First Evidence of Feeding-Induced RNAi in Banana Weevil via Exogenous Application of dsRNA
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Banana Weevils and Maintenance on Banana Pseudostems
2.2. Preparation of Artificial Diet
2.3. Assessing Development of Weevil Stages on Artificial Diet
2.4. Target Gene Selection and dsRNA Synthesis
2.5. Bioassay with dsRNAs with Banana Weevils on Artificial Diet
2.6. Semi-Quantitative PCR Analysis of Gene-Silencing Effect with dsRNAs
2.7. Statistical Analysis of Results
3. Results
3.1. Banana Weevil Development on Artificial Diet in Multi-Well Plates
3.2. Banana Weevils Are Sensitive for Oral RNAi with dslaccase2, Resulting in Albino Phenotype
3.3. Target Gene Selection with High and Rapid Mortality by Oral RNAi
3.4. Semi-Quantitative PCR Analysis of Gene-Silencing Effect with Dietary dsRNAs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gold, C.S. Biology and integrated pest management for the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Int. J. Pest. Manag. 2001, 6, 79–155. [Google Scholar]
- Gold, C.S.; Kagezi, G.H.; Night, G.; Ragama, P. The effects of banana weevil, Cosmopolites sordidus, damage on highland banana growth, yield and stand duration in Uganda. Ann. Appl. Biol. 2004, 145, 263–269. [Google Scholar] [CrossRef]
- Gold, C.; Night, G.; Abera, A.; Speijer, P. Hot-water treatment for the control of the banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae), in Uganda. Afr. Entomol. 1998, 6, 215–221. [Google Scholar]
- Udzu, A. Effects of Banana Weevil and Nematode Infestation on the Growth and Yield of Plantain (Mus4. Aab) in Ghana; University of Ghana: Accra, Ghana, 1997. [Google Scholar]
- Gold, C.S.; Karamura, E.B.; Kiggundu, A.; Bagamba, F.; Abera, A.M.K. Geographic shifts in the highland cooking banana (Musa spp., group AAA-EA) production in Uganda. Int. J. Sust. Dev. World Ecol. 1999, 6, 45–59. [Google Scholar] [CrossRef]
- Bosch, C.; Lorkeers, A.; Ndile, M.; Sentozi, E. Diagnostic survey: Constraints to banana productivity in Bukoba and Muleba Districts, Kagera region, Tanzania. In Tanzania/Netherlands Farming Systems Research Project. Tanzania. Working paper; FAO: Rome, Italy, 1996. [Google Scholar]
- Kema, G.H.J.; Drenth, A.; Dita, M.; Jansen, K.; Vellema, S.; Stoorvogel, J.J. Fusarium wilt of banana, a recurring threat to global banana production. Front. Plant. Sci. 2021, 11, 2177. [Google Scholar] [CrossRef] [PubMed]
- Kitavi, M.; Downing, T.; Lorenzen, J.; Karamura, D.; Onyango, M.; Nyine, M.; Ferguson, M.; Spillane, C. The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. Theor. Appl. Genet. 2016, 129, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Pearce, F. The sterile banana. Conserv. Manag. 2008, 9. Available online: https://www.conservationmagazine.org/2008/09/the-sterile-banana/ (accessed on 1 September 2021).
