Chitimia-Dobler, L.; Siebert, S.; Strube, C. Detection of Rickettsia monacensis and Rickettsia amblyommatis in Ticks Collected from Dogs in Costa Rica and Nicaragua. Ticks Tick-Borne Dis. 2018, 9, 1565–1572. [Google Scholar] [CrossRef]
- Springer, A.; Montenegro, V.M.; Schicht, S.; Globokar Vrohvec, M.; Pantchev, N.; Balzer, J.; Strube, C. Seroprevalence and Current Infections of Canine Vector-Borne Diseases in Costa Rica. Front. Vet. Sci. 2019, 6, 164. [Google Scholar] [CrossRef] [Green Version]
- Daza, C.; Osorio, J.; Santamaria, A.; Suárez, J.; Hurtado, A.; Bermúdez Castillero, S.E. Caracterización Del Primer Caso de Infección Humana Por Ehrlichia canis En Panamá. Rev. Méd. Panamá 2018, 38, 63–68. [Google Scholar] [CrossRef]
- Tyrrell, J.D.; Qurollo, B.A.; Tornquist, S.J.; Schlaich, K.G.; Kelsey, J.; Chandrashekar, R.; Breitschwerdt, E.B. Molecular Identification of Vector-Borne Organisms in Ehrlichia Seropositive Nicaraguan Horses and First Report of Rickettsia felis Infection in the Horse. Acta Trop. 2019, 200, 105170. [Google Scholar] [CrossRef]
- Panti-May, J.A.; Rodríguez-Vivas, R.I. Canine Babesiosis: A Literature Review of Prevalence, Distribution, and Diagnosis in Latin America and the Caribbean. Vet. Parasitol. Reg. Studies Rep. 2020, 21, 100417. [Google Scholar] [CrossRef] [PubMed]
- Bader, J.; Ramos, R.A.N.; Otranto, D.; Dantas-Torres, F. Vector-Borne Pathogens in Dogs from Guatemala, Central America. Vet. Parasitol. Reg. Stud. Rep. 2020, 22, 100468. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.; Costa, F.B.; Labruna, M.B. Ticks and Tick-Borne Rickettsia in El Salvador. Exp. Appl. Acarol. 2021, 83, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, C.S.E.; Félix, M.L.; Domínguez, A.L.; Kadoch, N.; Muñoz-Leal, S.; Venzal, J.M. Molecular Screening for Tick-Borne Bacteria and Hematozoa in Ixodes cf. boliviensis and Ixodes tapirus (Ixodida: Ixodidae) from Western Highlands of Panama. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100034. [Google Scholar] [CrossRef]
- Bermúdez, S.; Martínez-Mandiche, J.; Domínguez, L.; Gonzalez, C.; Chavarria, O.; Moreno, A.; Góndola, J.; Correa, N.; Rodríguez, I.; Castillo, B.; et al. Diversity of Rickettsia in Ticks Collected from Wild Animals in Panama. Ticks Tick-Borne Diseases 2021, 12, 101723. [Google Scholar] [CrossRef]
- Su, H. Enfermedad de Lyme. Presentación de Un Caso. Rev. Med. Hond. 2004, 72, 193–197. [Google Scholar]
- Rojas-Solano, J.R.; Villalobos-Vindas, J. Caso Clínico Ehrliquiosis Granulocitotrópica Humana. Acta Méd. Costarric. 2007, 49, 121–123. [Google Scholar]
- de Mezerville, V.H.; Cuadra, J.I.P. Choque Séptico Por Ehrliquiosis. Acta Méd. Costarric. 2007, 49, 118–120. [Google Scholar] [CrossRef]
- Boza-Cordero, R. Enfermedad de Lyme (Borreliosis de Lyme) En Costa Rica. Acta Med. Costarric. 2011, 53, 34–36. [Google Scholar] [CrossRef]
- Brenes Valverde, D.; Brenes Martínez, S.; Quirós Rojas, I. Ehrliquiosis: Reporte de 2 Casos. Rev. Méd. Costa Rica Centroam. 2011, 598, 315–318. [Google Scholar]
- Villalobos-Zúñiga, M.-A.; Somogyi, T. Acute Lyme Disease in Costa Rica. Description of the First Autochthonous Case. Acta Méd. Costarric. 2012, 54, 55–58. [Google Scholar]
- Hun, L. Rickettsiosis En Costa Rica. Acta Med. Costarric. 2013, 55, 25–28. [Google Scholar]
- Peacock, M.G.; Ormsbee, R.A.; Johnson, K.M. Rickettsioses of Central America. Am. J. Trop. Med. Hyg. 1971, 20, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Eremeeva, M.E.; Dasch, G.A. Challenges Posed by Tick-Borne Rickettsiae: Eco-Epidemiology and Public Health Implications. Front. Public Health 2015, 3, 55. [Google Scholar] [CrossRef]
- de Rodaniche, E.C.; Rodaniche, A. Spotted Fever in Panama; Isolation of the Etiologic Agent from a Fatal Case. Am. J. Trop. Med. Hyg. 1950, s1-30, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Labruna, M.B. Ecology of Rickettsia in South America. Ann. N. Y. Acad. Sci. 2009, 1166, 156–166. [Google Scholar] [CrossRef]
- Nava, S.; Beati, L.; Labruna, M.B.; Cáceres, A.G.; Mangold, A.J.; Guglielmone, A.A. Reassessment of the Taxonomic Status of Amblyomma cajennense, (Fabricius, 1787) with the Description of Three New Species, Amblyomma tonelliae n. sp., Amblyomma interandium n. sp. and Amblyomma patinoi n. sp., and Reinstatement of Amblyomma mixtum, and Amblyomma sculptum (Ixodida: Ixodidae). Ticks Tick-Borne Dis. 2014, 5, 252–276. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Caballero, A.; Moreno, B.; González, C.; Martínez, G.; Adames, M.; Pachar, J.V.; Varela-Petrucelli, J.B.; Martínez-Mandiche, J.; Suárez, J.A.; Domínguez, L.; et al. Descriptions of Two New Cases of Rocky Mountain Spotted Fever in Panama, and Coincident Infection with Rickettsia rickettsii in Rhipicephalus sanguineus s.l. in an Urban Locality of Panama City, Panama. Epidemiol. Infect. 2018, 146, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Eremeeva, M.E.; Berganza, E.; Suarez, G.; Gobern, L.; Dueger, E.; Castillo, L.; Reyes, L.; Wikswo, M.E.; Abramowicz, K.F.; Dasch, G.A.; et al. Investigation of an Outbreak of Rickettsial Febrile Illness in Guatemala, 2007. Int. J. Infect. Dis. 2013, 17, e304–e311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.H.; Wilson, M.E. Tick-Borne Rickettsiosis in Traveler Returning from Honduras. Emerg. Infect. Dis. 2009, 15, 1321–1323. [Google Scholar] [CrossRef]
- Reller, M.E.; Chikeka, I.; Miles, J.J.; Dumler, J.S.; Woods, C.W.; Mayorga, O.; Matute, A.J. First Identification and Description of Rickettsioses and Q Fever as Causes of Acute Febrile Illness in Nicaragua. PLoS Negl. Trop. Dis. 2016, 10, e0005185. [Google Scholar] [CrossRef] [Green Version]
- Zavala-Castro, J.E.; Zavala-Velázquez, J.E.; Peniche-Lara, G.F.; Uicab, J.E.S. Human Rickettsialpox, Southeastern Mexico. Emerg. Infect. Dis. 2009, 15, 1665–1667. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Castro, J.E.; Zavala-Velázquez, J.E.; García, M.D.R.; León, J.J.A.; Dzul-Rosado, K.R. A Dog Naturally Infected with Rickettsia akari in Yucatan, México. Vector Borne Zoonotic Dis. 2009, 9, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Rar, V.; Golovljova, I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” Bacteria: Pathogenicity, Biodiversity, and Molecular Genetic Characteristics, a Review. Infect. Genet. Evol. 2011, 11, 1842–1861. [Google Scholar] [CrossRef] [PubMed]
