Evaluation of Insecticidal Potentials of Five Plant Extracts against the Stored Grain Pest, Callosobruchus maculatus (Coleoptera: Bruchidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Insects
2.2. Plants Collection
2.3. Phytochemical Screening
2.3.1. Maceration
2.3.2. Detection of Alkaloids, Phenols, Phytosterol, Terpenes and Flavonoids in Plant Extract
2.4. Residual Toxicity
2.5. Topical Toxicity
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Mortality of C. maculatus Exposed to Each of Five Plants
4.2. Mortality of Selected Plants Extracts against C. maculatus
4.3. Phytochemical Analysis Five Plants Extracts
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bibi, R.; Tariq, R.M.; Abdelgaleil, S.A.; Rasheed, M. Insecticidal Potential of Botanicals from Red Seaweeds against Stored Grain Pests, Rice Weevil (Sitophilus oryzae L.) and Cowpea Weevil (Callosobruchus maculatus Fab.). Pak. J. Zool. 2022, 54, 1657–1664. [Google Scholar] [CrossRef]
- Agour, A.; Mssillou, I.; Mechchate, H.; Es-Safi, I.; Allali, A.; Barnossi, A.E.; Al Kamaly, O.; Alshawwa, S.Z.; El Moussaoui, A.; Bari, A. Brocchia cinerea (Delile) Vis. Essential Oil Antimicrobial Activity and Crop Protection against Cowpea Weevil Callosobruchus maculatus (Fab.). Plants 2022, 11, 583. [Google Scholar] [CrossRef] [PubMed]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Singh, P.; Dubey, N.K. Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae)—A review. J. Food Sci. Technol. 2015, 52, 1239–1257. [Google Scholar] [CrossRef]
- Mahanta, K.; Rajkhowa, D.; Kumar, M.; Verma, H. Impact of Herbicides Used in Agriculture: Benefits and Hazards. Biot. Res. Today 2021, 3, 999–1001. [Google Scholar]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Xie, F.; Rizvi, S.A.H.; Zeng, X. Fumigant toxicity and biochemical properties of (α+ β) thujone and 1, 8-cineole derived from Seriphidium brevifolium volatile oil against the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae). Rev. Bras. Farmacogn. 2020, 29, 720–727. [Google Scholar] [CrossRef]
- Basile, S.; Badalamenti, N.; Riccobono, O.; Guarino, S.; Ilardi, V.; Bruno, M.; Peri, E. Chemical composition and evaluation of insecticidal activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum essential oils against stored products pests. Molecules 2022, 27, 588. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D. Application of natural antimicrobials in food preservation: Recent views. Food Control. 2021, 126, 108066. [Google Scholar] [CrossRef]
- Tozlu, E.; Cakir, A.; Kordali, S.; Tozlu, G.; Ozer, H.; Akcin, T.A. Chemical compositions and insecticidal effects of essential oils isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum against broadbean weevil (Bruchus dentipes). Sci. Hortic. 2011, 130, 9–17. [Google Scholar] [CrossRef]
- Zimmermann, R.C.; de Carvalho Aragao, C.E.; de Araújo, P.J.P.; Benatto, A.; Chaaban, A.; Martins, C.E.N.; do Amaral, W.; Cipriano, R.R.; Zawadneak, M.A. Insecticide activity and toxicity of essential oils against two stored-product insects. Crop Prot. 2021, 144, 105575. [Google Scholar] [CrossRef]
