Development and Reproductive Capacity of the Miyake Spider Mite Eotetranychus kankitus (Acari: Tetranychidae) at Different Temperatures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Rearing of Eotetranychus kankitus
2.2. Immature E. kankitus Development
2.3. Development Rate Model
2.4. Reproduction and Adult Longevity
2.5. Application of the Bootstrap-Match Technique
2.6. Demographic Parameters
3. Results
3.1. Immature Mite Development
3.2. Reproduction and Adult Longevity
3.3. Age-Stage-Specific Survival Rate
3.4. Age-Specific Survival and Age-Stage-Specific Fecundity
3.5. Age-Stage-Specific Life Expectancy
3.6. Age-Stage-Specific Reproductive Value
3.7. Population Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kingsolver, J.G.; Huey, R.B. Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. Am. Zool. 1998, 38, 545–560. [Google Scholar] [CrossRef]
- Woods, H.A.; Harrison, J.F. Interpreting rejections of the beneficial acclimation hypothesis: When is physiological plasticity adaptive? Evolution 2002, 56, 1863–1866. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.; Frazer, B.D.; Gilbert, N.; Gutierrez, A.P.; Mackauer, M. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 1974, 1, 431–438. [Google Scholar] [CrossRef]
- Roy, M.; Brodeur, J.; Cloutier, C. Effect of temperature on intrinsic rates of natural increase (rm) of a coccinellid and its spider mite prey. BioControl 2003, 48, 57–72. [Google Scholar] [CrossRef]
- Gotoh, T.; Sugimoto, N.; Pallini, A.; Knapp, M.; Hernandez-Suarez, E.; Ferragut, F.; Ho, C.-C.; Migeon, A.; Navajas, M.; Nachman, G. Reproductive performance of seven strains of the tomato red spider mite Tetranychus evansi (Acari: Tetranychidae) at five temperatures. Exp. Appl. Acarol. 2010, 52, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.S.; Haque, M.A.; Nachman, G.; Gotoh, T. Temperature-dependent development and reproductive traits of Tetranychus macfarlanei (Acari: Tetranychidae). Exp. Appl. Acarol. 2012, 56, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.S.; Moriya, D.; Badii, M.H.; Nachman, G.; Gotoh, T. A comparative study of development and demographic parameters of Tetranychus merganser and Tetranychus kanzawai (Acari: Tetranychidae) at different temperatures. Exp. Appl. Acarol. 2011, 54, 1–19. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Somero, G.N. Biochemical Adaptation; Oxford University Press: New York, NY, USA, 2002; p. 560. [Google Scholar]
- Janssen, A.; Sabelis, M.W. Phytoseiid life-histories, local predator-prey dynamics, and strategies for control of tetranychid mites. Exp. Appl. Acarol. 1992, 14, 233–250. [Google Scholar] [CrossRef] [Green Version]
- Sabelis, M.W. Reproductive Strategy. In Spider Mites: Their Biology, Natural Enemies and Control; Helle, W., Sabelis, M.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1985; Volume 1A, pp. 265–278. [Google Scholar]
- Mori, K.; Nozawa, M.; Arai, K.; Gotoh, T. Life-history traits of the acarophagous lady beetle, Stethorus japonicus at three temperatures. BioControl 2005, 50, 35–51. [Google Scholar] [CrossRef]
- Bayu, M.S.Y.I.; Ullah, M.S.; Takano, Y.; Gotoh, T. Impact of constant versus fluctuating temperatures on the development and life history parameters of Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 2017, 72, 205–227. [Google Scholar] [CrossRef]
- Rismayani; Ullah, M.S.; Chi, H.; Gotoh, T. Impact of constant and fluctuating temperatures on population characteristics of Tetranychus pacificus (Acari: Tetranychidae). J. Econ. Entomol. 2021, 114, 638–651. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. Available online: http://140.120.197.173/Ecology/prod02.htm (accessed on 26 July 2022).
- Lee, C.C. Life Table and Field Population Dynamics of Forcipomyia taiwana (Shiraki) (Diptera: Ceratopogonidae). Master’s Thesis, National Chung Hsing University, Taichung, Taiwan, 2010. [Google Scholar]
- Migeon, A.; Dorkeld, F. Spider Mites Web: A Comprehensive Database for the Tetranychidae. 2006–2022. Available online: http://www.montpellier.inra.fr/CBGP/spmweb (accessed on 6 May 2022).
- Chen, J.L.; Li, L.S. Damage of Eotetranychus kankitus Ehara on the citrus spring shoots. J. Southwest Agric. Coll. 1985, 3, 85–90. [Google Scholar]
- Zhou, L.; Yue, B.S.; Zou, F.D. Life table studies of Eotetranychus kankitus (Acari: Tetranychidae) at different temperatures. Syst. Appl. Acarol. 1999, 4, 69–73. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Zhang, G.; Liu, H. Effects of different temperatures on the growth and development of Eotetranychus kankitus (Ehara). Acta Ecol. Sin. 2014, 34, 862–868. [Google Scholar]
- Ikemoto, T.; Takai, K. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ. Entomol. 2000, 29, 671–682. [Google Scholar] [CrossRef] [Green Version]
- Ikemoto, T.; Kiritani, K. Novel method of specifying low and high threshold temperatures using thermodynamic SSI model of insect development. Environ. Entomol. 2019, 48, 479–488. [Google Scholar] [CrossRef]
- Ikemoto, T. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 2005, 34, 1377–1387. [Google Scholar] [CrossRef]
- Ikemoto, T. Tropical malaria does not mean hot environments. J. Med. Entomol. 2008, 45, 963–969. [Google Scholar] [CrossRef]
- Shi, P.-J.; Ikemoto, T.; Egami, C.; Sun, Y.; Ge, F. A modified program for estimating the parameters of the SSI model. Environ. Entomol. 2011, 40, 462–469. [Google Scholar] [CrossRef]
- Ikemoto, T.; Kurahashi, I.; Shi, P.J. Confidence interval of intrinsic optimum temperature estimated using thermodynamic SSI model. Insect Sci. 2013, 20, 420–428. [Google Scholar] [CrossRef]
- Amir-Maafi, M.; Chi, H.; Chen, Z.-Z.; Xu, Y.-Y. Innovative bootstrap-match technique for life table set up. Entomol. Gen. 2022, 42, 597–609. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Tuan, S.J.; Lin, Y.H.; Yang, C.M.; Atlihan, R.; Saska, P.; Chi, H. Survival and reproductive strategies in two-spotted spider mites: Demographic analysis of arrhenotokous parthenogenesis of Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 2016, 109, 502–509. [Google Scholar] [CrossRef]
- Chen, G.M.; Chi, H.; Wang, R.C.; Wang, Y.P.; Xu, Y.Y.; Li, X.D.; Yin, P.; Zheng, F.Q. Demography and uncertainty of population growth of Conogethes punctiferalis (Lepidoptera: Crambidae) reared on five host plants with discussion on some life history statistics. J. Econ. Entomol. 2018, 111, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.F.; Chi, H.; Guo, Y.F.; Li, X.W.; Zhao, L.L.; Ma, R.Y. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri and P. communis pears with estimations of confidence intervals of specific life table statistics. J. Econ. Entomol. 2020, 113, 2343–2353. [Google Scholar] [CrossRef]