- Pruneau, L.; Moumène, A.; Meyer, D.F.; Marcelino, I.; Lefrançois, T.; Vachiéry, N. Understanding Anaplasmataceae Pathogenesis Using “Omics” Approaches. Front. Cell. Infect. Microbiol. 2014, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Conrad, J.; Norman, J.; Rodriguez, A.; Dennis, P.M.; Arguedas, R.; Jimenez, C.; Hope, J.G.; Yabsley, M.J.; Hernandez, S.M. Demographic and Pathogens of Domestic, Free-Roaming Pets and the Implications for Wild Carnivores and Human Health in the San Luis Region of Costa Rica. Vet. Sci. 2021, 8, 65. [Google Scholar] [CrossRef]
- Little, S.E. Ehrlichiosis. In Arthropod Borne Diseases; Springer: Cham, Switzerland, 2017; pp. 205–213. [Google Scholar]
- Rodriguez-Morales, A.J.; Bonilla-Aldana, D.K.; Idarraga-Bedoya, S.E.; Garcia-Bustos, J.J.; Cardona-Ospina, J.A.; Faccini-Martínez, Á.A. Epidemiology of Zoonotic Tick-Borne Diseases in Latin America: Are We Just Seeing the Tip of the Iceberg? F1000Research 2019, 7, 1988. [Google Scholar] [CrossRef]
- Rochlin, I.; Toledo, A. Emerging Tick-Borne Pathogens of Public Health Importance: A Mini-Review. J. Med. Microbiol. 2020, 69, 781–791. [Google Scholar] [CrossRef]
- Barrantes-González, A.V.; Jiménez-Rocha, A.E.; Romero-Zuñiga, J.J.; Dolz, G. Serology, Molecular Detection and Risk Factors of Ehrlichia canis Infection in Dogs in Costa Rica. Ticks Tick-Borne Dis. 2016, 7, 1245–1251. [Google Scholar] [CrossRef]
- Talagrand-Reboul, E.; Boyer, P.H.; Bergström, S.; Vial, L.; Boulanger, N. Relapsing Fevers: Neglected Tick-Borne Diseases. Front. Cell. Infect. Microbiol. 2018, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Margos, G.; Fingerle, V.; Cutler, S.; Gofton, A.; Stevenson, B.; Estrada-Peña, A. Controversies in Bacterial Taxonomy: The Example of the Genus Borrelia. Ticks Tick-Borne Dis. 2020, 11, 101335. [Google Scholar] [CrossRef]
- Darling, S.T. The Relapsing Fever of Panama. Arch. Intern. Med. 1909, IV, 150–185. [Google Scholar] [CrossRef] [Green Version]
- Dunn, L.H.; Clark, H.C. Notes on Relapsing Fever in Panama with Special Reference to Animal Hosts. Am. J. Trop. Med. Hyg. 1933, S1–S13, 201–209. [Google Scholar] [CrossRef]
- Faccini-Martínez, Á.A.; Botero-García, C.A. Regarding Tick-Borne Relapsing Fever in the Americas; Some Historical Aspects of a Forgotten Disease in Colombia. Vet. Sci. 2016, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Leal, S.; Faccini-Martínez, Á.A.; Costa, F.B.; Marcili, A.; Mesquita, E.T.K.C.; Marques, E.P.; Labruna, M.B. Isolation and Molecular Characterization of a Relapsing Fever Borrelia Recovered from Ornithodoros rudis in Brazil. Ticks Tick-Borne Dis. 2018, 9, 864–871. [Google Scholar] [CrossRef]
- Robles, A.; Fong, J.; Cervantes, J. Borrelia Infection in Latin America. Rev. Investig. Clin. 2018, 70, 158–163. [Google Scholar] [CrossRef]
- Bermúdez, S.; Domínguez, L.; Troyo, A.; Montenegro, V.; Venzal, J. Ticks Infesting Humans in Central America: A Review of Their Relevance in Public Health. Curr. Res. Parasitol. Vector Borne Dis. 2021, in press. [Google Scholar] [CrossRef]
- Ramos-Castañeda, J.; dos Santos, F.B.; Martínez-Vega, R.; de Araujo, J.M.G.; Joint, G.; Sarti, E. Dengue in Latin America: Systematic Review of Molecular Epidemiological Trends. PLoS Negl. Trop. Dis. 2017, 11, e0005224. [Google Scholar] [CrossRef] [Green Version]
- Vieira, C.J.D.S.P.; Thies, S.F.; da Silva, D.J.F.; Kubiszeski, J.R.; Barreto, E.S.; Monteiro, H.A.O.; Mondini, A.; São Bernardo, C.S.; Bronzoni, R.V.M. Ecological Aspects of Potential Arbovirus Vectors (Diptera: Culicidae) in an Urban Landscape of Southern Amazon, Brazil. Acta Trop. 2020, 202, 105276. [Google Scholar] [CrossRef] [PubMed]
- Wilke, A.; Benelli, G.; Beier, J.C. Anthropogenic Changes and Associated Impacts on Vector-borne Diseases. Trends Parasitol. 2021, 37, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C. Urbanization and Geographic Expansion of Zoonotic Arboviral Diseases: Mechanisms and Potential Strategies for Prevention. Trends Microbiol. 2013, 21, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Ellwanger, J.H.; Kulmann-Leal, B.; Kaminski, V.L.; Valverde-Villegas, J.M.; da Veiga, A.B.G.; Spilki, F.R.; Fearnside, P.M.; Caesar, L.; Giatti, L.L.; Wallau, G.L.; et al. Beyond Diversity Loss and Climate Change: Impacts of Amazon Deforestation on Infectious Diseases and Public Health. An. Acad. Bras. Ciênc. 2020, 92, 20191375. [Google Scholar] [CrossRef] [PubMed]
- Lwande, O.W.; Obanda, V.; Lindström, A.; Ahlm, C.; Evander, M.; Näslund, J.; Bucht, G. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vector Borne Zoonotic Dis. 2020, 20, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva Pessoa Vieira, C.J.; Bernardo, C.S.S.; da Silva, D.J.F.; Kubiszeski, J.R.; Barreto, E.S.; de Oliveira Monteiro, H.A.; Canale, G.R.; Peres, C.A.; Massey, A.L.; Levi, T.; et al. Land-Use Effects on Mosquito Biodiversity and Potential Arbovirus Emergence in the Southern Amazon, Brazil. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Wimberly, M.C.; Davis, J.K.; Evans, M.V.; Hess, A.; Newberry, P.M.; Solano-Asamoah, N.; Murdock, C.C. Land Cover Affects Microclimate and Temperature Suitability for Arbovirus Transmission in an Urban Landscape. PLoS Negl. Trop. Dis. 2020, 14, e0008614. [Google Scholar] [CrossRef]
- Loaiza, J.R.; Dutari, L.C.; Rovira, J.R.; Sanjur, O.I.; Laporta, G.Z.; Pecor, J.; Foley, D.H.; Eastwood, G.; Kramer, L.D.; Radtke, M.; et al. Disturbance and Mosquito Diversity in the Lowland Tropical Rainforest of Central Panama. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Loaiza, J.R.; Rovira, J.R.; Sanjur, O.I.; Zepeda, J.A.; Pecor, J.E.; Foley, D.H.; Dutari, L.; Radtke, M.; Pongsiri, M.J.; Molinar, O.S.; et al. Forest Disturbance and Vector Transmitted Diseases in the Lowland Tropical Rainforest of Central Panama. Trop. Med. Int. Health 2019, 24, 849–861. [Google Scholar] [CrossRef]
- Laporta, G.Z.; de Prado, P.I.K.L.; Kraenkel, R.A.; Coutinho, R.M.; Sallum, M.A.M. Biodiversity Can Help Prevent Malaria Outbreaks in Tropical Forests. PLoS Negl. Trop. Dis. 2013, 7, e2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayles, B.R.; Rusk, A.; Christofferson, R.; Agar, G.; Pineda, M.A.; Chen, B.; Dagy, K.; Kelly, E.; Hummel, T.; Kuwada, K.; et al. Spatiotemporal Dynamics of Vector-Borne Disease Risk across Human Land-Use Gradients: Examining the Role of Agriculture, Indigenous Territories, and Protected Areas in Costa Rica. Lancet Glob. Health 2020, 8, S32. [Google Scholar] [CrossRef]
- Bates, M. Observations on the Distribution of Diurnal Mosquitoes in a Tropical Forest. Ecology 1944, 25, 159–170. [Google Scholar] [CrossRef]
- Pessanha, J. Febre Amarela: Uma Visão Do Cenário Atual. Rev. Med. Minas Gerais 2009, 19, 97–102. [Google Scholar]
