The MosHouse® Trap: Evaluation of the Efficiency in Trapping Sterile Aedes aegypti Males in Semi-Field Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Strain
2.2. Description of the MosHouse Trap
2.3. Semi-Field Experimental Designs Using the MosHouse Trap
2.3.1. Experiment 1: Aedes aegypti Male and Female Sampling with Original MosHouse Trap vs. BG-Sentinel Trap
2.3.2. Experiment 2: Aedes aegypti Male Sampling with MosHouse Trap or MosHouse Trap with Sugar Stick—Comparing Irradiated vs. Non-Irradiated
2.3.3. Experiment 3: Aedes aegypti Male Sampling with MosHouse Trap vs. MosHouse Tap with Sugar Stick—Effect of Internal Sugar Stick on Capture of Irradiated or Non-Irradiated Males
2.3.4. Experiment 4: Improved Aedes aegypti Male Sampling with Modified MosHouse Trap—Effect of Internal Sugar Stick and External Sticky Flag
2.3.5. Experiment 5: Aedes aegypti Male and Female Sampling Using MosHouse Trap with External Sticky Flag—Effect of Sexes Released Separately
2.3.6. Experiment 6: Aedes aegypti Male and Female Sampling Using MosHouse Trap with External Sticky Flag—Effect of Sexes Released Simultaneously
2.4. Statistical Analysis
3. Results
3.1. Aedes aegypti Male and Female Sampling with MosHouse Trap vs. BG-Sentinel Trap
3.2. Aedes aegypti Male Sampling with MosHouse Trap or MosHouse Trap with Sugar Stick—Comparing Irradiated vs. Non-Irradiated
3.3. Aedes aegypti Male Sampling with MosHouse Trap vs. MosHouse Traps with Sugar Stick—Effect of Sugar Stick on Capture of Irradiated or Non-Irradiated Males
3.4. Improved Aedes aegypti Male Sampling with MosHouse Trap—Effect of Internal Sugar Stick and External Sticky Flag
3.5. Aedes aegypti Male and Female Sampling Using MosHouse Trap with External Sticky Flags—Effect of Sexes Released Separately
3.6. Aedes aegypti Male and Female Sampling Using MosHouse Trap with External Sticky Flags—Effect of Sexes Released Simultaneously
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maciel-de-Freitas, R.; Peres, R.C.; Alves, F.; Brandolini, M.B. Mosquito traps designed to capture Aedes aegypti (Diptera: Culicidae) females: Preliminary comparison of Adultrap, MosquiTRAP and backpack aspirator efficiency in a dengue-endemic area of Brazil. Mem. Inst. Oswaldo Cruz 2008, 103, 602–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivagnaname, N.; Gunasekaran, K. Need for an efficient adult trap for the surveillance of dengue vectors. Indian J. Med. Res. 2012, 136, 739–749. [Google Scholar] [PubMed]
- Bazin, M.; Williams, C.R. Mosquito traps for urban surveillance: Collection efficacy and potential for use by citizen scientists. J. Vector Ecol. 2018, 43, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Mwanga, E.P.; Ngowo, H.S.; Mapua, S.A.; Mmbando, A.S.; Kaindoa, E.W.; Kifungo, K.; Okumu, F.O. Evaluation of an ultraviolet LED trap for catching Anopheles and Culex mosquitoes in south-eastern Tanzania. Parasites Vectors 2019, 12, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbalaghi, A.; Farooq, M.; Qualls, W.A.; Blore, K.; Xue, R.D. Semi-field evaluation of a modified commercial My Mosquito Deleter larval trap with sticky paper against Aedes aegypti. J. Vector Ecol. 2020, 45, 384–385. [Google Scholar] [CrossRef]
- de Santos, E.M.M.; de Melo-Santos, M.A.V.; de Oliveira, C.M.F.; Correia, J.C.; de Albuquerque, C.M.R. Evaluation of a sticky trap (AedesTraP), made from disposable plastic bottles, as a monitoring tool for Aedes aegypti populations. Parasites Vectors 2012, 5, 195. [Google Scholar] [CrossRef] [Green Version]
- Roslan, M.A.; Ngui, R.; Vythilingam, I.; Sulaiman, W.Y.W. Evaluation of sticky traps for adult Aedes mosquitoes in Malaysia: A potential monitoring and surveillance tool for the efficacy of control strategies. J. Vector Ecol. 2017, 42, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.d.M.; Marques, G.R.A.M.; Serpa, L.L.N.; Arduino, M.d.B.; Voltolini, J.C.; Barbosa, G.L.; Andrade, V.R.; de Lima, V.L.C. Density of Aedes aegypti and Aedes albopictus and its association with number of residents and meteorological variables in the home environment of dengue endemic area, São Paulo, Brazil. Parasites Vectors 2015, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Kline, D.L. Traps and trapping techniques for adult mosquito control. J. Am. Mosq. Control Assoc. 2006, 22, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Gorsich, E.E.; Beechler, B.R.; van Bodegom, P.M.; Govender, D.; Guarido, M.M.; Venter, M.; Schrama, M. A comparative assessment of adult mosquito trapping methods to estimate spatial patterns of abundance and community composition in southern Africa. Parasites Vectors 2019, 12, 462. [Google Scholar] [CrossRef]
- Saifur, R.G.M.; Dieng, H.; Hassan, A.A.; Salmah, M.R.C.; Satho, T.; Miake, F.; Hamdan, A. Changing domesticity of Aedes aegypti in Northern Peninsular Malaysia: Reproductive consequences and potential epidemiological implications. PLoS ONE 2012, 7, e30919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngugi, H.N.; Mutuku, F.M.; Ndenga, B.A.; Musunzaji, P.S.; Mbakaya, J.O.; Aswani, P.; Irungu, L.W.; Mukoko, D.; Vulule, J.; Kitron, U.; et al. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya. Parasites Vectors 2017, 10, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Getis, A.; Morrison, A.C.; Gray, K.; Scott, T.W. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 2003, 69, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Clark, G.G.; Seda, H.; Gubler, D.J. Use of the “CDC backpack aspirator” for surveillance of Aedes aegypti in San Juan, Puerto Rico. J. Am. Mosq. Control Assoc. 1994, 10, 119–124. [Google Scholar] [PubMed]
- Maciel-de-Freitas, R.; Lourenço-de-Oliveira, R. Presumed unconstrained dispersal of Aedes aegypti in the city of Rio de Janeiro, Brazil. Rev. Saúde Pública 2009, 43, 8–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciel-de-Freitas, R.; Eiras, Á.E.; Lourenço-de-Oliveira, R. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 2006, 101, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.R.; Long, S.A.; Webb, C.E.; Bitzhenner, M.; Geier, M.; Russell, R.C.; Ritchie, S.A. Aedes aegypti population sampling using BG-Sentinel traps in north Queensland Australia: Statistical considerations for trap deployment and sampling strategy. J. Med. Entomol. 2007, 44, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Velo, E.; Kadriaj, P.; Mersini, K.; Shukullari, A.; Manxhari, B.; Simaku, A.; Hoxha, A.; Caputo, B.; Bolzoni, L.; Rosà, R.; et al. Enhancement of Aedes albopictus collections by ovitrap and sticky adult trap. Parasites Vectors 2016, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Staunton, K.M.; Crawford, J.E.; Liu, J.; Townsend, M.; Han, Y.; Desnoyer, M.; Howell, P.; Xiang, W.; Burkot, T.R.; Snoad, N.; et al. A low-powered and highly selective trap for male Aedes (Diptera: Culicidae) surveillance: The male Aedes sound trap. J. Med. Entomol. 2020, 58, 408–415. [Google Scholar] [CrossRef]
- Gibson-Corrado, J.; Smith, M.L.; Xue, R.D.; Meng, F.X. Comparison of two new traps to the Biogents BG-Sentinel trap for collecting Aedes albopictus in North Florida. J. Am. Mosq. Control Assoc. 2017, 33, 71–74. [Google Scholar] [CrossRef]
- Krockel, U.; Rose, A.; Eiras, A.E.; Geier, M. New tools for surveillance of adult yellow fever mosquitoes: Comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 2006, 22, 229–238. [Google Scholar] [CrossRef]
- Lühken, R.; Pfitzner, W.P.; Börstler, J.; Garms, R.; Huber, K.; Schork, N.; Steinke, S.; Kiel, E.; Becker, N.; Tannich, E.; et al. Field evaluation of four widely used mosquito traps in Central Europe. Parasites Vectors 2014, 7, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capuno, B.; Ienco, A.; Manica, M.; Petrarca, V.; Rosà, R.; della Torre, A. New adhesive traps to monitor urban mosquitoes with a case study to assess the efficacy of insecticide control strategies in temperate areas. Parasites Vectors 2015, 8, 134. [Google Scholar]
- Eiras, A.E.; Buhagiar, T.S.; Ritchie, S.A. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, J.A.L.; Yen, N.T.; Nam, V.S.; Nghia, L.T.; Hoffmann, A.A.; Kay, B.H.; Ryan, P.A. Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue. PLoS Negl. Trop. Dis. 2009, 3, e552. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Montgomery, B.L.; Popovici, J.; Iturbe-Ormaetxe, I.; Johnson, P.H.; Muzzi, F.; Greenfield, M.; Durkan, M.; Leong, Y.S.; Dong, Y.; et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476, 454–457. [Google Scholar] [CrossRef]
- Unlu, I.; Farajollahi, A.; Healy, S.P.; Crepeau, T.; Bartlett-Healy, K.; Williges, E.; Strickman, D.; Clark, G.G.; Gaugler, R.; Fonseca, D.M. Area-wide management of Aedes albopictus: Choice of study sites based on geospatial characteristics, socioeconomic factors and mosquito populations. Pest Manag. Sci. 2011, 67, 965–974. [Google Scholar] [CrossRef]
- Facchinelli, L.; Valerio, L.; Pombi, M.; Reiter, P.; Costantini, C.; Della, T.A. Development of a novel sticky trap for container-breeding mosquitoes and evaluation of its sampling properties to monitor urban populations of Aedes albopictus. Med. Vet. Entomol. 2007, 21, 183–195. [Google Scholar] [CrossRef]
- Facchinelli, L.; Koenraadt, C.J.M.; Fanello, C.; Kijchalao, U.; Valerio, L.; Jones, J.W.; Scott, T.W.; della Torre, A. Evaluation of a sticky trap for collecting Aedes (Stegomyia) adults in a dengue-endemic area in Thailand. Am. J. Trop. Med. Hyg. 2008, 78, 904–909. [Google Scholar] [CrossRef]
- Rohde, B.B.; Staunton, K.M.; Zeak, N.C.; Beebe, N.; Snoad, N.; Bondarenco, A.; Liddington, C.; Anderson, J.A.; Xiang, W.; Mankin, R.W.; et al. Waterproof, low-cost, long-battery-life sound trap for surveillance of male Aedes aegypti for rear-and-release mosquito control programmes. Parasites Vectors 2019, 12, 417. [Google Scholar] [CrossRef] [Green Version]
- Akaratovic, K.I.; Kiser, J.P.; Gordon, S.; Abadam, C.F. Evaluation of the trapping performance of four Biogents AG Traps and two lures for the surveillance of Aedes albopictus and other host-seeking mosquitoes. J. