Trichogramma ostriniae Is More Effective Than Trichogramma dendrolimi As a Biocontrol Agent of the Asian Corn Borer, Ostrinia furnacalis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Parasitoids
2.2. Host
Ostrinia furnacalis
2.3. Impact of ACB Egg Age on the Biological Parameters of T. dendrolimi and T. ostriniae
2.4. Statistical Analysis
3. Results
3.1. Impact of Host Age on T. dendrolimi and T. ostriniae Parasitization
3.2. Impact of Host Age on the Parasitoid Emergence, Development, and Female Sex Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Afidchao, M.M.; Musters, C.J.M.; de Snoo, G.R. Asian corn borer (ACB) and non-ACB pests in GM corn (Zea mays L.) in the Philippines. Pest Manag. Sci. 2013, 69, 792–801. [Google Scholar] [CrossRef]
- Iqbal, A.; Chen, Y.-M.; Hou, Y.-Y.; Ruan, C.-C.; Desneux, N.; Khan, M.Q.; Zang, L.-S. Rearing Trichogramma ostriniae on the factitious host Antheraea pernyi via multiparasitism with Trichogramma chilonis facilitates enhanced biocontrol potential against Ostrinia furnacalis. Biol. Control 2021, 156, 104567. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Smagghe, G.; Stark, J.D.; Desneux, N. Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 2016, 61, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Tang, Q.; Li, Y.; Campos, M.; Liang, P.; Gao, X. Widespread resistance of the aphid Myzus persicae to pirimicarb across China, and insights on ace2 mutation frequency in this species. Entomol. Gen. 2017, 36, 285–299. [Google Scholar]
- Wang, X.; Xu, X.; Ullah, F.; Ding, Q.; Gao, X.; Desneux, N.; Song, D. Comparison of full-length transcriptomes of different imidacloprid-resistant strains of Rhopalosiphum padi (Linné). Entomol. Gen. 2021, 41, 289–304. [Google Scholar] [CrossRef]
- Pires Paula, D.; Lozano, R.E.; Menger, J.P.; Andow, D.A.; Koch, R.L. Identification of point mutations related to pyrethroid resistance in voltage-gated sodium channel genes in Aphis glycines. Entomol. Gen. 2021, 41, 243–255. [Google Scholar] [CrossRef]
- Hoppin, J.A.; LePrevost, C.E.; Coll, M.; Wajnberg, E. Pesticides and human health. In Environmental Pest Management: Challenges for Agronomists, Ecologists, Economists and Policymakers; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 251–273. [Google Scholar]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, X.; Zhang, Z.; Liu, F.; Mu, W. Lethal and sublethal impact of sulfoxaflor on three species of Trichogramma parasitoid wasps (Hymenoptera: Trichogrammatidae). Biol. Control 2019, 134, 32–37. [Google Scholar] [CrossRef]
- Menail, A.H.; Boutefnouchet-Bouchema, W.F.; Haddad, N.; Taning, N.T.C.; Smagghe, G.; Loucif-Ayad, W. Effects of thiamethoxam and spinosad on the survival and hypopharyngeal glands of the African honey bee (Apis mellifera intermissa). Entomol. Gen. 2020, 40, 207–215. [Google Scholar] [CrossRef]
- Luo, S.; Naranjo, S.E.; Wu, K. Biological control of cotton pests in China. Biol. Control 2014, 68, 6–14. [Google Scholar] [CrossRef]
- Zang, L.-S.; Wang, S.; Zhang, F.; Desneux, N. Biological control with Trichogramma in China: History, present status, and perspectives. Annu. Rev. Entomol. 2021, 66, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M. Biological control with Trichogramma: Advances, successes, and potential of their use. Annu. Rev. Entomol. 1996, 41, 375–406. [Google Scholar] [CrossRef]
- Desneux, N.; Wajnberg, E.; Wyckhuys, K.A.G.; Burgio, G.; Arpaia, S.; Narváez-Vasquez, C.A.; González-Cabrera, J.; Ruescas, D.C.; Tabone, E.; Frandon, J. Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J. Pest Sci. 2010, 83, 197–215. [Google Scholar] [CrossRef]
- Tabone, E.; Bardon, C.; Desneux, N.; Wajnberg, E. Parasitism of different Trichogramma species and strains on Plutella xylostella L. on greenhouse cauliflower. J. Pest Sci. 2010, 83, 251–256. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.C.; Du, W.M.; Zang, L.S.; Ruan, C.C.; Zhang, J.J.; Zou, Z.; Monticelli, L.S.; Harwood, J.D.; Desneux, N. Multi-parasitism: A promising approach to simultaneously produce Trichogramma chilonis and T. dendrolimi on eggs of Antheraea pernyi. Entomol. Gen. 2021, 41, 627–636. [Google Scholar] [CrossRef]
- El-Arnaouty, S.A.; Pizzol, J.; Galal, H.H.; Kortam, M.N.; Afifi, A.I.; Beyssat, V.; Desneux, N.; Biondi, A.; Heika, I.H. Assessment of two Trichogramma species for the control of Tuta absoluta in North African tomato greenhouses. Afr. Entomol. 2014, 22, 801–809. [Google Scholar] [CrossRef]
- Wang, P.; Li, M.-J.; Bai, Q.-R.; Ali, A.; Desneux, N.; Dai, H.-J.; Zang, L.-S. Performance of Trichogramma japonicum as a vector of Beauveria bassiana for parasitizing eggs of rice striped stem borer, Chilo suppressalis. Entomol. Gen. 2021, 41, 147–155. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Ren, B.-Z.; Yuan, X.-H.; Zang, L.-S.; Ruan, C.-C.; Sun, G.-Z.; Shao, X.-W. Effects of host-egg ages on host selection and suitability of four Chinese Trichogramma species, egg parasitoids of the rice striped stem borer, Chilo suppressalis. BioControl 2014, 59, 159–166. [Google Scholar] [CrossRef]
- Huang, N.-X.; Jaworski, C.; Desneux, N.; Zhang, F.; Yang, P.-Y.; Wang, S. Long-term, large-scale releases of Trichogramma promote pesticide decrease in maize in northeastern China. Entomol. Gen. 2020, 40, 331–335. [Google Scholar] [CrossRef]
- Wang, Z.; He, K.; Yan, S. Large-scale augmentative biological control of Asian corn borer using Trichogramma in China: A success story. In Proceedings of the Second International Symposium on Biological Control of Arthropods, Davos, Switzerland, September 12–16 2005; Volume 1216, p. 487494. [Google Scholar]
- Wang, Z.-Y.; He, K.-L.; Zhang, F.; Lu, X.; Babendreier, D. Mass rearing and release of Trichogramma for biological control of insect pests of corn in China. Biol. Control 2014, 68, 136–144. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; He, K.-L.; Zhao, J.-Z.; Zhou, D.-R. Integrated pest management in China. In Integrated Pest Management in the Global Arena; CABI Publishing: Wallingford/Cambridge, UK, 2003; pp. 197–207. [Google Scholar] [CrossRef]
- Yang, C.; Wang, C.; Zheng, Y.; Fu, B.; Na, C.; Su, X. Sustained effects of Trichogramma dendrolimi on Ostrinia furnacalis. J. Maize Sci. 2011, 19, 139–142. [Google Scholar]
- Wyckhuys, K.A.G. Parasitism of the soybean aphid, Aphis glycines, by Binodoxys communis (Hymenoptera: Braconidae): The role of aphid defensive behavior and parasitoid reproductive performance. Bull. Entomol. Res. 2008, 98, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Desneux, N.; Blahnik, R.; Delebecque, C.J.; Heimpel, G.E. Host phylogeny and specialisation in parasitoids. Ecol. Lett. 2012, 15, 453–460. [Google Scholar] [CrossRef]
- Van Driesche, R.G.; Reardon, R. Assessing Host Ranges for Parasitoids and Predators Used for Classical Biological Control: A Guide to Best Practice; United States Department of Agriculture Forest Health Technology Enterprise Team: Morgantown, WV, USA, 2004; p. 243. [Google Scholar]