- Ghoneim, K.; Hamadah, K.; Selim, S.; Waheeb, H. Biopesticidal potential of Nerolidol, a sesquiterpene compound, and its drastic impact on growth and metamorphosis of the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). Sch. Acad. J. Biosci. 2021, 2, 36–57. [Google Scholar]
- Shah, W.A.; Qadir, M. Chemical composition, antioxidant and antibacterial activity of Thuja orientalis essential oil. World J. Pharm. Sci. 2014, 2, 1–136. [Google Scholar]
- Androutsopoulou, C.; Christopoulou, S.D.; Hahalis, P.; Kotsalou, C.; Lamari, F.N.; Vantarakis, A. Evaluation of essential oils and extracts of rose geranium and rose petals as natural preservatives in terms of toxicity, antimicrobial, and antiviral activity. Pathogens 2021, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Bidar, F.; Razmjou, J.; Golizadeh, A.; Fathi, S.A.A.; Ebadollahi, A.; Naseri, B. Effect of different legume seeds on life table parameters of Cowpea weevil, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae). J. Stored Prod. Res. 2021, 90, 101755. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Kumar, R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon 2022, 8, e08703. [Google Scholar]
- Ashbrook, A.R.; Mikaelyan, A.; Schal, C. Comparative Efficacy of a Fungal Entomopathogen with a Broad Host Range against Two Human-Associated Pests. Insects 2022, 13, 774. [Google Scholar] [CrossRef]
- Gharbi, K.; Tay, J.-W. Fumigant Toxicity of Essential Oils against Frankliniella occidentalis and F. insularis (Thysanoptera: Thripidae) as Affected by Polymer Release and Adjuvants. Insects 2022, 13, 493. [Google Scholar] [CrossRef]
- Khanal, S. Qualitative and Quantitative Phytochemical Screening of Azadirachta indica Juss. Plant Parts. Int. J. Appl. Sci. Biotechnol. 2021, 9, 122–127. [Google Scholar] [CrossRef]
- Cruz, J.P.; Ribeiro, F.; de Oliveira Vasconcelos, V. Molluscicidal activity of extracts of plants from the Cerrado against Biomphalaria glabrata (Say, 1818). Res. Soc. Dev. 2022, 11, e20611830656. [Google Scholar] [CrossRef]
- Maliński, M.P.; Kikowska, M.A.; Soluch, A.; Kowalczyk, M.; Stochmal, A.; Thiem, B. Phytochemical screening, phenolic compounds and antioxidant activity of biomass from Lychnis flos-cuculi L. In Vitro cultures and intact plants. Plants 2021, 10, 206. [Google Scholar] [CrossRef]
- Semwal, P.; Jai Singh, R.; Kumar, A.; Malik, J. Pharmacognostical Exploration of Saccharum officinarum. Sch. Int. J. Tradit. Complement. Med. 2021, 4, 53–60. [Google Scholar] [CrossRef]
- Tavares, W.R.; Barreto, M.d.C.; Seca, A.M. Aqueous and ethanolic plant extracts as bio-insecticides—Establishing a bridge between raw scientific data and practical reality. Plants 2021, 10, 920. [Google Scholar] [CrossRef]
- Adesina, J.M. Bioactive constituents and fumigant toxicity of Datura metel extracts as grain protectant and progeny emergence inhibition of Callosobruchus maculatus (Coleoptera: Bruchidae). J. Plant Dis. Prot. 2022, 129, 819–829. [Google Scholar] [CrossRef]