- Ehler, L.E. Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest. Manag. Sci. 2006, 62, 787–789. [Google Scholar] [CrossRef] [PubMed]
- Wearing, C. Evaluating the IPM implementation process. Annu. Rev. Entomol. 1988, 33, 17–38. [Google Scholar] [CrossRef]
- Shankar, U. Integrated Pest Management in Banana; New India Publishing Agency: New Delhi, India, 2016; pp. 329–349. [Google Scholar]
- Koppenhfer, A.M.; Reddy, K.V.S.; Sikora, R.A. Reduction of banana weevil populations with pseudostem traps. Int. J. Pest. Manag. 1994, 40, 300–304. [Google Scholar]
- Masanza, M. Effect of Crop Sanitation on Banana Weevil (Cosmopolites sordidus) Populations and Associated Damage. Ph. D. Thesis, Wageningen University and Research Centre, Wageningen, The Netherlands, 2003. [Google Scholar]
- Bryan, M.D.; Dysart, R.J.; Burger, T.L. Releases of introduced parasites of the alfalfa weevil in the United States, 1957–1988. In Miscellaneous publication/United States Department of Agriculture Animal and Plant Health Inspection Service (USA); FAO: Rome, Italy, 1993. [Google Scholar]
- Villani, M.; Wright, R.J. Entomogenous nematodes as biological control agents of European chafer and Japanese beetle (Coleoptera: Scarabaeidae) larvae infesting turfgrass. J. Econ. Entomol. 1988, 81, 484–487. [Google Scholar] [CrossRef] [Green Version]
- Tresson, P.; Tixier, P.; Puech, W.; Carval, D. The challenge of biological control of Cosmopolites sordidus Germar (Col. Curculionidae): A review. J. Appl. Entomol. 2021, 145, 171–181. [Google Scholar] [CrossRef]
- Waterhouse, D.; Norris, K. Biological Control: Pacific Prospects; Inkata Press: Melbourne, Australia, 1987. [Google Scholar]
- Roche, R.; Abreu, S. Control of the banana weevil (Cosmopolites sordidus) by the ant Tetramorium guineense. Cienc. Agricult. 1983, 17, 41–49. [Google Scholar]
- Castiñeiras, A.; Ponce, E. Efectividad de la utilización de Pheidole megacephala (Hymenoptera: Formicidae) en la lucha biológica contra Cosmopolites sordidus (Coleoptera: Curculionidae); Instituto de Investigaciones en Sanidad Vegetal (INISAV), Cuba: La Habana, Kuba, 1991. [Google Scholar]
- Abera, M.; Gold, C.S.; Van Driesche, R. Experimental evaluation of the impacts of two ant species on banana weevil in Uganda. Biol. Control. 2008, 46, 147–157. [Google Scholar] [CrossRef]
- Tinzaara, W.; Emudong, P.; Nankinga, C.; Tushemereirwe, W.; Kagezi, G.; Gold, C.; Dicke, M.; Van Huis, A.; Karamura, E. Enhancing dissemination of Beauveria bassiana with host plant base incision trapfor the management of the banana weevil Cosmopolites sordidus. Afr. J. Agricult. Res. 2015, 10, 3878–3884. [Google Scholar] [CrossRef] [Green Version]
- Magara, E.; Nankinga, C.; Gold, C.; Kyamanywa, S.; Ragama, P.; Tushemereirwe, W.; Moore, D.; Gowen, S.R. Efficacy of Beauveria bassiana substrates and formulations for the control of banana weevil. Uganda. J. Agricult. Sci. 2004, 9, 900–905. [Google Scholar]
- Buffington, E.J.; McDonald, S.K. Banned and Severely Restricted Pesticides; Colorado Environmental Pesticide Education Program: Fort Collins, CO, USA, 2006. [Google Scholar]
- PAN International Consolidated List of Banned Pesticides. 2019. Available online: https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (accessed on 1 September 2021).
- World Health Organization. Public Health Impact of Pesticides Used in Agriculture; World Health Organization: Rome, Italy, 1990. [Google Scholar]
- Collins, P.J.; Treverrow, N.L.; Lambkin, T.M. Organophosphorus insecticide resistance and its management in the banana weevil borer, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), in Australia. Crop. Prot. 1991, 10, 215–221. [Google Scholar] [CrossRef]
- Valencia, A.; Wang, H.; Soto, A.; Aristizabal, M.; Arboleda, J.W.; Eyun, S.-I.; Noriega, D.D.; Siegfried, B. Pyrosequencing the midgut transcriptome of the banana weevil Cosmopolites Sordidus (Germar) (Coleoptera: Curculionidae) reveals multiple protease-like transcripts. PLoS ONE 2016, 11, e0151001. [Google Scholar] [CrossRef]