- Heimpel, G.E.; Mills, N.J. Biological Control; Cambridge University Press: Cambridge, UK, 2017; ISBN 0521845149. [Google Scholar]
- Monticelli, L.S.; Nguyen, L.T.H.; Amiens-Desneux, E.; Luo, C.; Lavoir, A.; Gatti, J.; Desneux, N. The preference–performance relationship as a means of classifying parasitoids according to their specialization degree. Evol. Appl. 2019, 12, 1626–1640. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-S.; Zhang, G.-M.; Zhang, F. Factors influencing parasitism of Trichogramma dendrolimi on eggs of the Asian corn borer, Ostrinia furnacalis. BioControl 1998, 43, 273–287. [Google Scholar] [CrossRef]
- Pinto, J.D. Novel taxa of Trichogramma from the new world Tropics and Australia (Hymenoptera: Trichogrammatidae). J. New York Entomol. Soc. 1992, 100, 621–633. [Google Scholar]
- Stouthamer, R.; Hu, J.; van Kan, F.J.P.M.; Platner, G.R.; Pinto, J.D. The utility of internally transcribed spacer 2 DNA sequences of the nuclear ribosomal gene for distinguishing sibling species of Trichogramma. BioControl 1999, 43, 421–440. [Google Scholar] [CrossRef]
- Li, X.; Lei, Q.; Hua, H.; Song, H.; Wang, S.; Ramirez-Romero, R.; Li, J.; Li, Y. Impact of host suitability on oviposition preference toward fertilized and unfertilized host eggs in two Trichogramma parasitoid species. Entomol. Gen. 2019, 39, 313–323. [Google Scholar] [CrossRef]
- Li, Y.X.; Dai, H.G.; Jiang, J.L.; Fu, W.J.; Sun, Z.C. Comparison study of suitability of Ostrinia furnacalis egg for three Trichogramma species. J. Nanjing Agric. Univ. 2002, 25, 35–38. [Google Scholar]
- Feng, J.G. The effect and influence factors on the use of Trichogramma dendrolimi to control Ostrinia furnacalis. Entomol. J. East China 1996, 39, 45–50. [Google Scholar]
- Zhang, Z.L.; Huang, R.S.; Zhu, Y.; Wang, S.Q.; Kang, Z.J.; Pan, Y.C.; Yin, Y.H.; Zhang, W.S.; Yun, X.Q.; Sun, A.H. Primary study on controlling Ostrinia furnacalis by using Trichogramma ostriniae. Chin. Bull. Entomol. 1979, 16, 207–210. [Google Scholar]
- Zhang, J.; Wang, J.L.; Cong, B.; Yang, C.C. A faunal study of Trichogramma (Hym.: Trichogrammatidae) species on Ostrinia furnacalis (Lep.: Pyralidae) in China. Chin. J. Biol. Control 1990, 6, 49–53. [Google Scholar]
- Vinson, S.B. Host selection by insect parasitoids. Annu. Rev. Entomol. 1976, 21, 109–133. [Google Scholar] [CrossRef]
- Pak, G.A.; Buis, H.; Heck, I.C.C.; Hermans, M.L.G. Behavioural variations among strains of Trichogramma spp.: Host-age selection. Entomol. Exp. Appl. 1986, 40, 247–258. [Google Scholar] [CrossRef]
- Pak, G.A.; Van Dalen, A.; Kaashoek, N.; Dijkman, H. Host egg chorion structure influencing host suitability for the egg parasitoid Trichogramma Westwood. J. Insect Physiol. 1990, 36, 869–875. [Google Scholar] [CrossRef]
- Hou, Y.-Y.; Yang, X.; Zang, L.-S.; Zhang, C.; Monticelli, L.S.; Desneux, N. Effect of oriental armyworm Mythimna separata egg age on the parasitism and host suitability for five Trichogramma species. J. Pest Sci. 2018, 91, 1181–1189. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, Y.-F.; Song, Q.-T.; Zhang, F.; Li, Y.-X. The suitability of Ostrinia furnacalis (Lepidoptera: Crambidae) eggs for Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae) can be changed by T. ostriniae. Appl. Entomol. Zool. 2014, 49, 265–272. [Google Scholar] [CrossRef]
