Conversion of Mixtures of Soybean Curd Residue and Kitchen Waste by Black Soldier Fly Larvae (Hermetia illucens L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Conversion of SCR and KW
2.3. Chemical Analysis
2.4. Processing Parameters
2.5. Calculation and Statistical Analysis
3. Results
3.1. Raw Material Properties
3.2. Survival Rate, Prepupal Rate, and Larval Production
3.3. Dry Mass Reduction, Bioconversion Rate, and FCR
3.4. Crude Protein and Crude Fat Content of BSFL
3.5. Relationship between Organic Matter Nutrients and Growth Performance of BSFL
4. Discussion
4.1. Process Performance
4.2. Co-Conversion of Different Treatment Mixtures of BSFL
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Zhu, D.; Li, K.; Yang, Y.; Lei, Z.; Zhang, Z. Soybean curd residue: Composition, utilization, and related limiting factors. ISRN Ind. Eng. 2013, 2013, 423590. [Google Scholar] [CrossRef]
- Somroo, A.A.; ur Rehman, K.; Zheng, L.; Cai, M.; Xiao, X.; Hu, S.; Mathys, A.; Gold, M.; Yu, Z.; Zhang, J. Influence of Lactobacillus buchneri on soybean curd residue co-conversion by black soldier fly larvae (Hermetia illucens) for food and feedstock production. Waste Manag. 2019, 86, 114–122. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L. Study on the comprehensive utilization of city kitchen waste as a resource in China. Energy 2019, 173, 263–277. [Google Scholar] [CrossRef]
- Sindhu, R.; Gnansounou, E.; Rebello, S.; Binod, P.; Varjani, S.; Thakur, I.S.; Nair, R.B.; Pandey, A. Conversion of food and kitchen waste to value-added products. J. Environ. Manag. 2019, 241, 619–630. [Google Scholar] [CrossRef]
- Peng, X.U.; Xian-zhong, M.U. Application and development of kitchen waste in energy production. Mod. Chem. Ind. 2016, 5, 12–16. [Google Scholar]
- Izumi, K.; Okishio, Y.K.; Nagao, N.; Niwa, C.; Yamamoto, S.; Toda, T. Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegrad. 2010, 64, 601–608. [Google Scholar] [CrossRef]
- ur Rehman, K.; Rehman, A.; Cai, M.; Zheng, L.; Xiao, X.; Somroo, A.A.; Wang, H.; Li, W.; Yu, Z.; Zhang, J. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod. 2017, 154, 366–373. [Google Scholar] [CrossRef]
- Surendra, K.C.; Olivier, R.; Tomberlin, J.K.; Jha, R.; Khanal, S.K. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew. Energ. 2016, 98, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zheng, L. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertenat, A.; Diener, S.; Zurbrügg, C. Black Soldier Fly biowaste treatment–Assessment of global warming potential. Waste Manag. 2019, 84, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Paz, A.S.P.; Carrejo, N.S.; Rodríguez, C.H.G. Effects of larval density and feeding rates on the bioconversion of vegetable waste using black soldier fly larvae Hermetia illucens (L.),(Diptera: Stratiomyidae). Waste Biomass Valorization 2015, 6, 1059–1065. [Google Scholar]