- Nechols, J.R.; Tauber, M.J.; Tauber, C.A.; Masaki, S. Adaptations to Hazardous Seasonal Conditions: Dormancy, Migration, and Polyphenism. In Ecological Entomology; Huffakar, C.B., Gutierrez, A.P., Eds.; John Wiley and Sons, Inc.: New York, NY, USA, 1999; pp. 159–200. [Google Scholar]
- Howell, J.F.; Neven, L.G. Physiological developmental time and zero development temperature of the codling moth (Lepidoptera: Tortricidae). Environ. Entomol. 2000, 29, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Ren, S.X.; Musa, P.D. Effects of temperature on development, survival, longevity, and fecundity of the Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) predator, Axinoscymnus cardilobus (Coleoptera: Coccinellidae). Biol. Control 2008, 46, 209–215. [Google Scholar] [CrossRef]
- Shimazaki, S.; Ullah, M.S.; Gotoh, T. Seasonal occurrence and development of three closely related Oligonychus species (Acari: Tetranychidae) and their associated natural enemies on fagaceous trees. Exp. Appl. Acarol. 2019, 79, 47–68. [Google Scholar] [CrossRef]
- Worner, S.P. Performance of phenological models under variable temperature regimes: Consequences of the Kaufman or rate summation effect. Environ. Entomol. 1992, 21, 689–699. [Google Scholar] [CrossRef]
- Javadi Khederi, S.; Khanjani, M. Modeling demographic response to constant temperature in Bryobia rubrioculus (Acari: Tetranychidae). Ecol. Montenegrina 2014, 1, 18–29. [Google Scholar] [CrossRef]
- Li, Y.Y.; Liu, M.X.; Zhou, H.W.; Tian, C.B.; Zhang, G.H.; Liu, Y.Q.; Liu, H.; Wang, J.J. Evaluation of Neoseiulus barkeri (Acari: Phytoseiidae) for control of Eotetranychus kankitus (Acari: Tetranychidae). J. Econ. Entomol. 2017, 110, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Lotka, A.J. A natural population norm. II. J. Wash. Acad. Sci. 1913, 3, 289–293. [Google Scholar]
- Lewis, E.G. On the generation and growth of a population. Sankhya 1942, 6, 93–96. [Google Scholar]
- Lewontin, R.C. Selection for Colonizing Ability. In The Genetics of Colonizing Species; Baker, H.G., Stebbins, G.L., Eds.; Academic Press: San Diego, CA, USA, 1965; pp. 77–94. [Google Scholar]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Sugawara, R.; Ullah, M.S.; Ho, C.C.; Gökçe, A.; Chi, H.; Gotoh, T. Temperature-dependent demography of two closely related predatory mites Neoseiulus womersleyi and N. longispinosus (Acari: Phytoseiidae). J. Econ. Entomol. 2017, 110, 1533–1546. [Google Scholar] [CrossRef]
- McCalla, K.A.; Keçeci, M.; Milosavljević, I.; Ratkowsky, D.A.; Hoddle, M.S. The influence of temperature variation on life history parameters and thermal performance curves of Tamarixia radiata (Hymenoptera: Eulophidae), a parasitoid of the Asian citrus psyllid (Hemiptera: Liviidae). J. Econ. Entomol. 2019, 112, 1560–1574. [Google Scholar] [CrossRef]
- Milosavljević, I.; McCalla, K.A.; Morgan, D.J.W.; Hoddle, M.S. The effects of constant and fluctuating temperatures on development of Diaphorina citri (Hemiptera: Liviidae), the Asian citrus psyllid. J. Econ. Entomol. 2020, 113, 633–645. [Google Scholar] [CrossRef]
- Zamani, A.A.; Talebi, A.A.; Fathipour, Y.; Baniameri, V. Effect of temperature on biology and population growth parameters of Aphis gossypii Glover (Hom., Aphididae) on greenhouse cucumber. J. Appl. Entomol. 2006, 130, 453–460. [Google Scholar] [CrossRef]
Temperature | Sex | n a | Egg | Larva | Protonymph | Deutonymph | Egg to Adult | % Survival | % Females |
---|---|---|---|---|---|---|---|---|---|
15 °C | ♀ | 42 | 15.36 ± 0.11 b | 8.17 ± 0.20 a | 6.43 ± 0.25 b | 8.57 ± 0.28 b | 38.52 ± 0.42 a | 74.7 b | 71.2 |
♂ | 17 | 15.76 ± 0.16 a | 7.53 ± 0.36 d | 5.35 ± 0.36 d | 6.59 ± 0.61 d | 35.24 ± 1.30 b | |||
17.5 °C | ♀ | 38 | 10.63 ± 0.09 c | 8.11 ± 0.22 b | 7.29 ± 0.18 a | 8.71 ± 0.20 a | 34.74± 0.38 c | 69.5 b | 66.7 |
♂ | 19 | 10.21 ± 0.25 d | 7.79 ± 0.32 c | 6.11 ± 0.27 c | 7.42 ± 0.35 c | 31.53 ± 0.79 d | |||
20 °C | ♀ | 73 | 7.73 ± 0.08 f | 4.00 ± 0.09 e | 3.30 ± 0.08 e | 3.97 ± 0.08 e | 19.00 ± 0.16 e | 94.0 a | 66.4 |
♂ | 37 | 7.86 ± 0.09 e | 3.76 ± 0.11 f | 3.08 ± 0.10 f | 3.51 ± 0.10 f | 18.22 ± 0.20 f | |||
22.5 °C | ♀ | 69 | 5.55 ± 0.06 h | 3.77 ± 0.08 f | 2.90 ± 0.09 g | 3.97 ± 0.12 e | 16.19 ± 0.22 g | 92.5 a | 69.7 |
♂ | 30 | 5.93 ± 0.08 g | 3.63 ± 0.15 g | 2.50 ± 0.11 h | 3.33 ± 0.13 g | 15.40 ± 0.29 h | |||
25 °C | ♀ | 64 | 5.15 ± 0.05 j | 2.52 ± 0.05 j | 2.49 ± 0.05 h | 2.34 ± 0.08 j | 12.50 ± 0.14 j | 92.3 a | 76.2 |
♂ | 20 | 5.28 ± 0.07 i | 2.38 ± 0.05 k | 2.42 ± 0.08 i | 2.75 ± 0.18 h | 12.82 ± 0.24 i | |||
27.5 °C | ♀ | 66 | 4.23 ± 0.05 l | 3.21 ± 0.06 h | 2.25 ± 0.06 j | 2.74 ± 0.08 h | 12.44 ± 0.15 j | 87.1 a | 81.5 |
♂ | 15 | 4.37 ± 0.08 k | 3.10 ± 0.15 i | 2.10 ± 0.11 k | 2.53 ± 0.10 i | 12.10 ± 0.18 k | |||
30 °C | ♀ | 50 | 3.52 ± 0.04 m | 2.36 ± 0.06 k | 1.98 ± 0.06 l | 2.23 ± 0.09 k | 10.09 ± 0.18 l | 90.5 a | 65.8 |
♂ | 26 | 3.17 ± 0.07 p | 2.13 ± 0.07 l | 1.88 ± 0.12 m | 2.06 ± 0.10 m | 9.25 ± 0.25 n | |||
32.5 °C | ♀ | 51 | 3.45 ± 0.02 o | 1.81 ± 0.04 m | 1.58 ± 0.06 n | 2.55 ± 0.11 i | 9.39 ± 0.16 m | 65.7 b | 76.1 |
♂ | 16 | 3.50 ± 0.05 n | 1.75 ± 0.06 n | 1.53 ± 0.09 o | 2.16 ± 0.10 l | 8.94 ± 0.14 o |
Model | Parameter | Stage | |
---|---|---|---|
Egg-to-Female Adult | Egg-to-Male Adult | ||