- Gold, C.S.; Messiaen, S. Musa Pest Fact Sheet on the Banana Weevil Cosmopolites Sordidus; INIBAP: Montpellier, France, 2000; p. 4. [Google Scholar]
- Kiggundu, A.; Gold, C.S.; Labuschagne, M.T.; Vuylsteke, D.; Louw, S.J.E. Levels of host plant resistance to banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), in African Musa germplasm. Euphytica 2003, 133, 267–277. [Google Scholar] [CrossRef]
- Mansoor, S.; Amin, I.; Hussain, M.; Zafar, Y.; Briddon, R.W. Engineering novel traits in plants through RNA interference. Trends Plant Sci. 2006, 11, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-W. RNA-based antiviral immunity. Nat. Rev. Immunol. 2010, 106, 32–44. [Google Scholar] [CrossRef]
- Taning, C.N.T.; Mezzetti, B.; Kleter, G.; Smagghe, G.; Baraldi, E. Does RNAi-based technology fit within EU sustainability goals? Trends Biotechnol. 2020, 39, 644–647. [Google Scholar] [CrossRef]
- De, A.; Bose, R.; Kumar, A.; Mozumdar, S. Worldwide pesticide use. In Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles; Springer: New Delhi, India, 2014; pp. 5–6. [Google Scholar]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Cleaner Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Dubelman, S.; Fischer, J.; Zapata, F.; Huizinga, K.; Jiang, C.; Uffman, J.; Levine, S.; Carson, D. Environmental fate of double-stranded RNA in agricultural soils. PLoS ONE 2014, 9, e93155. [Google Scholar] [CrossRef] [PubMed]
- Zotti, M.; Dos Santos, E.A.; Cagliari, D.; Christiaens, O.; Taning, C.N.T.; Smagghe, G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag. Sci. 2018, 741239–741250. [Google Scholar] [CrossRef]
- Taning, C.N.T.; Gui, S.; De Schutter, K.; Jahani, M.; Castellanos, N.L.; Christiaens, O.; Smagghe, G. A sequence complementarity-based approach for evaluating off-target transcript knockdown in Bombus terrestris, following ingestion of pest-specific dsRNA. J. Pest Sci. 2021, 94, 487–503. [Google Scholar] [CrossRef]
- Ghag, S.B.; Shekhawat, U.K.; Ganapathi, T.R. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol. J. 2014, 12, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, U.K.S.; Ganapathi, T.R.; Hadapad, A.B. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J. Gen. Virol. 2012, 93, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Willow, J.; Soonvald, L.; Sulg, S.; Kaasik, R.; Silva, A.I.; Taning, C.N.T.; Christiaens, O.; Smagghe, G.; Veromann, E. First evidence of bud feeding-induced RNAi in a crop pest via exogenous application of dsRNA. Insects 2020, 11, 769. [Google Scholar] [CrossRef]
- Laudani, F.; Strano, C.P.; Edwards, M.G.; Malacrinò, A.; Campolo, O.; Halim, H.M.A.E.; Gatehouse, A.M.; Palmeri, V. RNAi-mediated gene silencing in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Open Life Sci. 2017, 122, 14–22. [Google Scholar] [CrossRef]
- Wu, K.; Taylor, C.E.; Pinheiro, D.H.; Skelley, L.H.; McAuslane, H.J.; Siegfried, B.D. Lethal RNA interference response in the pepper weevil. J. Appl. Entomol. 2019, 143, 699–705. [Google Scholar] [CrossRef]
- Ocimati, W.; Kiggundu, A.; Bailey, A.; Niblett, C.; Pedun, H.; Tazuba, A. Suppression of the ubiquitin E2 gene through RNA interference causes mortality in the banana weevil, Cosmopolites sordidus (Germar). In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): IX 1114, Brisbane, Australia, 25 November 2016; Available online: https://www.ishs.org/ishs-article/1114_25 (accessed on 1 September 2021).
- Jekayinoluwa, T.; Tripathi, L.; Tripathi, J.N.; Ntui, V.O.; Obiero, G.; Muge, E.; Dale, J. RNAi technology for management of banana bunchy top disease. Food Energy Sec. 2020, 9, e247. [Google Scholar] [CrossRef]
- Cuillé, J. Recherches sur le charancon du bananier (Cosmopolites sordidus, Germ: SDTC; 1950. Available online: https://agritrop.cirad.fr/471368/1/ID471368.pdf (accessed on 1 September 2021).