- Tomberlin, J.K.; Van Huis, A.; Benbow, M.E.; Jordan, H.; Astuti, D.A.; Azzollini, D.; Banks, I.; Bava, V.; Borgemeister, C.; Cammack, J.A.; et al. Protecting the environment through insect farming as a means to produce protein for use as livestock, poultry, and aquaculture feed. J. Insects Food Feed 2015, 1, 307–309. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.Y.; Chiu, S.L.; Lo, I.M. Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Manag. 2017, 67, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.W.; Mohd-Noor, S.N.; Wong, C.Y.; Lam, M.K.; Goh, P.S.; Beniers, J.; Oh, W.-D.; Jumbri, K.; Ghani, N.A. Palatability of black soldier fly larvae in valorizing mixed waste coconut endosperm and soybean curd residue into larval lipid and protein sources. J. Environ. Manag. 2019, 231, 129–136. [Google Scholar] [CrossRef]
- Willis, J.D.; Oppert, C.; Jurat-Fuentes, J.L. Methods for discovery and characterization of cellulolytic enzymes from insects. Insect Sci. 2010, 17, 184–198. [Google Scholar] [CrossRef]
- Palma, L.; Fernandez-Bayo, J.; Niemeier, D.; Pitesky, M.; VanderGheynst, J.S. Managing high fiber food waste for the cultivation of black soldier fly larvae. NPJ Sci. Food. 2019, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Stasiak, M.; Li, L.; Xie, B.; Fu, Y.; Gidzinski, D.; Dixon, M.; Liu, H. Rearing Tenebrio molitor in BLSS: Dietary fiber affects larval growth, development, and respiration characteristics. Acta Astronaut. 2016, 118, 130–136. [Google Scholar] [CrossRef]
- Meneguz, M.; Gasco, L.; Tomberlin, J.K. Impact of pH and feeding system on black soldier fly (Hermetia illucens, L.; Diptera: Stratiomyidae) larval development. PLoS ONE 2018, 13, e0202591. [Google Scholar]
- Ma, J.; Lei, Y.; Rehman, K.U.; Yu, Z.; Zhang, J.; Li, W.; Li, Q.; Tomberlin, J.K.; Zheng, L. Dynamic effects of initial pH of substrate on biological growth and metamorphosis of black soldier fly (Diptera: Stratiomyidae). Environ. Entomol. 2018, 47, 159–165. [Google Scholar] [CrossRef]
- ur Rehman, K.; Cai, M.; Xiao, X.; Zheng, L.; Wang, H.; Soomro, A.A.; Zhou, Y.; Li, W.; Yu, Z.; Zhang, J. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). J. Environ. Manag. 2017, 196, 458–465. [Google Scholar] [CrossRef]
- Xiao, Y.; Geng, W.; Yang, Y.; Wang, X.; Xu, X. Study on the Difference of Transformation of Livestock and Poultry Feces by Black Soldier Fly. In IOP Conference Series: Earth and Environmental Science, Proceedings of 2nd International Conference on Air Pollution and Environmental Engineering, Xi‘an, China, 15–16 December 2019; IOP Publishing: Bristol, UK, 2020; Volume 450, p. 012122. [Google Scholar]
- Zheng, L.; Hou, Y.; Li, W.; Yang, S.; Li, Q.; Yu, Z. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy 2012, 47, 225–229. [Google Scholar] [CrossRef]
- Nyakeri, E.M.; Ayieko, M.A.; Amimo, F.A.; Salum, H.; Ogola, H.J.O. An optimal feeding strategy for black soldier fly larvae biomass production and faecal sludge reduction. J. Insects Food Feed 2019, 5, 201–213. [Google Scholar] [CrossRef]
- Isibika, A.; Vinnerås, B.; Kibazohi, O.; Zurbrügg, C.; Lalander, C. Co-composting of banana peel and orange peel waste with fish waste to improve conversion by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. J. Clean. Prod. 2021, 318, 128570. [Google Scholar] [CrossRef]