- Ilacqua, R.C.; Medeiros-Sousa, A.R.; Ramos, D.G.; Obara, M.T.; Ceretti-Junior, W.; Mucci, L.F.; Marrelli, M.T.; Laporta, G.Z. Reemergence of Yellow Fever in Brazil: The Role of Distinct Landscape Fragmentation Thresholds. J. Environ. Public Health 2021, 2021, 8230789. [Google Scholar] [CrossRef]
- Alencar, J.; Lorosa, E.S.; Dégallier, N.; Serra-Freire, N.M.; Pacheco, J.B.; Guimarães, A.É. Feeding Patterns of Haemagogus janthinomys (Diptera: Culicidae) in Different Regions of Brazil. J. Med. Entomol. 2005, 42, 981–985. [Google Scholar] [CrossRef]
- Alencar, J.; de Mello, C.F.; Morone, F.; Albuquerque, H.G.; Serra-Freire, N.M.; Gleiser, R.M.; Silva, S.O.F.; Guimarães, A.É. Distribution of Haemagogus and Sabethes Species in Relation to Forest Cover and Climatic Factors in the Chapada Dos Guimarães National Park, State of Mato Grosso, Brazil. J. Am. Mosq. Control Assoc. 2018, 34, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Chaverri, L.G.; Dillenbeck, C.; Lewis, D.; Rivera, C.; Romero, L.M.; Chaves, L.F. Mosquito Species (Diptera: Culicidae) Diversity from Ovitraps in a Mesoamerican Tropical Rainforest. J. Med. Entomol. 2018, 55, 646–653. [Google Scholar] [CrossRef]
- Yanoviak, S.P.; Paredes, J.E.R.; Lounibos, L.P.; Weaver, S.C. Deforestation Alters Phytotelm Habitat Availability and Mosquito Production in the Peruvian Amazon. Ecol. Appl.: Publ. Ecol. Soc. Am. 2006, 16, 1854–1864. [Google Scholar] [CrossRef]
- Santos, M.; Collado Mariscal, L.; Henríquez, B.; Garzón, J.; González, P.; Carrera, J.P.; Tello, J.; Koo, S.; Pascale, J.M.; Burkett-Cadena, N.; et al. Implementation of Bamboo and Monkey-Pot Traps for the Sampling Cavity-Breeding Mosquitoes in Darién, Panama. Acta Trop. 2020, 205, 105352. [Google Scholar] [CrossRef]
- Vasconcelos, P.; Travassos da Rosa, A.; Pinheiro, F.; Dégallier, N.; Travassos da Rosa, J. Febare Amarela CONCE I T 0. In Doenças Infecciosas e Parasitárias: Enfoque Amazônico; de Leão, R., Ed.; Cejup/UEPA/Instituto Evandro Chagas: Belém, Brazil, 1997. [Google Scholar]
- Pajot, F.; Geoffroy, B.; Chippaux, J. Ecologie d’Haemagogus janthinomys Dyar (DIptera, Culicidae) En Guyane Française. Premières Données. Cahiers-ORSTOM. Entomol. Méd. Parasitol. 1985, 23, 209–216. [Google Scholar]
- Gomes, A.d.C.; Torres, M.A.N.; de Paula, M.B.; Fernandes, A.; Marassá, A.M.; Consales, C.A.; Fonseca, D.F. Ecologia de Haemagogus e Sabethes (Diptera: Culicidae) Em Áreas Epizoóticas Do Vírus Da Febre Amarela, Rio Grande Do Sul, Brasil. Epidemiol. Serv. Saúde 2010, 19, 101–113. [Google Scholar] [CrossRef]
- Pinto, C.S.; Confalonieri, U.E.C.; Mascarenhas, B.M. Ecology of Haemagogus sp. and Sabethes sp. (Diptera: Culicidae) in Relation to the Microclimates of the Caxiuanã National Forest, Pará, Brazil. Mem. Inst. Oswaldo Cruz 2009, 104, 592–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, N.I.O.; Sacchetto, L.; de Rezende, I.M.; Trindade, G.D.S.; Labeaud, A.D.; de Thoisy, B.; Drumond, B.P. Recent Sylvatic Yellow Fever Virus Transmission in Brazil: The News from an Old Disease. Virol. J. 2020, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Couto-Lima, D.; Madec, Y.; Bersot, M.I.; Campos, S.S.; Motta, M.A.; dos Santos, F.B.; Vazeille, M.; Vasconcelos, P.F.d.C.; Lourenço-de-Oliveira, R.; Failloux, A.-B. Potential Risk of Re-Emergence of Urban Transmission of Yellow Fever Virus in Brazil Facilitated by Competent Aedes Populations. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Massad, E.; Amaku, M.; Coutinho, F.A.B.; Struchiner, C.J.; Lopez, L.F.; Coelho, G.; Wilder-Smith, A.; Burattini, M.N. The Risk of Urban Yellow Fever Resurgence in Aedes-Infested American Cities. Epidemiol. Infect. 2018, 146, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Da Costa Vasconcelos, P.F. Yellow Fever in Brazil: Thoughts and Hypotheses on the Emergence in Previously Free Areas. Rev. Saúde Pública 2010, 44, 1144–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codeço, C.T.; Luz, P.M.; Struchiner, C.J. Risk Assessment of Yellow Fever Urbanization in Rio de Janeiro, Brazil. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 702–710. [Google Scholar] [CrossRef]
- Moreno, E.; Spinola, S.; Tengan, C.; Brasil, R.; Siciliano, M.; Coimbra, T.; Silveira, V.; Rocco, I.; Bisordi, I.; Souza, R.; et al. Yellow Fever Epizootics in Non-Human Primates, São Paulo State, Brazil, 2008–2009. Rev. Inst. Med. Trop. Sao Paulo 2013, 55, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Hamrick, P.N.; Aldighieri, S.; Machado, G.; Leonel, D.G.; Vilca, L.M.; Uriona, S.; Schneider, M.C. Geographic Patterns and Environmental Factors Associated with Human Yellow Fever Presence in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005897. [Google Scholar] [CrossRef]
- Graham, K.; Bulloch, M.; Lewis, T. Foraging Behaviour of Three Primate Species in a Costa Rican Coastal Lowland Tropical Wet Forest. Biodivers. J. 2013, 4, 327–334. [Google Scholar]
- Cosner, C. Models for the Effects of Host Movement in Vector-Borne Disease Systems. Math. Biosci. 2015, 270, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.R.; Collins, D.A.; Zucker, E.L. Responses to Deforestation in a Group of Mantled Howlers (Alouatta palliata) in Costa Rica. Int. J. Primatol. 2002, 23, 365–381. [Google Scholar] [CrossRef]
- Schreier, A.L.; Bolt, L.M.; Russell, D.G.; Readyhough, T.S.; Jacobson, Z.S.; Merrigan-Johnson, C.; Coggeshall, E.M.C. Mantled Howler Monkeys (Alouatta palliata) in a Costa Rican Forest Fragment Do Not Modify Activity Budgets or Spatial Cohesion in Response to Anthropogenic Edges. Folia Primatol. 2021, 92, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Rodríguez, V.; Dias, P.A.D. Effects of Habitat Fragmentation and Disturbance on Howler Monkeys: A Review. Am. J. Primatol. 2010, 72, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Estrada, A.; Coates-Estrada, R. Tropical Rain Forest Fragmentation and Wild Populations of Primates at Los Tuxtlas, Mexico. Int. J. Primatol. 1996, 17, 759–783. [Google Scholar] [CrossRef]
- McCann, C.; Williams-Guillén, K.; Koontz, F.; Espinoza, A.A.R.; Sánchez, J.C.M.; Koontz, C. Shade Coffee Plantations as Wildlife Refuge for Mantled Howler Monkeys (Alouatta palliata) in Nicaragua. Primates Fragm. 2003, 321–341. [Google Scholar] [CrossRef]
- Villatoro-Paz, F.; Sáenz-Méndez, J. La Fragmentación Del Hábitat: Impactos Sobre La Dinámica Huésped-Parásito de La Avifauna En Paisajes Agropecuarios de Esparza, Costa Rica. Zeledonia 2005, 9, 3–9. [Google Scholar]