- Nigussie, D.; Davey, G.; Tufa, T.B.; Brewster, M.; Legesse, B.A.; Fekadu, A.; Makonnen, E. Antibacterial and antifungal activities of Ethiopian medicinal plants: A systematic review. Front. Pharmacol. 2021, 12, 633921. [Google Scholar] [CrossRef]
- Ifeanyieze, F.; Ameh, H.; Ejiofor, T.; Ikehi, M.; Onu, F. Seed powder extract of physic nut (Jatropha curcas) as a biopesticide for weevils (Callosobruchus maculatus) in stored cowpea (Vigna unguiculata). Afr. J. Sci. Technol. Innov. Dev. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Stejskal, V.; Vendl, T.; Aulicky, R.; Athanassiou, C. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects 2021, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ray, A. Biological and infestation studies on Araecerus fasciculatus DeGeer a new pest of Melia azadirach L. in India. Int. J. Trop. Insect Sci. 2022, 42, 1245–1254. [Google Scholar] [CrossRef]
- Willis Chan, D.S.; Raine, N.E. Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo). Sci. Rep. 2021, 11, 4241. [Google Scholar]
- Alotaibi, S.S.; Darwish, H.; Alzahrani, A.K.; Alharthi, S.; Alghamdi, A.S.; Al-Barty, A.M.; Helal, M.; Maghrabi, A.; Baazeem, A.; Alamari, H.A. Environment-Friendly Control Potential of Two Citrus Essential Oils against Aphis punicae and Aphis illinoisensis (Hemiptera: Aphididae). Agronomy 2022, 12, 2040. [Google Scholar] [CrossRef]
- Singh, K.D.; Mobolade, A.J.; Bharali, R.; Sahoo, D.; Rajashekar, Y. Main plant volatiles as stored grain pest management approach: A review. J. Agric. Food Res. 2021, 4, 100127. [Google Scholar] [CrossRef]
- Muhammad, M.-u.-R.; Khalid, A.; Muhammad, N.; Alizai, A.; Sajjad, H. Entomocidal studies of some plant materials against pulse beetle, Callosobruchus chinensis (Bruchidae: Coleoptera) on stored chickpea (Cicer arietinum). Pak. Entomol. 2018, 40, 71–75. [Google Scholar]
- Alamgir, A. Medicinal, non-medicinal, biopesticides, color-and dye-yielding plants; secondary metabolites and drug principles; significance of medicinal plants; use of medicinal plants in the systems of traditional and complementary and alternative medicines (CAMs). In Therapeutic Use of Medicinal Plants and Their Extracts: Volume 1; Springer: Berlin/Heidelberg, Germany, 2017; pp. 61–104. [Google Scholar]
- Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Thangaraj, M.P. Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J. Photochem. Photobiol. B Biol. 2017, 174, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Qureshi, N.A.; Shaheen, N.; Iqbal, A.; Fatima, H.; Afzal, M.; Alhewairini, S.S.; Qureshi, M.Z. Termiticidal and protozocidal potentials of eight tropical plant extracts evaluated against Odontotermes obesus Rambur (Blattodea; Termitidae) and Heterotermes indicola Wasmann (Blattodea; Rhinotermitidae). Pol. J. Environ. Stud. 2020, 29, 3493–3507. [Google Scholar] [CrossRef]
Sr. No. | Common Name | Botanical Name | Family | Part Used |
---|---|---|---|---|
1. | White Patta | Nicotiana rustica | Solanaceae | leaf |
2. | Virginia tobacco | Nicotiana tabacum | Solanaceae | leaf |
3. | Chinese arborvitae | Thuja orientalis | Cupressaceae | Fruit |
4. | Neem | Azadirachta indica | Meliaceae | Seed |
5. | Bakion | Melia azadarech | Meliaceae | Fruit |
Sr. No. | Common Name | Botanical Name | Concentration Used |
---|---|---|---|
1. | White Patta | Nicotiana rustica | 0.5, 1, 1.5, 2, 2.5 and 3% |
2. | Virginia tobacco | Nicotiana tabacum | 0.5, 1, 1.5, 2, 2.5 and 3% |
3. | Chinese arborvitae | Thuja orientalis | 0.5, 1, 1.5, 2, 2.5 and 3% |
4. | Neem | Azadirachta indica | 0.5, 1, 1.5, 2, 2.5 and 3% |
5. | Bakion | Melia azadarech | 0.5, 1, 1.5, 2, 2.5 and 3% |
Phytochemical Constituents of Five Plant Species | ||||||
---|---|---|---|---|---|---|
Plant Species | Alkaloids | Flavonoids | Saponins | Di-Terpenes | Phyto-Sterol | Phenols |
T. orientalis | Low | low | low | low | Low | low |
M. azedarach | low | low | low | low | moderate | moderate |
N. rustica | low | low | not present | low | Low | low |
A. indica | High | high | moderate | moderate | High | high |
N. tabacum | moderate | moderate | moderate | high | moderate | high |
Time Hours | Plant Species | N* | LC50 95% LC | X2 | P | Slope + SE |
---|---|---|---|---|---|---|
24 | A. indica | 240 | 38.44 (15.77–740.47) | 0.85 | 0.93 | 0.96 ± 0.26 |
N. rustica | 240 | 37.19 (16.02–495.66) | 1.59 | 0.80 | 1.07 ± 0.28 | |
M. azedarach | 240 | 29.73 (16.01–359.42) | 2.28 | 0.68 | 1.44 ± 0.37 | |
N. tabacum | 240 | 24.73 (18.12–1308.62) | 0.69 | 0.95 | 1.05 ± 0.29 | |
T. orientalis | 240 | 54.85 (18.42–1892.92) | 1.37 | 0.84 | 1.50 ± 0.53 | |
48 | A. indica | 240 | 32.24 (12.10–366.33) | 1.73 | 0.78 | 2.36 ± 0.75 |
N. rustica | 240 | 30.27 (14.92–224.42) | 0.82 | 0.58 | 0.63 ± 0.37 | |
M. azedarach | 240 | 24.20 (9.91–335.57) | 1.62 | 0.80 | 3.43 ± 1.40 | |
N. tabacum | 240 | 20.75 (23.91–6190.66) | 0.99 | 0.91 | 1.22 ± 0.37 | |
T. orientalis | 240 | 35.50 (13.60–7305.06) | 1.76 | 0.78 | 2.13 ± 0.79 | |
72 | A. indica | 240 | 28.36 (13.71–217.70) | 1.17 | 0.88 | 1.06 ± 0.26 |
N. rustica | 240 | 24.39 (12.49–148.61) | 0.40 | 0.98 | 1.06 ± 0.26 | |
M. azedarach | 240 | 29.57 (14.34–220.30) | 0.49 | 0.97 | 1.16 ± 0.28 | |
N. tabacum | 240 | 17.53 (10.27–62.95) | 1.39 | 0.84 | 1.12 ± 0.24 | |
T. orientalis | 240 | 29.01 (14.35–194.43) | 2.37 | 0.66 | 1.22 ± 0.29 | |
168 | A. indica | 240 | 6.32 (4.89–9.95) | 1.75 | 0.78 | 1.17 ± 0.21 |
N. rustica | 240 | 5.44 (4.23–8.48) | 3.06 | 0.54 | 1.06 ± 0.20 | |
M. azedarach | 240 | 9.15 (5.40–101.82) | 7.04 | 0.13 | 1.18 ± 0.22 | |
N. tabacum | 240 | 4.75 (3.74–7.01) | 3.16 | 0.53 | 1.03 ± 0.20 | |
T. orientalis | 240 | 8.39 (6.20–14.91) | 1.76 | 0.77 | 1.23 ± 0.22 | |
336 | A. indica | 240 | 1.86 (1.43–2.24) | 4.94 | 0.29 | 1.40 ± 0.20 |
N. rustica | 240 | 1.34 (0.93–1.69) | 4.83 | 0.30 | 1.39 ± 0.20 | |
M. azedarach | 240 | 1.72 (1.21–2.15) | 6.58 | 0.16 | 1.19 ± 0.20 | |
N. tabacum | 240 | 0.92 (0.04–1.61) | 17.36 | 0.00 | 1.79 ± 0.23 | |
T. orientalis | 240 | 2.55 (2.10–3.02) | 3.94 | 0.41 | 1.41 ± 0.20 |
Time | Plant Species | N* | LC-50 95% LC | X2 | P | Slope + SE |
---|---|---|---|---|---|---|
24 | A. indica | 240 | 44.55 (17.88–987.72) | 1.40 | 0.57 | 0.55 ± 0.16 |
N. rustica | 240 | 36.33 (15.83–462.57) | 0.23 | 0.99 | 0.47 ± 0.12 | |
M. azedarach | 240 | 36.33 ((15.83–462.57) | 0.23 | 0.99 | 0.47 ± 0.12 | |
N. tabacum | 240 | 28.84 (13.47–278.34) | 0.05 | 1.00 | 0.42 ± 0.11 | |
T. orientalis | 240 | 51.87(19.25–1985.44) | 2.92 | 0.84 | 0.54 ± 0.15 | |
48 | A. indica | 240 | 29.78 (13.83–287.89) | 0.89 | 0.99 | 0.40 ± 0.11 |
N. rustica | 240 | 28.59 (12.92–362.31) | 0.04 | 1.00 | 0.38 ± 0.10 | |
M. azedarach | 240 | 32.31 (14.06–474.14) | 0.32 | 0.98 | 0.39 ± 0.10 | |
N. tabacum | 240 | 16.23 (9.38–65.90) | 0.31 | 0.98 | 0.42 ± 0.10 | |
T. orientalis | 240 | 40.86 (16.18–921.48) | 0.825 | 0.92 | 0.39 ± 0.11 | |
72 | A. indica | 240 | 13.08 (6.60–742.10) | 1.43 | 0.83 | 0.92 ± 0.21 |
N. rustica | 240 | 10.21 (5.71–176.58) | 2.43 | 0.65 | 0.94 ± 0.21 | |
M. azedarach | 240 | 15.13 (7.23–1536.29) | 0.91 | 0.92 | 0.93 ± 0.22 | |
N. tabacum | 240 | 7.73 (4.92–37.88) | 2.37 | 0.66 | 1.05 ± 0.21 | |
T. orientalis | 240 | 23.97 (11.25–287.51) | 2.00 | 0.73 | 0.68 ± 0.23 | |
168 | A. indica | 240 | 2.73 (1.92–3.68) | 2.12 | 0.71 | 1.32 ± 0.32 |
N. rustica | 240 | 1.94 (1.17–2.57) | 7.90 | 0.09 | 1.35 ± 0.32 | |
M. azedarach | 240 | 3.24 2.03–5.76) | 4.33 | 0.36 | 0.94 ± 0.31 | |
N. tabacum | 240 | 1.66 (1.06–2.16) | 11.09 | 0.02 | 1.64 ± 0.32 | |
T. orientalis | 240 | 4.25 (2.93–9.40) | 3.84 | 0.42 | 1.00 ± 0.32 | |
336 | A. indica | 240 | 0.31 (0.00–0.082) | 7.88 | 0.09 | 1.29 ± 0.25 |
N. rustica | 240 | 0.32 (0.00–0.89) | 12.85 | 0.01 | 1.55 ± 0.28 | |
M. azedarach | 240 | 0.20 (0.00–0.54) | 1.46 | 0.83 | 0.79 ± 0.22 | |
N. tabacum | 240 | 0.19 (0.001–0.56) | 8.82 | 0.06 | 1.43 ± 0.31 | |
T. orientalis | 240 | 0.55 (20.01–9.40) | 3.89 | 0.42 | 0.61 ± 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbar, R.; Khan, I.A.; Alajmi, R.A.; Ali, A.; Faheem, B.; Usman, A.; Ahmed, A.M.; El-Shazly, M.; Farid, A.; Giesy, J.P.; et al. Evaluation of Insecticidal Potentials of Five Plant Extracts against the Stored Grain Pest, Callosobruchus maculatus (Coleoptera: Bruchidae). Insects 2022, 13, 1047. https://doi.org/10.3390/insects13111047
Akbar R, Khan IA, Alajmi RA, Ali A, Faheem B, Usman A, Ahmed AM, El-Shazly M, Farid A, Giesy JP, et al. Evaluation of Insecticidal Potentials of Five Plant Extracts against the Stored Grain Pest, Callosobruchus maculatus (Coleoptera: Bruchidae). Insects. 2022; 13(11):1047. https://doi.org/10.3390/insects13111047
Chicago/Turabian StyleAkbar, Rasheed, Imtiaz Ali Khan, Reem A. Alajmi, Ashraf Ali, Brekhna Faheem, Amjad Usman, Ashraf M. Ahmed, Mohamed El-Shazly, Abid Farid, John P. Giesy, and et al. 2022. "Evaluation of Insecticidal Potentials of Five Plant Extracts against the Stored Grain Pest, Callosobruchus maculatus (Coleoptera: Bruchidae)" Insects 13, no. 11: 1047. https://doi.org/10.3390/insects13111047
APA StyleAkbar, R., Khan, I. A., Alajmi, R. A., Ali, A., Faheem, B., Usman, A., Ahmed, A. M., El-Shazly, M., Farid, A., Giesy, J. P., & Aboul-Soud, M. A. M. (2022). Evaluation of Insecticidal Potentials of Five Plant Extracts against the Stored Grain Pest, Callosobruchus maculatus (Coleoptera: Bruchidae). Insects, 13(11), 1047. https://doi.org/10.3390/insects13111047