- Lopes, I.G.; Lalander, C.; Vidotti, R.M.; Vinnerås, B. Using Hermetia illucens larvae to process biowaste from aquaculture production. J. Clean. Prod. 2020, 251, 119753. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Pliantiangtam, N.; Chundang, P.; Kovitvadhi, A. Growth performance, waste reduction efficiency and nutritional composition of black soldier fly (Hermetia illucens) larvae and prepupae reared on coconut endosperm and soybean curd residue with or without supplementation. Insects 2021, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zheng, L.; Qiu, N.; Cai, H.; Tomberlin, J.K.; Yu, Z. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manag. 2011, 31, 1316–1320. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Hayat, K.; Huang, M.; Liu, P.; Karangwa, E.; Gu, F.; Jia, C.; Xia, S.; Xiao, Z.; et al. Contribution of beef base to aroma characteristics of beeflike process flavour assessed by descriptive sensory analysis and gas chromatography olfactometry and partial least squares regression. J. Chromatogr. A 2010, 1217, 7788–7799. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Sun, C.; Chen, B.; Du, K.; Yu, T.; Luang-In, V.; Lu, X.; Shao, Y. Insect symbionts as valuable grist for the biotechnological mill: An alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl. Microbiol. Biot. 2018, 102, 4951–4962. [Google Scholar] [CrossRef]
- Jucker, C.; Erba, D.; Leonardi, M.G.; Lupi, D.; Savoldelli, S. Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (Diptera: Stratiomyidae) larvae. Environ. Entomol. 2017, 46, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Tschirner, M.; Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed 2015, 1, 249–259. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef] [PubMed]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental impact of food waste bioconversion by insects: Application of life cycle assessment to process using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Van Huis, A.; Van Loon, J.J.A. Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. J. Insects Food Feed 2015, 1, 131–139. [Google Scholar] [CrossRef]
- Gobbi, P.; Martinez-Sanchez, A.; Rojo, S. The effects of larval diet on adult life-history traits of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Eur. J. Entomol. 2013, 110, 461. [Google Scholar] [CrossRef]
- Cammack, J.A.; Tomberlin, J.K. The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.)(Diptera: Stratiomyidae). Insects 2017, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- El-Hack, A.; Mohamed, E.; Shafi, M.E.; Alghamdi, W.Y.; Abdelnour, S.A.; Shehata, A.M.; Noreldin, A.E.; Ashour, E.A.; Swelum, A.A.; Ragni, M. Black soldier fly (Hermetia illucens) Meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Bava, L.; Jucker, C.; Gislon, G.; Lupi, D.; Savoldelli, S.; Zucali, M.; Colombini, S. Rearing of Hermetia illucens on different organic by-products: Influence on growth, waste reduction, and environmental impact. Animals 2019, 9, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, I.; Newman, L.P.; Gill, H.; Danaher, J. The influence of food waste rearing substrates on black soldier fly larvae protein composition: A systematic review. Insects 2021, 12, 608. [Google Scholar] [CrossRef]
- Barry, T. Evaluation of the Economic, Social, and Biological Feasibility of Bioconverting Food Wastes with the Black Soldier Fly (Hermetia illucens). Ph.D. Thesis, University of North Texas, Denton, TX, USA, 2004. [Google Scholar]