- Bauch, S.C.; Birkenbach, A.M.; Pattanayak, S.K.; Sills, E.O. Public Health Impacts of Ecosystem Change in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2015, 112, 7414–7419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalbus, A.; de Souza Sampaio, V.; Boenecke, J.; Reintjes, R. Exploring the Influence of Deforestation on Dengue Fever Incidence in the Brazilian Amazonas State. PLoS ONE 2021, 16, e0242685. [Google Scholar] [CrossRef] [PubMed]
- Young, K.I.; Mundis, S.; Widen, S.G.; Wood, T.G.; Tesh, R.B.; Cardosa, J.; Vasilakis, N.; Perera, D.; Hanley, K.A. Abundance and Distribution of Sylvatic Dengue Virus Vectors in Three Different Land Cover Types in Sarawak, Malaysian Borneo. Parasites Vectors 2017, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Arguedas, O.; Troyo, A.; Solano, M.E.; Avendaño, A.; Beier, J.C. Urban Mosquito Species (Diptera: Culicidae) of Dengue Endemic Communities in the Greater Puntarenas Area, Costa Rica. Rev. Biol. Trop. 2009, 57, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Madewell, Z.J.; Sosa, S.; Brouwer, K.C.; Juárez, J.G.; Romero, C.; Lenhart, A.; Cordón-Rosales, C. Associations between Household Environmental Factors and Immature Mosquito Abundance in Quetzaltenango, Guatemala. BMC Public Health 2019, 19, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guagliardo, S.A.; Barboza, J.L.; Morrison, A.C.; Astete, H.; Vazquez-Prokopec, G.; Kitron, U. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon. PLoS Negl. Trop. Dis. 2014, 8, e3033. [Google Scholar] [CrossRef]
- Hemme, R.R.; Thomas, C.L.; Chadee, D.D.; Severson, D.W. Influence of Urban Landscapes on Population Dynamics in a Short-Distance Migrant Mosquito: Evidence for the Dengue Vector Aedes aegypti. PLoS Negl. Trop. Dis. 2010, 4, e634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, D.O.; Troyo, A.; Beier, J.C. El Niño Southern Oscillation and Vegetation Dynamics as Predictors of Dengue Fever Cases in Costa Rica. Environ. Res. Lett. 2009, 4, 014011. [Google Scholar] [CrossRef] [PubMed]
- Mena, N.; Troyo, A.; Bonilla-Carrión, R.; Calderón-Arguedas, Ó. Factors Associated with Incidence of Dengue in Costa Rica | Factores Asociados Con La Incidencia de Dengue En Costa Rica. Rev. Panam. Salud Publica/Pan Am. J. Public Health 2011, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell-Lendrum, D.; Manga, L.; Bagayoko, M.; Sommerfeld, J. Climate Change and Vector-Borne Diseases: What Are the Implications for Public Health Research and Policy? Philos. Trans. R. Soc. B: Biol. Sci. 2015, 370, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kramer, L.D. Complexity of Virus–Vector Interactions. Curr. Opin. Virol. 2016, 21, 81–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, L.F.; Valerín Cordero, J.A.; Delgado, G.; Aguilar-Avendaño, C.; Maynes, E.; Gutiérrez Alvarado, J.M.; Ramírez Rojas, M.; Romero, L.M.; Marín Rodríguez, R. Modeling the Association between Aedes aegypti Ovitrap Egg Counts, Multi-Scale Remotely Sensed Environmental Data and Arboviral Cases at Puntarenas, Costa Rica (2017–2018). Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100014. [Google Scholar] [CrossRef]
- Fuller, D.O.; Troyo, A.; Calderón-Arguedas, O.; Beier, J.C. Dengue Vector (Aedes aegypti) Larval Habitats in an Urban Environment of Costa Rica Analysed with ASTER and QuickBird Imagery. Int. J. Remote Sens. 2010, 31, 3–11. [Google Scholar] [CrossRef]
- Troyo, A.; Fuller, D.O.; Calderón-Arguedas, O.; Solano, M.E.; Beier, J.C. Urban Structure and Dengue Incidence in Puntarenas, Costa Rica. Singap. J. Trop. Geogr. 2009, 30, 265–282. [Google Scholar] [CrossRef]
- Joyce, A.L.; Alvarez, F.S.; Hernandez, E. Forest Coverage and Socioeconomic Factors Associated with Dengue in El Salvador, 2011–2013. Vector Borne Zoonotic Dis. 2021, 21, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of The Tiger: Global Risk of Invasion by The Mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Lugo, E.D.C.; Moreno, G.; Zachariah, M.A.; López, M.M.; López, J.D.; Delgado, M.A.; Valle, S.I.; Espinoza, P.M.; Salgado, M.J.; Pérez, R.; et al. Identification of Aedes albopictus in Urban Nicaragua. J. Am. Mosq. Control Assoc. 2005, 21, 325–327. [Google Scholar] [CrossRef]
- Marín, R.; Marquetti, M.d.C.; Álvarez, Y.; Gutiérrez, J.M.; González, R. Especies de Mosquitos (Diptera: Culicidae) y Sus Sitios de Cría En La Región Huetar Atlántica, Costa Rica. Rev. Bioméd. 2009, 20, 15–23. [Google Scholar] [CrossRef]
- Ogata, K.; Lopez Samayoa, A. Discovery of Aedes albopictus in Guatemala. J. Am. Mosq. Control Assoc. 1996, 12, 503–506. [Google Scholar]
- Ortega-Morales, A.I.; Mis-Avila, P.; Domínguez-Galera, M.; Canul-Amaro, G.; Esparza-Aguilar, J.; Carlos-Azueta, J.; Badillo-Perry, S.; Marin, P.; Polanco, J.; Fernández-Salas, I. First Record of Stegomyia albopicta [Aedes albopictus In Belize. Southwest. Entomol. 2010, 35, 197–198. [Google Scholar] [CrossRef]
- Belli, A.; Arostegui, J.; Garcia, J.; Aguilar, C.; Lugo, E.; Lopez, D.; Valle, S.; Lopez, M.; Harris, E.; Coloma, J. Introduction and Establishment of Aedes albopictus (Diptera: Culicidae) in Managua, Nicaragua. J. Med. Entomol. 2015, 52, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Marín-Rodríguez, R.; Calderón-Arguedas, O.; Díaz-Ríos, M.; Duarte-Solano, G.; Valle Arguedas, J.J.; Troyo-Rodríguez, A. Primer Hallazgo de Aedes albopictus Skuse En El Gran Área Metropolitana de Costa Rica. Rev. Costarric. Salud Pública 2014, 23, 1–4. [Google Scholar]
- Rojas-Araya, D.; Marín-Rodríguez, R.; Gutiérrez-Alvarado, M.; Romero-Vega, L.M.; Calderón-Arguedas, O.; Troyo, A. Nuevos Registros de Aedes albopictus (Skuse) En Cinco Localidades de Costa Rica. Rev. Bioméd. 2017, 28, 79–88. [Google Scholar] [CrossRef]
- Wagman, J.; Grieco, J.P.; King, R.; Briceño, I.; Bautista, K.; Polanco, J.; Pecor, J.; Achee, N.L. First Record and Demonstration of a Southward Expansion of Aedes albopictus into Orange Walk Town, Belize, Central America. J. Am. Mosq. Control Assoc. 2013, 29, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Futami, K.; Valderrama, A.; Baldi, M.; Minakawa, N.; Marín Rodríguez, R.; Chaves, L.F. New and Common Haplotypes Shape Genetic Diversity in Asian Tiger Mosquito Populations from Costa Rica and Panamá. J. Econ. Entomol. 2015, 108, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón-Arguedas, Ó.; Moreira-Soto, R.D.; Vicente-Santos, A.; Corrales-Aguilar, E.; Rojas-Araya, D.; Troyo, A.; Calderón-Arguedas, Ó.; Moreira-Soto, R.D.; Vicente-Santos, A.; Corrales-Aguilar, E.; et al. Papel Potencial de Aedes albopictus Skuse En La Transmisión de Virus Dengue (DENV) En Una Zona de Actividad Piñera de Costa Rica. Rev. Bioméd. 2019, 30, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Hanley, K.A.; Monath, T.P.; Weaver, S.C.; Rossi, S.L.; Richman, R.L.; Vasilakis, N. Fever versus Fever: The Role of Host and Vector Susceptibility and Interspecific Competition in Shaping the Current and Future Distributions of the Sylvatic Cycles of Dengue Virus and Yellow Fever Virus. Infect. Genet. Evol. 2013, 19, 292–311. [Google Scholar] [CrossRef] [Green Version]