- Beccari, F. Contributo alla conoseenza del Cosmopolites sordidus Ger. (Coleoptera: Curculionidae), parte I-II. Rev. Agric. Subtrop. 1967, 61, 51–93, 131–150. [Google Scholar]
- Koppenhöfer, A. Observations on egg-laying behaviour of the banana weevil, Cosmopolites sordidus (Germar). Entomol. Exp. Appl. 1993, 68, 187–192. [Google Scholar] [CrossRef]
- Levy-Booth, D.J.; Campbell, R.G.; Gulden, R.H.; Hart, M.M.; Powell, J.R.; Klironomos, J.N.; Pauls, K.P.; Swanton, C.J.; Trevors, J.T.; Dunfield, K.E. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 2007, 39, 2977–2991. [Google Scholar] [CrossRef]
- Blum, S.A.; Lorenz, M.G.; Wackernagel, W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst. Appl. Microb. 1997, 205, 13–21. [Google Scholar] [CrossRef]
- Bakaze, E.; Kiggundu, A.; Tushemereirwe, W. Use of artificial diets with plant material to evaluate banana cultivars for resistance to Cosmopolites sordidus. Uganda J. Agric. Sci. 2018, 18, 103–109. [Google Scholar] [CrossRef]
- Prentice, K.; Pertry, I.; Christiaens, O.; Bauters, L.; Bailey, A.; Niblett, C.; Ghislain, M.; Gheysen, G.; Smagghe, G. Transcriptome analysis and systemic RNAi response in the African sweet potato weevil (Cylas puncticollis, Coleoptera, Brentidae). PLoS ONE 2015, 10, e0115336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longoria, A.G.G. Diferencias Sexuales en la Morfologia Externa de Cosmopolites Sordidus Germar (Coleoptera, Curculionidae); Centro de Información Cientifica y Técnica, Universidad de La Habana: La Habana, Cuba, 1968; p. 11. [Google Scholar]
- Ekobu, M.; Solera, M.; Kyamanywa, S.; Mwanga, R.O.; Odongo, B.; Ghislain, M.; Moar, W.J. Toxicity of seven Bacillus thuringiensis Cry proteins against Cylas puncticollis and Cylas brunneus (Coleoptera: Brentidae) using a novel artificial diet. J. Econ. Entomol. 2010, 103, 1493–1502. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Z.; Zhou, Y. Book of Insect Artificial Food; Shanghai Science and Technology Press: Shanghai, China, 1986. [Google Scholar]
- Willis, R.; Allen, P. Measurement of amorphous ferric phosphate to assess iron bioavailability in diets and diet ingredients. Analyst 1999, 124, 425–430. [Google Scholar] [CrossRef]
- Mezzetti, B.; Smagghe, G.; Arpaia, S.; Christiaens, O.; Dietz-Pfeilstetter, A.; Jones, H.; Kostov, K.; Sabbadini, S.; Opsahl-Sorteberg, H.G.; Ventura, V.; et al. RNAi: What is its position in agriculture? J. Pest. Sci. 2020, 93, 1125–1130. [Google Scholar] [CrossRef]
- Christiaens, O.; Prentice, K.; Pertry, I.; Ghislain, M.; Bailey, A.; Niblett, C.; Gheysen, G.; Smagghe, G. RNA interference: A promising biopesticide strategy against the African sweet potato weevil Cylas brunneus. Sci. Rep. 2016, 6, 38836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, J.A.; Bogaert, T.; Clinton, W.; Heck, G.R.; Feldmann, P.; Ilagan, O.; Johnson, S.; Plaetinck, G.; Munyikwa, T.; Pleau, M.; et al. Control of coleopteran insect pests through RNA interference. Nat. Biotech. 2007, 25, 1322–1326. [Google Scholar] [CrossRef]
- Bolognesi, R.; Ramaseshadri, P.; Anderson, J.; Bachman, P.; Clinton, W.; Flannagan, R.; Ilagan, O.; Lawrence, C.; Levine, S.; Moar, W.; et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS ONE 2012, 7, e47534. [Google Scholar] [CrossRef]
- Li, H.; Khajuria, C.; Rangasamy, M.; Gandra, P.; Fitter, M.; Geng, C.; Woosely, A.; Hasler, J.; Schulenberg, G.; Worden, S.; et al. Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults. J. Appl. Entomol. 2015, 139, 432–445. [Google Scholar] [CrossRef]
- Arakane, Y.; Muthukrishnan, S.; Beeman, R.W.; Kanost, M.R.; Kramer, K.J. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc. Natl. Acad. Sci. USA 2005, 102, 11337–11342. [Google Scholar] [CrossRef] [Green Version]
- Prentice, K.; Christiaens, O.; Pertry, I.; Bailey, A.; Niblett, C.; Ghislain, M.; Gheysen, G.; Smagghe, G. RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae). Pest Manag. Sci. 2017, 73, 44–52. [Google Scholar] [CrossRef]
- Sharma, R.; Christiaens, O.; Taning, C.N.T.; Smagghe, G. RNAi-mediated mortality in southern green stinkbug Nezara viridula by oral delivery of dsRNA. Pest Manag. Sci. 2021, 77, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, S.; Sewart, K.; Windecker, H.; Langegger, M.; Schmidt, N.; Hustedt, N.; Hauf, S. Mad1 contribution to spindle assembly checkpoint signalling goes beyond presenting Mad2 at kinetochores. EMBO Rep. 2014, 15291–15298. [Google Scholar]
- Emre, D.; Terracol, R.; Poncet, A.; Rahmani, Z.; Karess, R.E. A mitotic role for Mad1 beyond the spindle checkpoint. J. Cell. Sci. 2011, 124, 1664–1671. [Google Scholar] [CrossRef] [Green Version]
- Forgac, M. Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell. Biol. 2007, 8, 917–929. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, P.; Liu, C.; Zeng, F. Co-silence of the coatomer beta and v-ATPase A genes by siRNA feeding reduces larval survival rate and weight gain of cotton bollworm, Helicoverpa armigera. Pestic. Biochem. Physiol. 2015, 118, 71–76. [Google Scholar] [CrossRef]
- Xiao, D.; Liang, X.; Gao, X.; Yao, J.; Zhu, K.Y. The lethal giant larvae gene in Tribolium castaneum: Molecular properties and roles in larval and pupal development as revealed by RNA interference. Int. J. Mol. Sci. 2014, 15, 6880–6896. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Latek, R.; Hossbach, M.; Tuschl, T.; Lewitter, F. siRNA Selection Server: An automated siRNA oligonucleotide prediction server. Nucleic Acids Res. 2004, 32, W130–W134. [Google Scholar] [CrossRef]
- Sarathi, M.; Simon, M.C.; Ahmed, V.I.; Kumar, S.R.; Hameed, A.S. Silencing VP28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA. Marine Biotech. 2008, 10198–10206. [Google Scholar] [CrossRef] [PubMed]
- Taning, C.N.T.; Christiaens, O.; Berkvens, N.; Casteels, H.; Maes, M.; Smagghe, G. Oral RNAi to control Drosophila suzukii: Laboratory testing against larval and adult stages. J. Pest Sci. 2016, 89, 803–814. [Google Scholar] [CrossRef]
- Nwokeoji, A.O.; Kilby, P.M.; Portwood, D.E.; Dickman, M.J. Accurate quantification of nucleic acids using hypochromicity measurements in conjunction with UV spectrophotometry. Anal. Chem. 2017, 89, 13567–13574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Night, G.; Gold, C.; Power, A. Feeding behaviour and efficiency of banana weevil (Cosmopolites sordidus) larvae on banana cultivars of varying resistance levels. J. Appl. Entomol. 2011, 135, 430–437. [Google Scholar] [CrossRef]
- Pinheiro, D.H.; Taylor, C.E.; Wu, K.; Siegfried, B.D. Delivery of gene-specific dsRNA by microinjection and feeding induces RNAi response in Sri Lanka weevil, Myllocerus undecimpustulatus undatus Marshall. Pest Manag. Sci. 2020, 76, 936–943. [Google Scholar] [CrossRef]
- Christiaens, O.; Whyard, S.; Vélez, A.M.; Smagghe, G. Double-stranded RNA technology to control insect pests: Current status and challenges. Front. Plant Sci. 2020, 11, 451. [Google Scholar] [CrossRef]