- Diener, S.; Solano, N.M.S.; Gutiérrez, F.R.; Zurbrügg, C.; Tockner, K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorization. 2011, 2, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Zurbrügg, C.; Tabinda, A.B.; Ali, A.; Ashraf, A. Sustainable Waste Management at Household Level with Black Soldier Fly Larvae (Hermetia illucens). Sustainability 2021, 13, 9722. [Google Scholar] [CrossRef]
- Myers, H.M.; Tomberlin, J.K.; Lambert, B.D.; Kattes, D. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 2014, 37, 11–15. [Google Scholar] [CrossRef]
- Zhou, F.; Tomberlin, J.K.; Zheng, L.; Yu, Z.; Zhang, J. Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. J. Med. Entomol. 2013, 50, 1224–1230. [Google Scholar] [CrossRef]
- Gold, M.; Cassar, C.M.; Zurbrügg, C.; Kreuzer, M.; Boulos, S.; Diener, S.; Mathys, A. Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag. 2020, 102, 319–329. [Google Scholar] [CrossRef]
- Nyakeri, E.M.; Ogola, H.J.O.; Ayieko, M.A.; Amimo, F.A. Valorisation of organic waste material: Growth performance of wild black soldier fly larvae (Hermetia illucens) reared on different organic wastes. J. Insects Food Feed. 2017, 3, 193–202. [Google Scholar] [CrossRef]
- Manurung, R.; Supriatna, A.; Esyanthi, R.R.; Putra, R.E. Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): Optimal feed rate for biomass production. J. Entomol. Zool. Stud. 2016, 4, 1036–1041. [Google Scholar]
- Li, W.; Li, Q.; Zheng, L.; Wang, Y.; Zhang, J.; Yu, Z.; Zhang, Y. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresour. Technol. 2015, 194, 276–282. [Google Scholar] [CrossRef]
References | Feed Source | Optimal Ratio | Survival Rate (%) | Fresh Larval Mass (g) | Dry Larval Mass (g/%) | Dry Mass Reduction (%) | Bioconversion Rate (%) | Temperature (°C) | Humidity (%) |
---|---|---|---|---|---|---|---|---|---|
Present study | SCR and KW | 3:7 | 81.50–99.50 | 0.10–0.15 | 0.04–0.06 g | 32.71–58.36 | 13.04–18.54 | 28–30 | 70 |
Rehman, Rehman, Cai, Zheng, Xiao, Somroo, Wang, Li, Yu and Zhang [7] | Dairy manure and SCR | 2:3 | 89.50–98.40 | 0.06–0.10 | 21.4–26.5% | 26–72 | 6.3–15.2 | 27 | 60–70 |
Zheng, Hou, Li, Yang, Li and Yu [23] | Restaurant waste and rice straw | 7:3 | NA | NA | NA | NA | NA | 27 | 70 |
Isibika, et al. [25] | Fruit peels with fish waste | 3:1 | 66.0–99.7 | 0.14–0.18 | NA | NA | 9.4–13.8 | NA | 80 |
Rehman, Cai, Xiao, Zheng, Wang, Soomro, Zhou, Li, Yu and Zhang [21] | Dairy manure and chicken manure | 4:6 | 89.45–98.35 | 0.05–0.10 | 10.29–22.56 | 43.17–55.04 | 4.19–9.88 | 27 | 60–70 |
Lim, Mohd-Noor, Wong, Lam, Goh, Beniers, Oh, Jumbri and Ghani [15] | Waste coconut endosperm and SCR | 3:2 | NA | NA | NA | NA | NA | 28–30 | 65–70 |
Nyakeri, Ayieko, Amimo, Salum, Ogola and Feed [24] | Fecal sludge with organic waste | 7:3 | NA | NA | NA | NA | 3.07–4.67 | 28 | 65 |
Lopes, et al. [26] | Bread waste and aquaculture waste | <15:85 | 65.4–88.5 | 0.12–0.16 | NA | 41.7–46.3 | 14.9–18.1 | 28 | 45 |
Lalander, et al. [27] | Abattoir waste and fruits & veg | 1:1 | 96.3 | NA | NA | 14.5 | 14.2 | 28 | NA |
Pliantiangtam, et al. [28] | Coconut endosperm and SCR | 5:5 | NA | 0.10 | NA | NA | NA | 28 | NA |