Ikemoto and Takai linear model (Ikemoto and Takai 2000) | t0 a (S. E.) | 11.01 ± 1.72 | 10.48 ± 1.83 |
Kb (S. E.) | 190.67 ± 32.76 | 188.63 ± 32.32 | |
y = | 0.0052x − 0.0578 | 0.0053x − 0.0555 | |
r2 | 0.9710 | 0.9766 | |
SSI (Ikemoto, 2005; 2008) c | TΦ (K) d | 295.05 | 294.89 |
TΦ (°C) | 21.79 | 21.74 | |
𝜌 | 0.05711 | 0.05974 | |
ΔHA (cal/mol) | 15,298 | 14,748 | |
ΔHL (cal/deg.mol) | −72,587 | −67,035 | |
ΔHH (cal/deg.mol) | 54,325 | 48,833 | |
TL (K) d | 284.72 | 284.08 | |
TH (K) d | 308.40 | 309.91 | |
𝜒 2 | 0.00336 | 0.00273 |
Temperature | n a | APOP | TPOP | Oviposition Days | Female Longevity | Male Longevity | Eggs per Female/Day | Eggs per Female |
---|---|---|---|---|---|---|---|---|
15 °C | 42 | 10.74 ± 0.56 a | 49.26 ± 0.69 a | 8.69 ± 0.70 c | 67.90 ± 1.30 a | 65.82 ± 1.72 a | 0.7 ± 0.04 d | 10.02 ± 0.60 d |
20 °C | 73 | 2.82 ± 0.06 b | 21.82 ± 0.17 b | 20.67 ± 0.87 a | 45.30 ± 1.11 b | 49.08 ± 0.77 b | 1.9 ± 0.06 c | 40.27 ± 1.78 a |
25 °C | 64 | 2.14 ± 0.05 c | 14.64 ± 0.15 c | 10.80 ± 0.45 b | 29.24 ± 0.58 c | 27.35 ± 0.64 c | 2.3 ± 0.12 b | 31.28 ± 1.41 b |
30 °C | 50 | 0.84 ± 0.03 d | 10.93 ± 0.18 d | 7.65 ± 0.17 d | 20.16 ± 0.25 d | 17.17 ± 0.43 d | 2.9 ± 0.12 a | 24.06 ± 0.90 c |
Temperature | R0 | r | t | λ | GRR |
---|---|---|---|---|---|
15 °C | 5.33 ± 0.65 c | 0.0299 ± 0.0023 d | 55.95 ± 0.77 a | 1.0304 ± 0.0023 d | 11.09 ± 1.15 c |
20 °C | 25.13 ± 2.11 a | 0.1041 ± 0.0028 c | 30.96 ± 0.35 b | 1.1098 ± 0.0030 c | 36.52 ± 2.87 a |
25 °C | 22.00 ± 1.80 a | 0.1493 ± 0.0041 b | 20.70 ± 0.23 c | 1.1610 ± 0.0048 b | 46.93 ± 6.08 a |
30 °C | 14.32 ± 1.40 b | 0.1822 ± 0.0073 a | 14.61 ± 0.20 d | 1.1998 ± 0.0087 a | 23.19 ± 1.83 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, M.S.; Kobayashi, Y.; Gotoh, T. Development and Reproductive Capacity of the Miyake Spider Mite Eotetranychus kankitus (Acari: Tetranychidae) at Different Temperatures. Insects 2022, 13, 910. https://doi.org/10.3390/insects13100910
Ullah MS, Kobayashi Y, Gotoh T. Development and Reproductive Capacity of the Miyake Spider Mite Eotetranychus kankitus (Acari: Tetranychidae) at Different Temperatures. Insects. 2022; 13(10):910. https://doi.org/10.3390/insects13100910
Chicago/Turabian StyleUllah, Mohammad Shaef, Yurina Kobayashi, and Tetsuo Gotoh. 2022. "Development and Reproductive Capacity of the Miyake Spider Mite Eotetranychus kankitus (Acari: Tetranychidae) at Different Temperatures" Insects 13, no. 10: 910. https://doi.org/10.3390/insects13100910
APA StyleUllah, M. S., Kobayashi, Y., & Gotoh, T. (2022). Development and Reproductive Capacity of the Miyake Spider Mite Eotetranychus kankitus (Acari: Tetranychidae) at Different Temperatures. Insects, 13(10), 910. https://doi.org/10.3390/insects13100910