- Pizzol, J.; Desneux, N.; Wajnberg, E.; Thiéry, D. Parasitoid and host egg ages have independent impact on various biological traits in a Trichogramma species. J. Pest Sci. 2012, 85, 489–496. [Google Scholar] [CrossRef]
- Song, L.-W.; Wen, X.-Y.; Zang, L.-S.; Ruan, C.-C.; Shi, S.-S.; Shao, X.-W.; Zhang, F. Parasitism and suitability of different egg ages of the Leguminivora glycinivorella (Lepidoptera: Tortricidae) for three indigenous Trichogramma species. J. Econ. Entomol. 2015, 108, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Pizzol, J.; Pintureau, B.; Khoualdia, O.; Desneux, N. Temperature-dependent differences in biological traits between two strains of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). J. Pest Sci. 2010, 83, 447–452. [Google Scholar] [CrossRef]
- Thiéry, D.; Desneux, N. Host plants of the polyphagous grape berry moth Lobesia botrana during larval stage modulate moth egg quality and subsequent parasitism by the parasitoid Trichogramma cacoeciae. Entomol. Gen. 2018, 38, 47–59. [Google Scholar] [CrossRef]
- Guo, X.; Di, N.; Chen, X.; Zhu, Z.; Zhang, F.; Tang, B.; Dai, H.; Li, J.; Guo, R.; Wang, S. Performance of Trichogramma pintoi when parasitizing eggs of the oriental fruit moth Grapholita molesta. Entomol. Gen. 2019, 239–249. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, M.; Hou, Y.-Y.; Yang, X.; Dai, H.; Li, J.; Zang, L.-S. Impact of egg deposition period on the timing of adult emergence in Trichogramma parasitoids. Entomol. Gen. 2019, 39, 339–346. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, X.; Monticelli, L.S.; Zhang, F.; Desneux, N.; Huijie, D.; Ramirez-Romero, R.; Wang, S. Parasitism performance of the parasitoid Trichogramma dendrolimi on the plum fruit moth Grapholitha funebrana. Entomol. Gen. 2020, 40, 385–395. [Google Scholar] [CrossRef]
- Hoffmann, M.P.; Ode, P.R.; Walker, D.L.; Gardner, J.; van Nouhuys, S.; Shelton, A.M. Performance of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) reared on factitious hosts, including the target host, Ostrinia nubilalis (Lepidoptera: Crambidae). Biol. Control 2001, 21, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zou, Z.-P.; Hou, Y.-Y.; Yang, X.; Wang, S.; Dai, H.-J.; Xu, Y.-Y.; Zang, L.-S. Manually-extracted unfertilized eggs of Chinese oak silkworm, Antheraea pernyi, enhance mass production of Trichogramma parasitoids. Entomol. Gen. 2020, 40, 397–406. [Google Scholar] [CrossRef]
- Huang, S.S.; Zang, L.S.; Ruan, C.C. Parasitization Ecology, Mass Production, and Application of Trichogramma; Science Press: Beijing, China, 2013. [Google Scholar]
- Zhang, J.; Zhang, X.; Zang, L.; Du, W.; Hou, Y.; Ruan, C.; Desneux, N. Advantages of diapause in Trichogramma dendrolimi mass production on eggs of the Chinese silkworm, Antheraea pernyi. Pest Manag. Sci. 2018, 74, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Hou, Y.-Y.; Chen, Y.-M.; Ali, A.; Monticelli, L.S.; Desneux, N.; Zang, L.-S. Impact of Trichogramma parasitoid age on the outcome of multiparasitism in the factitious host eggs of Chinese oak silkworm, Antheraea pernyi. J. Pest Sci. 2020, 93, 1347–1357. [Google Scholar] [CrossRef]
Parameter | Variance Source | df | F | P |
---|---|---|---|---|
Parasitization | PS | 1 | 207.68 | <0.0001 |
HA | 6 | 56.22 | <0.0001 | |
PS × HA | 6 | 13.13 | <0.0001 | |
Error | 196 | |||
Percentage of emergence | PS | 1 | 0.13 | 0.7164 |