- Ramaseshadri, P.; Segers, G.; Flannagan, R.; Wiggins, E.; Clinton, W.; Ilagan, O.; McNulty, B.; Clark, T.; Bolognesi, R. Physiological and cellular responses caused by RNAi-mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera virgifera) larvae. PLoS ONE 2013, 8, e54270. [Google Scholar]
- Wu, K.; Taylor, C.E.; Fishilevich, E.; Narva, K.E.; Siegfried, B.D. Rapid and persistent RNAi response in western corn rootworm adults. Pest. Biochem. Physiol. 2018, 150, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachman, P.M.; Bolognesi, R.; Moar, W.J.; Mueller, G.M.; Paradise, M.S.; Ramaseshadri, P.; Tan, J.; Uffman, J.P.; Warren, J.; Wiggins, B.E.; et al. Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Res. 2013, 22, 1207–1222. [Google Scholar] [CrossRef] [Green Version]
- Christiaens, O.; Sweet, J.; Dzhambazova, T.; Urru, I.; Smagghe, G.; Kostov, K.; Arpaia, S. Implementation of RNAi-based arthropod pest control: Environmental risks, potential for resistance and regulatory considerations. J. Pest Sci. 2021. [Google Scholar] [CrossRef]
- De Schutter, K.; Taning, C.N.T.; Van Daele, L.; Van Damme, E.J.M.; Dubruel, P.; Smagghe, G. RNAi-based biocontrol products: Market status, regulatory aspects and risk assessment. Front. Insect Sci. 2021. [Google Scholar] [CrossRef]
- Huvenne, H.; Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J. Insect Physiol. 2010, 56, 227–235. [Google Scholar] [CrossRef]
- Niu, Q.-W.; Lin, S.-S.; Reyes, J.L.; Chen, K.-C.; Wu, H.-W.; Yeh, S.-D.; Chua, N.H. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotech. 2006, 24, 1420–1428. [Google Scholar] [CrossRef]
- Nunes, C.C.; Dean, R.A. Host-induced gene silencing: A tool for understanding fungal host interaction and for developing novel disease control strategies. Mol. Plant Pathol. 2012, 13, 519–529. [Google Scholar] [CrossRef]
- Yoder, J.I.; Gunathilake, P.; Wu, B.; Tomilova, N.; Tomilov, A.A. Engineering host resistance against parasitic weeds with RNA interference. Pest Manag. Sci. 2009, 65, 460–466. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Quantity Per Liter |
---|---|
Agar | 20 g |
Corm powder | 80 g |
Dextrose | 10 g |
Cellulose | 14.4 g |
Casein | 21.6 g |
Yeast extract | 9.0 g |
Wesson’s salt mixture * | 2.7 g |
Ascorbic acid | 1.8 g |
Stigmasterol | 0.7 g |
Nipagin | 0.675 g |
Potassium sorbet | 0.675 g |
Inositol | 0.36 g |
Chlorine chloride | 0.45 g |
B-vitamin mixture | 0.045 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwaka, H.S.; Christiaens, O.; Bwesigye, P.N.; Kubiriba, J.; Tushemereirwe, W.K.; Gheysen, G.; Smagghe, G. First Evidence of Feeding-Induced RNAi in Banana Weevil via Exogenous Application of dsRNA. Insects 2022, 13, 40. https://doi.org/10.3390/insects13010040
Mwaka HS, Christiaens O, Bwesigye PN, Kubiriba J, Tushemereirwe WK, Gheysen G, Smagghe G. First Evidence of Feeding-Induced RNAi in Banana Weevil via Exogenous Application of dsRNA. Insects. 2022; 13(1):40. https://doi.org/10.3390/insects13010040
Chicago/Turabian StyleMwaka, Henry Shaykins, Olivier Christiaens, Priver Namanya Bwesigye, Jerome Kubiriba, Wilberforce Kateera Tushemereirwe, Godelieve Gheysen, and Guy Smagghe. 2022. "First Evidence of Feeding-Induced RNAi in Banana Weevil via Exogenous Application of dsRNA" Insects 13, no. 1: 40. https://doi.org/10.3390/insects13010040
APA StyleMwaka, H. S., Christiaens, O., Bwesigye, P. N., Kubiriba, J., Tushemereirwe, W. K., Gheysen, G., & Smagghe, G. (2022). First Evidence of Feeding-Induced RNAi in Banana Weevil via Exogenous Application of dsRNA. Insects, 13(1), 40. https://doi.org/10.3390/insects13010040