Feeding Mixture | Water Content (%) | pH | Crude Protein (%) | Crude Fat (%) | Crude Fiber (%) | Total Carbohydrates (%) | Crude Ash (%) | TOC (%) | TN (%) | TS (%) | C/N Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
M0 | 78.63 ± 0.02 | 6.30 ± 0.21 | 25.41 ± 1.81 | 13.37 ± 0.74 | 12.34 ± 1.03 | 28.92 ± 1.12 | 10.52 ± 0.34 | 39.79 ± 1.16 | 4.41 ± 0.10 | 5.47 ± 0.09 | 9.02 ± 0.06 |
M20 | 78.87 ± 0.02 | 6.20 ± 0.20 | 24.97 ± 1.63 | 12.53 ± 0.66 | 14.30 ± 0.99 | 29.16 ± 1.14 | 9.28 ± 0.31 | 41.02 ± 1.13 | 4.25 ± 0.12 | 5.52 ± 0.09 | 9.75 ± 0.11 |
M30 | 78.99 ± 0.03 | 6.15 ± 0.18 | 24.75 ± 1.54 | 12.11 ± 0.60 | 15.29 ± 0.96 | 29.28 ± 1.15 | 8.66 ± 0.27 | 41.63 ± 1.10 | 4.17 ± 0.13 | 5.55 ± 0.09 | 10.12 ± 0.14 |
M40 | 79.11 ± 0.03 | 6.10 ± 0.15 | 24.54 ± 1.38 | 11.69 ± 0.58 | 16.27 ± 0.95 | 29.41 ± 1.16 | 8.04 ± 0.25 | 42.25 ± 1.08 | 4.09 ± 0.14 | 5.58 ± 0.09 | 10.49 ± 0.18 |
M50 | 79.23 ± 0.03 | 6.05 ± 0.13 | 24.32 ± 1.10 | 11.28 ± 0.54 | 17.26 ± 0.94 | 29.53 ± 1.18 | 7.42 ± 0.23 | 42.86 ± 1.06 | 4.01 ± 0.15 | 5.61 ± 0.10 | 10.86 ± 0.22 |
M100 | 79.84 ± 0.05 | 5.80 ± 0.11 | 23.24 ± 0.34 | 9.19 ± 0.43 | 22.18 ± 0.89 | 30.15 ± 1.22 | 4.33 ± 0.16 | 45.94 ± 0.96 | 3.62 ± 0.17 | 5.75 ± 0.11 | 12.70 ± 0.32 |
Feeding Mixture | Water Content (%) | pH | Crude Protein (%) | Crude Fat (%) | Crude Fiber (%) | Total Carbohydrates (%) | Crude Ash (%) | TOC (%) |
---|---|---|---|---|---|---|---|---|
M0 | 78.63 ± 0.02 | 6.30 ± 0.21 | 25.41 ± 1.81 | 13.37 ± 0.74 | 12.34 ± 1.03 | 28.92 ± 1.12 | 10.52 ± 0.34 | 39.79 ± 1.16 |
M20 | 78.87 ± 0.02 | 6.20 ± 0.20 | 24.97 ± 1.63 | 12.53 ± 0.66 | 14.30 ± 0.99 | 29.16 ± 1.14 | 9.28 ± 0.31 | 41.02 ± 1.13 |
M30 | 78.99 ± 0.03 | 6.15 ± 0.18 | 24.75 ± 1.54 | 12.11 ± 0.60 | 15.29 ± 0.96 | 29.28 ± 1.15 | 8.66 ± 0.27 | 41.63 ± 1.10 |
M40 | 79.11 ± 0.03 | 6.10 ± 0.15 | 24.54 ± 1.38 | 11.69 ± 0.58 | 16.27 ± 0.95 | 29.41 ± 1.16 | 8.04 ± 0.25 | 42.25 ± 1.08 |
M50 | 79.23 ± 0.03 | 6.05 ± 0.13 | 24.32 ± 1.10 | 11.28 ± 0.54 | 17.26 ± 0.94 | 29.53 ± 1.18 | 7.42 ± 0.23 | 42.86 ± 1.06 |
M100 | 79.84 ± 0.05 | 5.80 ± 0.11 | 23.24 ± 0.34 | 9.19 ± 0.43 | 22.18 ± 0.89 | 30.15 ± 1.22 | 4.33 ± 0.16 | 45.94 ± 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhou, Z.; Zhang, J.; Zhou, S.; Xiong, Q. Conversion of Mixtures of Soybean Curd Residue and Kitchen Waste by Black Soldier Fly Larvae (Hermetia illucens L.). Insects 2022, 13, 23. https://doi.org/10.3390/insects13010023
Li X, Zhou Z, Zhang J, Zhou S, Xiong Q. Conversion of Mixtures of Soybean Curd Residue and Kitchen Waste by Black Soldier Fly Larvae (Hermetia illucens L.). Insects. 2022; 13(1):23. https://doi.org/10.3390/insects13010023
Chicago/Turabian StyleLi, Xinfu, Zhihao Zhou, Jing Zhang, Shen Zhou, and Qiang Xiong. 2022. "Conversion of Mixtures of Soybean Curd Residue and Kitchen Waste by Black Soldier Fly Larvae (Hermetia illucens L.)" Insects 13, no. 1: 23. https://doi.org/10.3390/insects13010023
APA StyleLi, X., Zhou, Z., Zhang, J., Zhou, S., & Xiong, Q. (2022). Conversion of Mixtures of Soybean Curd Residue and Kitchen Waste by Black Soldier Fly Larvae (Hermetia illucens L.). Insects, 13(1), 23. https://doi.org/10.3390/insects13010023