HA | 6 | 0.69 | 0.6596 | |
PS × HA | 6 | 2.88 | 0.0122 | |
Error | 158 | |||
Developmental time | PS | 1 | 204.75 | <0.0001 |
HA | 6 | 1.84 | 0.0944 | |
PS × HA | 6 | 1.48 | 0.1896 | |
Error | 158 | |||
Percentage of female progeny | PS | 1 | 25.92 | <0.0001 |
HA | 6 | 5.72 | <0.0001 | |
PS × HA | 6 | 3.25 | 0.0048 | |
Error | 158 |
Parameter | Host Age (h) | |||||||
---|---|---|---|---|---|---|---|---|
0–4 | 4–8 | 8–12 | 12–16 | 16–24 | 24–36 | 36–48 | ||
Emergence (%) | TD | 90.2 ± 2.0 Ab | 92.7 ± 1.2 Aab | 96.7 ± 1.5 Aa | 95.9 ± 2.4 Aa | 97.2 ± 1.8 Aa | 96.7 ± 3.3 Aa | 91.4 ± 4.2 Aab |
TO | 95.6 ± 0.8 Aa | 94.2 ± 1.3 Aa | 93.8 ± 1.1 Aab | 92.5 ± 1.6 Aa | 92.1 ± 1.0 Aab | 94.5 ± 1.9 Aab | 95.6 ± 1.2 Aa | |
t = 2.4689 | t = 0.8526 | t = 1.5422 | t = 1.2648 | t = 2.6094 | t = 0.5992 | t = 1.3755 | ||
df = 28 | df = 28 | df = 24 | df = 23 | df = 19 | df = 19 | df = 17 | ||
p = 0.0199 | p = 0.4011 | p = 0.1361 | p = 0.2186 | p = 0.0172 | p = 0.5561 | p = 0.1868 |
Parameter | Host Age (h) | |||||||
---|---|---|---|---|---|---|---|---|
0–4 | 4–8 | 8–12 | 12–16 | 16–24 | 24–36 | 36–48 | ||
Developmental time (days) | TD | 9.9 ± 0.0 Aa | 9.8 ± 0.1 Aa | 9.9 ± 0.1 Aa | 9.9 ± 0.1 Aa | 9.9 ± 0.1 Aa | 10.0 ± 0.2 Aa | 10.1 ± 0.1 Aa |
TO | 9.4 ± 0.1 Ac | 9.4 ± 0.1 Ab | 9.4 ± 0.1 Ab | 9.5 ± 0.1 Ab | 9.3 ± 0.1 Ab | 9.3 ± 0.0 Ab | 9.5 ± 0.1 Ab | |
t = 6.4047 | t = 4.7280 | t = 6.1053 | t = 3.8620 | t = 5.7076 | t = 6.3188 | t = 5.1907 | ||
df = 28 | df = 28 | df = 24 | df = 23 | df = 19 | df = 19 | df = 17 | ||
p < 0.0001 | p = 0.0001 | p < 0.0001 | p = 0.0008 | p < 0.0001 | p < 0.0001 | p = 0.0001 |
Parameter | Host Age (h) | |||||||
---|---|---|---|---|---|---|---|---|
0–4 | 4–8 | 8–12 | 12–16 | 16–24 | 24–36 | 36–48 | ||
Female progeny (%) | TD | 85.1 ± 1.5 ABa | 85.5 ± 1.3 Aa | 73.4 ± 4.0 ABb | 70.4 ± 2.7 ABc | 66.7 ± 5.0 Bb | 69.1 ± 11.2 ABb | 68.0 ± 9.7 ABc |
TO | 84.2 ± 1.3 Aa | 84.3 ± 1.3 Aa | 83.6 ± 1.5 Aa | 81.0 ± 1.0 Ab | 84.3 ± 1.9 Aa | 84.3 ± 1.4 Aa | 78.5 ± 2.6 Abc | |
t = 0.4967 | t = 0.6459 | t = 2.8376 | t = 4.2540 | t = 4.0440 | t = 2.1370 | t = 1.4907 | ||
df = 28 | df = 28 | df = 24 | df = 23 | df = 19 | df = 19 | df = 17 | ||
p = 0.6233 | p = 0.5236 | p = 0.0091 | p = 0.0003 | p = 0.0007 | p = 0.0458 | p = 0.1544 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hou, Y.-Y.; Benelli, G.; Desneux, N.; Ali, A.; Zang, L.-S. Trichogramma ostriniae Is More Effective Than Trichogramma dendrolimi As a Biocontrol Agent of the Asian Corn Borer, Ostrinia furnacalis. Insects 2022, 13, 70. https://doi.org/10.3390/insects13010070
Wang Y, Hou Y-Y, Benelli G, Desneux N, Ali A, Zang L-S. Trichogramma ostriniae Is More Effective Than Trichogramma dendrolimi As a Biocontrol Agent of the Asian Corn Borer, Ostrinia furnacalis. Insects. 2022; 13(1):70. https://doi.org/10.3390/insects13010070
Chicago/Turabian StyleWang, Yu, Yang-Yang Hou, Giovanni Benelli, Nicolas Desneux, Asad Ali, and Lian-Sheng Zang. 2022. "Trichogramma ostriniae Is More Effective Than Trichogramma dendrolimi As a Biocontrol Agent of the Asian Corn Borer, Ostrinia furnacalis" Insects 13, no. 1: 70. https://doi.org/10.3390/insects13010070
APA StyleWang, Y., Hou, Y. -Y., Benelli, G., Desneux, N., Ali, A., & Zang, L. -S. (2022). Trichogramma ostriniae Is More Effective Than Trichogramma dendrolimi As a Biocontrol Agent of the Asian Corn Borer, Ostrinia furnacalis. Insects, 13(1), 70. https://doi.org/10.3390/insects13010070