- Hubálek, Z.; Rudolf, I.; Nowotny, N. Arboviruses Pathogenic for Domestic and Wild Animals. Adv. Virus Res. 2014, 89, 201–275. [Google Scholar] [CrossRef]
- Vasilakis, N.; Weaver, S.C. Chapter 1—The History and Evolution of Human Dengue Emergence. Adv. Virus Res. 2008, 72, 1–76. [Google Scholar] [CrossRef]
- Figueiredo, L.T.M. Human Urban Arboviruses Can Infect Wild Animals and Jump to Sylvatic Maintenance Cycles in South America. Front. Cell. Infect. Microbiol. 2019, 9, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Althouse, B.M.; Guerbois, M.; Cummings, D.A.T.; Diop, O.M.; Faye, O.; Faye, A.; Diallo, D.; Sadio, B.D.; Sow, A.; Faye, O.; et al. Role of Monkeys in the Sylvatic Cycle of Chikungunya Virus in Senegal. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hendy, A.; Hernandez-Acosta, E.; Valério, D.; Mendonça, C.; Costa, E.R.; Júnior, J.T.A.; Assunção, F.P.; Scarpassa, V.M.; Gordo, M.; Fé, N.F.; et al. The Vertical Stratification of Potential Bridge Vectors of Mosquito-Borne Viruses in a Central Amazonian Forest Bordering Manaus, Brazil. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Yasuoka, J.; Levins, R. Impact of Deforestation and Agricultural Development on Anopheline Ecology and Malaria Epidemiology. Am. J. Trop. Med. Hyg. 2007, 76, 450–460. [Google Scholar] [CrossRef] [Green Version]
- Carter, K.H.; Singh, P.; Mujica, O.J.; Escalada, R.P.; Ade, M.P.; Castellanos, L.G.; Espinal, M.A. Malaria in the Americas: Trends from 1959 to 2011. Am. J. Trop. Med. Hyg. 2015, 92, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Pineda, M.; Bayles, B.; Dagy, K.; Kelly, E.; Martin, S.; Faerron, C. Spatial Dynamics of Vector-Borne Disease Risk in Costa Rica: Examining the Role of Anthropogenic Landscapes, Indigenous Territories, and Protected Areas in a Biodiversity Hotspot. In Proceedings of the American Geophysical Union, Fall Meeting 2019, San Francisco, CA, USA, 9–13 December 2019; Volume 2019. [Google Scholar]
- MacDonald, A.J.; Mordecai, E.A. Amazon Deforestation Drives Malaria Transmission, and Malaria Burden Reduces Forest Clearing. Proc. Natl. Acad. Sci. USA 2019, 116, 22212–22218. [Google Scholar] [CrossRef] [PubMed]
- Laporta, G.Z.; Ilacqua, R.C.; Bergo, E.S.; Chaves, L.S.M.; Rodovalho, S.R.; Moresco, G.G.; Figueira, E.A.G.; Massad, E.; de Oliveira, T.M.P.; Bickersmith, S.A.; et al. Malaria Transmission in Landscapes with Varying Deforestation Levels and Timelines in the Amazon: A Longitudinal Spatiotemporal Study. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bourke, B.P.; Conn, J.E.; de Oliveira, T.M.P.; Chaves, L.S.M.; Bergo, E.S.; Laporta, G.Z.; Sallum, M.A.M. Exploring Malaria Vector Diversity on the Amazon Frontier. Malar. J. 2018, 17, 1–17. [Google Scholar] [CrossRef]
- Sallum, M.A.M.; Conn, J.E.; Bergo, E.S.; Laporta, G.Z.; Chaves, L.S.M.; Bickersmith, S.A.; de Oliveira, T.M.P.; Figueira, E.A.G.; Moresco, G.; Olívêr, L.; et al. Vector Competence, Vectorial Capacity of Nyssorhynchus darlingi and the Basic Reproduction Number of Plasmodium vivax in Agricultural Settlements in the Amazonian Region of Brazil. Malar. J. 2019, 18, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Guerra, C.A.; Snow, R.W.; Hay, S.I. A Global Assessment of Closed Forests, Deforestation and Malaria Risk. Ann. Trop. Med. Parasitol. 2006, 100, 189–204. [Google Scholar] [CrossRef]
- Torres-Cosme, R.; Rigg, C.; Santamaría, A.M.; Vásquez, V.; Victoria, C.; Ramirez, J.L.; Calzada, J.E.; Carrera, L.C. Natural Malaria Infection in Anophelines Vectors and Their Incrimination in Local Malaria Transmission in Darién, Panama. PLoS ONE 2021, 16, e0250059. [Google Scholar] [CrossRef] [PubMed]
- Vittor, A.Y.; Gilman, R.H.; Tielsch, J.; Glass, G.; Shields, T.; Lozano, W.S.; Pinedo-Cancino, V.; Patz, J.A. The Effect of Deforestation on the Human-Biting Rate of Anopheles darlingi, the Primary Vector of Falciparum Malaria in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2006, 74, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Chapin, G.; Wasserstrom, R. Agricultural Production and Malaria Resurgence in Central America and India. Nature 1981, 293, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Dusfour, I.; Achee, N.L.; Briceno, I.; King, R.; Grieco, J.P. Comparative Data on the Insecticide Resistance of Anopheles albimanus in Relation to Agricultural Practices in Northern Belize, CA. J. Pest Sci. 2010, 83, 41–46. [Google Scholar] [CrossRef]
- Grieco, J.P.; Johnson, S.; Achee, N.L.; Masuoka, P.; Pope, K.; Rejmánková, E.; Vanzie, E.; Andre, R.; Roberts, D. Distribution of Anopheles albimanus, Anopheles vestitipennis, and Anopheles crucians Associated with Land Use in Northern Belize. J. Entomol. 2006, 43, 614–622. [Google Scholar] [CrossRef]
- Hakre, S.; Masuoka, P.; Vanzie, E.; Roberts, D.R. Spatial Correlations of Mapped Malaria Rates with Environmental Factors in Belize, Central America. Int. J. Health Geogr. 2004, 3, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grieco, J.P.; Vogtsberger, R.C.; Achee, N.L.; Vanzie, E.; Andre, R.G.; Roberts, D.R.; Rejmankova, E. Evaluation of Habitat Management Strategies for the Reduction of Malaria Vectors in Northern Belize. J. Vector Ecol. J. Soc. Vector Ecol. 2005, 30, 235–243. [Google Scholar]
- Chaves, L.S.M.; Bergo, E.S.; Conn, J.E.; Laporta, G.Z.; Prist, P.R.; Sallum, M.A.M. Anthropogenic Landscape Decreases Mosquito Biodiversity and Drives Malaria Vector Proliferation in the Amazon Rainforest. PLoS ONE 2021, 16, e0245087. [Google Scholar] [CrossRef] [PubMed]
- Sinka, M.E.; Pironon, S.; Massey, N.C.; Longbottom, J.; Hemingway, J.; Moyes, C.L.; Willis, K.J. A New Malaria Vector in Africa: Predicting the Expansion Range of Anopheles stephensi and Identifying the Urban Populations at Risk. Proc. Natl. Acad. Sci. USA 2020, 117, 24900–24908. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Vector Alert: Anopheles stephensi Invasion and Spread. Available online: https://www.who.int/publications/i/item/WHO-HTM-GMP-2019.09 (accessed on 5 October 2021).
- Seyfarth, M.; Khaireh, B.A.; Abdi, A.A.; Bouh, S.M.; Faulde, M.K. Five Years Following First Detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: Populations Established—Malaria Emerging. Parasitol. Res. 2019, 118, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, L.; Rovira, J.; Torres, R.; García, A.; Calzada, J.; Cruz, M.D. La Characterization of Plasmodium vivax Malaria Transmission at the Border of Panamá and Costa Rica. Biomédica 2012, 32, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Surendran, S.N.; Sivabalakrishnan, K.; Sivasingham, A.; Jayadas, T.T.P.; Karvannan, K.; Santhirasegaram, S.; Gajapathy, K.; Senthilnanthanan, M.; Karunaratne, S.P.; Ramasamy, R. Anthropogenic Factors Driving Recent Range Expansion of the Malaria Vector Anopheles stephensi. Front. Public Health 2019, 7, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontecha, G.; Pinto, A.; Archaga, O.; Betancourt, S.; Escober, L.; Henríquez, J.; Valdivia, H.; Montoya, A.; Mejía, R. Assessment of Plasmodium falciparum Antimalarial Drug Resistance Markers in Pfcrt and Pfmdr1 Genes in Isolates from Honduras and Nicaragua, 2018–2021. Malar. J. 2021. under review. [Google Scholar] [CrossRef]
- Barbour, A.G.; Fish, D. The Biological and Social Phenomenon of Lyme Disease. Science 1993, 260, 1610–1616. [Google Scholar] [CrossRef] [Green Version]
- Ogrzewalska, M.; Uezu, A.; Jenkins, C.N.; Labruna, M.B. Effect of Forest Fragmentation on Tick Infestations of Birds and Tick Infection Rates by Rickettsia in the Atlantic Forest of Brazil. EcoHealth 2011, 8, 320–331. [Google Scholar] [CrossRef]
- Wood, C.L.; Lafferty, K.D. Biodiversity and Disease: A Synthesis of Ecological Perspectives on Lyme Disease Transmission. Trends Ecol. Evol. 2013, 28, 239–247. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.J. Abiotic and Habitat Drivers of Tick Vector Abundance, Diversity, Phenology and Human Encounter Risk in Southern California. PLoS ONE 2018, 13, e0201665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diuk-Wasser, M.A.; VanAcker, M.C.; Fernandez, M.P. Impact of Land Use Changes and Habitat Fragmentation on the Eco-Epidemiology of Tick-Borne Diseases. J. Med. Entomol. 2021, 58, 1546–1564. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, H.; Rubio, A.V.; García-Peña, G.E.; Suzán, G.; Simonetti, J.A. Does Land-Use Change Increase the Abundance of Zoonotic Reservoirs? Rodents Say Yes. Eur. J. Wildl. Res. 2020, 66, 1–5. [Google Scholar] [CrossRef]
- Keesing, F.; Ostfeld, R.S. Impacts of Biodiversity and Biodiversity Loss on Zoonotic Diseases. Proc. Natl. Acad. Sci. USA 2021, 118, e2023540118. [Google Scholar] [CrossRef]
- Montenegro, D.C.; Bitencourth, K.; de Oliveira, S.v.; Borsoi, A.P.; Cardoso, K.M.; Sousa, M.S.B.; Giordano-Dias, C.; Amorim, M.; Serra-Freire, N.M.; Gazêta, G.S.; et al. Spotted Fever: Epidemiology and Vector-Rickettsia-Host Relationship in Rio de Janeiro State. Front. Microbiol. 2017, 8, 505. [Google Scholar] [CrossRef] [Green Version]
- Toepp, A.J.; Willardson, K.; Larson, M.; Scott, B.D.; Johannes, A.; Senesac, R.; Petersen, C.A. Frequent Exposure to Many Hunting Dogs Significantly Increases Tick Exposure. Vector Borne Zoonotic Dis. 2018, 18, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, J.H.; Chies, J.A.B. The Triad “Dogs, Conservation and Zoonotic Diseases”—An Old and Still Neglected Problem in Brazil. Perspect. Ecol. Conserv. 2019, 17, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Lönker, N.S.; Fechner, K.; Wahed, A.A. el Horses as a Crucial Part of One Health. Vet. Sci. 2020, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, V.; Bonilla, R. Adultos y Ninfas de La Garrapata Amblyomma cajennense Fabricius (Acari: Ixodidae) En Equinos y Bovinos. Agron. Costarric. 2007, 31, 61–69. [Google Scholar]
- Szabó, M.P.J.; Pinter, A.; Labruna, M.B. Ecology, Biology and Distribution of Spotted-Fever Tick Vectors in Brazil. Front. Cell. Infect. Microbiol. 2013, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez, S.E.; Castro, A.M.; Trejos, D.; García, G.G.; Gabster, A.; Miranda, R.J.; Zaldívar, Y.; Paternina, L.E. Distribution of Spotted Fever Group Rickettsiae in Hard Ticks (Ixodida: Ixodidae) from Panamanian Urban and Rural Environments (2007–2013). EcoHealth 2016, 13, 274–284. [Google Scholar] [CrossRef]
- Ferrell, A.M.; Brinkerhoff, R.J.; Bernal, J.; Bermúdez, S.E. Ticks and Tick-Borne Pathogens of Dogs along an Elevational and Land-Use Gradient in Chiriquí Province, Panamá. Exp. Appl. Acarol. 2017, 71, 371–385. [Google Scholar] [CrossRef]
- Clarke-Crespo, E.; Moreno-Arzate, C.N.; López-González, C.A. Ecological Niche Models of Four Hard Tick Genera (Ixodidae) in Mexico. Animals 2020, 10, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Calderon, V.; Hernández-Fonseca, V.; Hernández-Gamboa, J. Catálogo de Garrapatas Suaves (Acari: Argasidae) y Duras (Acari: Ixodidae) de Costa Rica. Brenesia 2005, 63–64, 81–88. [Google Scholar]
- Bermúdez, C.S.E.; Zaldívar, A.Y.; Spolidorio, M.G.; Moraes-Filho, J.; Miranda, R.J.; Caballero, C.M.; Mendoza, Y.; Labruna, M.B. Rickettsial Infection in Domestic Mammals and Their Ectoparasites in El Valle de Antón, Coclé, Panamá. Vet. Parasitol. 2011, 177, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Ogrzewalska, M.; Literák, I.; Capek, M.; Sychra, O.; Calderón, V.Á.; Rodríguez, B.C.; Prudencio, C.; Martins, T.F.; Labruna, M.B. Bacteria of the Genus Rickettsia in Ticks (Acari: Ixodidae) Collected from Birds in Costa Rica. Ticks Tick-Borne Dis. 2015, 6, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Novakova, M.; Literak, I.; Chevez, L.; Martins, T.F.; Ogrzewalska, M.; Labruna, M.B. Rickettsial Infections in Ticks from Reptiles, Birds and Humans in Honduras. Ticks Tick-Borne Dis. 2015, 6, 737–742. [Google Scholar] [CrossRef]
- Troyo, A.; Moreira-Soto, R.D.; Calderon-Arguedas, Ó.; Mata-Somarribas, C.; Ortiz-Tello, J.; Barbieri, A.R.M.; Avendaño, A.; Vargas-Castro, L.E.; Labruna, M.B.; Hun, L.; et al. Detection of Rickettsiae in Fleas and Ticks from Areas of Costa Rica with History of Spotted Fever Group Rickettsioses. Ticks Tick-Borne Dis. 2016, 7, 1128–1134. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.G.; Junior, J.M.; Foster, R.J.; Harmsen, B.J.; Sanchez, E.; Martins, T.F.; Quigley, H.; Marcili, A.; Labruna, M.B. Ticks and Rickettsiae from Wildlife in Belize, Central America. Parasites Vectors 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Polsomboon, S.; Hoel, D.F.; Murphy, J.R.; Linton, Y.-M.; Motoki, M.; Robbins, R.G.; Bautista, K.; Briceño, I.; Achee, N.L.; Grieco, J.P.; et al. Molecular Detection and Identification of Rickettsia Species in Ticks (Acari: Ixodidae) Collected from Belize, Central America. J. Med. Entomol. 2017, 54, 1718–1726. [Google Scholar] [CrossRef]
- Domínguez, L.; Miranda, R.J.; Torres, S.; Moreno, R.; Ortega, J.; Bermúdez, S.E. Hard Tick (Acari: Ixodidae) Survey of Oleoducto Trail, Soberania National Park, Panama. Ticks Tick-Borne Dis. 2019, 10, 830–837. [Google Scholar] [CrossRef]
- Esser, H.J.; Herre, E.A.; Kays, R.; Liefting, Y.; Jansen, P.A. Local Host-Tick Coextinction in Neotropical Forest Fragments. Int. J. Parasitol. 2019, 49, 225–233. [Google Scholar] [CrossRef]
- Esser, H.J.; Herre, E.A.; Blüthgen, N.; Loaiza, J.R.; Bermúdez, S.E.; Jansen, P.A. Host Specificity in a Diverse Neotropical Tick Community: An Assessment Using Quantitative Network Analysis and Host Phylogeny. Parasites Vectors 2016, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, V.; Bonilla, R.; Chacón, I. Frecuencia Relativa de Boophilus microplus (Acari: Ixodidae) En Bovinos (Bos taurus y B. indicus) En Ocho Zonas Ecológicas de Costa Rica. Rev. Biol. Trop. 2003, 51, 427–434. [Google Scholar]
- Alvarez, C.; Bonilla, R.; Chacón, I. Distribución de La Garrapata Amblyomma cajennense (Acari: Ixodidae) Sobre Bos Taurus y Bos indicus En Costa Rica. Rev. Biol. Trop. 2000, 48, 129–135. [Google Scholar]
- Düttmann, C.; Flores, B.; Kadoch, Z.N.; Bermúdez, C.S. Hard Ticks (Acari: Ixodidae) of Livestock in Nicaragua, with Notes about Distribution. Exp. Appl. Acarol. 2016, 70, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, C.S.E.; Castro, A.; Esser, H.; Liefting, Y.; García, G.; Miranda, R.J. Ticks (Ixodida) on Humans from Central Panama, Panama (2010–2011). Exp. Appl. Acarol. 2012, 58, 81–88. [Google Scholar] [CrossRef] [PubMed]
- de Rodaniche, E.C. Natural Infection of the Tick, Amblyomma cajennense, with Rickettsia rickettsii in Panama. Am. J. Trop. Med. Hyg. 1953, 2, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Nieri-Bastos, F.A.; Marcili, A.; de Sousa, R.; Paddock, C.D.; Labruna, M.B. Phylogenetic Evidence for the Existence of Multiple Strains of Rickettsia parkeri in the New World. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [Green Version]
- Carreno, R.; Durden, L.A.; Brooks, D.R.; Abrams, A.; Hoberg, E.P. Parelaphostrongylus tenuis (Nematoda: Protostrongylidae) and Other Parasites of White-Tailed Deer (Odocoileus virginianus) in Costa Rica. Comp. Parasitol. 2001, 68, 177–184. [Google Scholar]
- Álvarez-Robles, E.; Fuentes-Rousselin, H.; Meoño-Sánchez, E.; Recinos-Donis, R.; Figueroa, L.; Guerra-Centeno, D. Preliminary Study of External Parasites of White-Tailed Deer (Odocoileus virginianus) from the Natural Reserve of the Parachute Brigade, San José, Escuintla Guatemala. Rev. Elect. Vet. 2018, 19, 1–11. [Google Scholar]
- Bermúdez, S.; Miranda, R. Distribución de Los Ectoparásitos de Canis lupus familiaris L. (Carnivora: Canidae) de Panamá. Rev. MVZ Córdoba 2011, 16, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Troyo, A.; Calderón-Arguedas, Ó.; Alvarado, G.; Vargas-Castro, L.E.; Avendaño, A. Ectoparasites of Dogs in Home Environments on the Caribbean Slope of Costa Rica. Rev. Bras. Parasitol. Vet. 2012, 21, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nava, S.; Estrada-Peña, A.; Petney, T.; Beati, L.; Labruna, M.B.; Szabó, M.P.J.; Venzal, J.M.; Mastropaolo, M.; Mangold, A.J.; Guglielmone, A.A. The Taxonomic Status of Rhipicephalus sanguineus (Latreille, 1806). Vet. Parasitol. 2015, 208, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Hernández, G.; Roldán, J.F.G.; Milan, N.S.H.; Lash, R.R.; Behravesh, C.B.; Paddock, C.D. Rocky Mountain Spotted Fever in Mexico: Past, Present, and Future. Lancet Infect. Dis. 2017, 17, e189–e196. [Google Scholar] [CrossRef]
- Campos, S.D.E.; da Cunha, N.C.; Machado, C.d.S.C.; Telleria, E.L.; Cordeiro, M.D.; da Fonseca, A.H.; Toma, H.K.; dos Santos, J.P.C.; Almosny, N.R.P. Rickettsial Pathogens Circulating in Urban Districts of Rio de Janeiro, without Report of Human Brazilian Spotted Fever. Rev. Bras. Parasitol. Vet. 2020, 29, 1–10. [Google Scholar] [CrossRef]
- Hun, L.; Herrero, L.; Fuentes, L.; Vargas, M. Tres Nuevos Casos de Fiebre Manchada de Las Montañas Rocosas En Costa Rica. Rev. Costarric. Cienc. Med. 1991, 12, 51–56. [Google Scholar]
- Murgas, I.L.; Castro, A.M.; Bermúdez, S.E. Current Status of Amblyomma ovale (Acari: Ixodidae) in Panama. Ticks Tick-Borne Dis. 2013, 4, 164–166. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, A.R.M.; Filho, J.M.; Nieri-Bastos, F.A.; Souza, J.C.; Szabó, M.P.J.; Labruna, M.B. Epidemiology of Rickettsia sp. Strain Atlantic Rainforest in a Spotted Fever-Endemic Area of Southern Brazil. Ticks Tick-Borne Dis. 2014, 5, 848–853. [Google Scholar] [CrossRef]
- Londoño, A.F.; Díaz, F.J.; Valbuena, G.; Gazi, M.; Labruna, M.B.; Hidalgo, M.; Mattar, S.; Contreras, V.; Rodas, J.D. Infection of Amblyomma ovale by Rickettsia sp. Strain Atlantic Rainforest, Colombia. Ticks Tick-Borne Dis. 2014, 5, 672–675. [Google Scholar] [CrossRef]
- Lamattina, D.; Tarragona, E.L.; Nava, S. Molecular Detection of the Human Pathogen Rickettsia parkeri Strain Atlantic Rainforest in Amblyomma ovale Ticks in Argentina. Ticks Tick-Borne Dis. 2018, 9, 1261–1263. [Google Scholar] [CrossRef] [PubMed]
- Vargas, V.M. Occurrence of the Bat Tick Ornithodoros (Alectorobius) kelleyi Cooley & Kohls (Acari: Argasidae) in Costa Rica and Its Relation to Human Bites. Rev. Biol. Trop. 1984, 32, 103–107. [Google Scholar]
- Rangel, G.; Bermúdez, C.S.E. Nota Sobre Un Caso de Parasitismo de Ornithodoros sp. (Ixodida: Argasidae) En Una Mujer Proveniente de La Laja, Los Santos, Panamá. Rev. Méd. Panamá 2013, 37–39. [Google Scholar] [CrossRef]
- Bermúdez, S.E.; Castillo, E.; Pohlenz, T.D.; Kneubehl, A.; Krishnavajhala, A.; Domínguez, L.; Suárez, A.; López, J.E. New Records of Ornithodoros puertoricensis Fox 1947 (Ixodida: Argasidae) Parasitizing Humans in Rural and Urban Dwellings, Panama. Ticks Tick-Borne Dis. 2017, 8, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Uspensky, I.V. Blood-Sucking Ticks (Acarina, Ixodoidea) as an Essential Component of the Urban Environment. Entomol. Rev. 2017, 97, 941–969. [Google Scholar] [CrossRef]
- Montenegro, V.M.; Bonilla, M.C.; Kaminsky, D.; Romero-Zúñiga, J.J.; Siebert, S.; Krämer, F. Serological Detection of Antibodies to Anaplasma spp., Borrelia burgdorferi Sensu Lato and Ehrlichia canis and of Dirofilaria immitis Antigen in Dogs from Costa Rica. Vet. Parasitol. 2017, 236, 97–107. [Google Scholar] [CrossRef]
- Sergio E. Bermúdez, C.; Lady Mejía, B.; Ligia Hernández; Dmitry, A. First Records of Ixodes boliviensis Neumann, 1904 and Dermacentor dissimilis Cooley, 1947 (Ixodida: Ixodidae) as Parasites of Domestic Mammals in Nicaragua. Syst. Appl. Acarol. 2015, 20, 462–464. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.E.; Nieto, N.C.; Foley, P. Emergence of Tick-Borne Granulocytic Anaplasmosis Associated with Habitat Type and Forest Change in Northern California. Am. J. Trop. Med. Hyg. 2009, 81, 1132–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millins, C.; Gilbert, L.; Medlock, J.; Hansford, K.; Thompson, D.B.; Biek, R. Effects of Conservation Management of Landscapes and Vertebrate Communities on Lyme Borreliosis Risk in the United Kingdom. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372. [Google Scholar] [CrossRef] [Green Version]
- Rogers, D.J.; Randolph, S.E. Climate Change and Vector-Borne Diseases. Adv. Parasitol. 2006, 62, 345–381. [Google Scholar] [CrossRef]
- Paaijmans, K.P.; Read, A.F.; Thomas, M.B. Understanding the Link between Malaria Risk and Climate. Proc. Natl. Acad. Sci. USA 2009, 106, 13844–13849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proestos, Y.; Christophides, G.K.; Ergüler, K.; Tanarhte, M.; Waldock, J.; Lelieveld, J. Present and Future Projections of Habitat Suitability of the Asian Tiger Mosquito, a Vector of Viral Pathogens, from Global Climate Simulation. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lafferty, K.D.; Mordecai, E.A. The Rise and Fall of Infectious Disease in a Warmer World. F1000Research 2016, 5, 2040. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; Gubler, D.J.; Petersen, L.R. Emerging Flaviviruses: The Spread and Resurgence of Japanese Encephalitis, West Nile and Dengue Viruses. Nat. Med. 2004, 10, S98–S109. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Gubler, D.J. Geographic Expansion of Dengue: The Impact of International Travel. Med. Clin. N. Am. 2008, 92, 1377–1390. [Google Scholar] [CrossRef]
- Bennett, S.N. Evolutionary Dynamics of Dengue Virus. In Frontiers in Dengue Virus Research; Hanley, K.A., Weaver, S.C., Eds.; Caister Academic Press: Poole, UK, 2010; pp. 157–172. [Google Scholar]
- Musso, D.; Cao-Lormeau, V.M.; Gubler, D.J. Zika Virus: Following the Path of Dengue and Chikungunya? Lancet 2015, 386, 243–244. [Google Scholar] [CrossRef]
- Morrow, M.G.; Johnson, R.N.; Polanco, J.; Claborn, D.M. Mosquito Vector Abundance Immediately before and after Tropical Storms Alma and Arthur, Northern Belize, 2008. Rev. Panam. Salud Pública 2010, 28, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colón-González, F.J.; Sewe, M.O.; Tompkins, A.M.; Sjödin, H.; Casallas, A.; Rocklöv, J.; Caminade, C.; Lowe, R. Projecting the Risk of Mosquito-Borne Diseases in a Warmer and More Populated World: A Multi-Model, Multi-Scenario Intercomparison Modelling Study. Lancet Planet Health 2021, 5, e404–e414. [Google Scholar] [CrossRef]
- Ogden, N.H.; Lindsay, L.R. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different. Trends Parasito. 2016, 32, 646–656. [Google Scholar] [CrossRef]
- UNHCR (United Nations High Commissioner for Refugees). Protection and Solutions Strategy for the Northern Triangle of Central America 2016–2018; United Nations: Geneva, Switzerland, 2015. [Google Scholar]
- FAO (Food and Agricultural Organization). Chronology of the Dry Corridor: The Impetus for Resilience in Central America. Agronoticias: Agriculture News from Latin America and the Caribbean. Available online: http://www.fao.org/in-action/agronoticias/detail/en/c/1024539/ (accessed on 21 September 2021).
Country | a Total Country Area (sq. km.) | b Forest Area, % of Land Area (2018) | c Change in Forest Area, % of Land Area (1990–2018) | d Agricultural Land, % of Land Area (2018) | e Change in Agricultural Land, % of Land Area (1990–2018) | f Urban Population % (2020) | g Change in Urban Population % (1990–2020) |
---|---|---|---|---|---|---|---|
Belize | 22,810 | 57 | −13.2 | 7.5 | +2 | 46 | −1.44 |
Costa Rica | 51,060 | 58.8 | +1.9 | 34.9 | −8.1 | 80.8 | +30.8 |
El Salvador | 20,720 | 28.6 | −6.1 | 71.4 | +6.2 | 73.4 | +24.2 |
Guatemala | 107,160 | 33.1 | −11.5 | 36 | −4 | 51.8 | +9.8 |
Honduras | 111,890 | 57.2 | −5.2 | 30 | +0.3 | 58.4 | +17.9 |
Nicaragua | 120,340 | 30 | −23.2 | 42.1 | +8.6 | 59 | +5.9 |
Panama | 74,177 | 57.1 | −4.9 | 30.5 | +1.9 | 68.4 | +14.5 |
Disease | Causative Agents | Distribution of Infections in Humans | Confirmed or Suspected Mosquitoes and/or Tick Vectors | Confirmed or Suspected Non-Human Vertebrate Hosts |
---|---|---|---|---|
West Nile fever | West Nile virus (Flavivirus) | Clinical, serosurveys (CR, N) | Culex quinquefasciatus, Cx. mollis/Cx. inflictus (G) | Equines, non-human primates, wild birds, sentinel chickens (CR, B, ES, G) |
Saint Louis encephalitis | Saint Louis encephalitis virus (Flavivirus) | Clinical, serosurveys (P, B, G, H) | Sabethes chloropterus, Trichoposopon spp., Wyeomyia spp., Haemagogus lucifer, Deinocerites pseudes, Mansonia dyari, Culex nigripalpus (P, CR, G) | Wild rodents, wild birds, sentinel rodents, sentinel chickens, non-human primates, sloths, equines, pigs (P, CR, B, H, G) |
Venezuelan equine encephalitis | Venezuelan equine encephalitis virus (Alphavirus) | Clinical, serosurveys (all countries) | Psorophora confinnis, Culex nigripalpus, * Cx. (Melanoconion) taeniopus, other Cx. (Melanoconion) spp., Mansonia titillans, Ps. cilipes, Aedes taeniorhynchus, and Deinocerites pseudes (P, CR, B, G) | Equines, wild rodent, opossum, birds, and bats (CR, N, H, ES, G) |
Eastern equine encephalitis | Madariaga virus (Alphavirus) | Clinical, serosurveys (P) | Culex (Mel.) taeniopus (P) | Horses, bats, wild lizards, wild birds (P, CR, B) |
Yellow fever | Yellow fever virus (Flavivirus) | Clinical (all countries) | Aedes aegypti, Haemagogus janthinomys, Hg. leucocelaenus, Hg. lucifer, Hg. equinus, Hg. spegazzinii, and Sa. chloropterus, Hg. mesodentatus (P, CR, N, G) | Non-human primates, marsupials (P, CR, N, B, H, G) |
Zika fever | Zika virus (Flavivirus) | Clinical and serological (all countries) | ** Aedes aegypti, Ae. albopictus (all countries) | Unknown |
Chikungunya fever | Chikungunya virus (Alphavirus) | Clinical and serological (all countries) | ** Aedes aegypti, Ae. albopictus (all countries) | Unknown |
Dengue fever | Dengue viruses 1–4 (Flavivirus) | Clinical and serological (all countries) | ** Aedes aegypti, Ae. albopictus (suspected) (all countries) | Bats, non-human primates (CR) |
Mayaro fever | Mayaro virus (Alphavirus) | Clinical and serological (P, CR, G) | Haemagogus janthinomys, Psorophora ferox, Culex (Mel.) vomerifer (P) | Non-human primates (P, CR, H, G) |
Malaria | Plasmodium vivax, P. falciparum | Clinical and serological (all countries) | * Anopheles albimanus, An. darlingi, An. punctimacula, other Anopheles spp. (all countries) | Unknown |
P. malariae | Clinical and serological (P, CR, B, ES, G) | Unknown | Unknown | |
Rickettsiosis | Rickettsia spp. (species causing spotted fevers was not identified) | Clinical, serosurveys (all countries) | Amblyomma mixtum (G) | Wild rabbits, dogs, coyote (P, CR) |
R. rickettsii (Rocky Mountain spotted fever) | Clinical (P, CR) | * A. mixtum, Rhipicephalus sanguineus s.l., A. varium, Dermacentor nitens, Haemaphysalis leporispalustris (P, CR) | Dog, horse (P, CR) | |
R. akari (rickettsialpox) | Serosurvey (CR) | Unknown | Unknown | |
R. parkeri | Unknown | * A. maculatum (B) | Unknown | |
R. parkeri strain Atlantic Forest | Unknown | * A. ovale (B) | Unknown | |
R. africae | Unknown | A. ovale (N) | Unknown | |
Ehrlichiosis | Ehrlichia chaffeensis (monocytic ehrlichiosis) | Clinical (CR) | Amblyoma mixtum, Amblyomma sp., Dermacentor nitens, Rhipicephalus microplus (P) | Unknown |
E. ewingii (monocytic ehrlichiosis) | Unknown | R. microplus (P) | Unknown | |
E. canis (granulocytic ehrlichiosis) | Clinical (P, CR) | ** R. sanguineus s.l. (all countries) | Dogs (all countries) | |
Anaplasmosis | Anaplasma phagocytophilum (human granulocytic anaplasmosis) | Unknown | Rhipicephalus sanguineus s.l., R. microplus (P, CR) | Dogs, bovines, equines, deer (CR, N, G) |
Borreliosis | Borrelia burgdorferi s.l. (Lyme disease) | Clinical (CR) | Ixodes c.f. boliviensis (P) | Dogs (CR) |
Borrelia sp. (tick-borne relapsing fever) | Clinical (P, G) | Ornithodoros talaje, O. rudis (P) | Armadillos, opossums (P) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, D.I.; Piche-Ovares, M.; Romero-Vega, L.M.; Wagman, J.; Troyo, A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. Insects 2022, 13, 20. https://doi.org/10.3390/insects13010020
Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A. The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. Insects. 2022; 13(1):20. https://doi.org/10.3390/insects13010020
Chicago/Turabian StyleOrtiz, Diana I., Marta Piche-Ovares, Luis M. Romero-Vega, Joseph Wagman, and Adriana Troyo. 2022. "The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America" Insects 13, no. 1: 20. https://doi.org/10.3390/insects13010020
APA StyleOrtiz, D. I., Piche-Ovares, M., Romero-Vega, L. M., Wagman, J., & Troyo, A. (2022). The Impact of Deforestation, Urbanization, and Changing Land Use Patterns on the Ecology of Mosquito and Tick-Borne Diseases in Central America. Insects, 13(1), 20. https://doi.org/10.3390/insects13010020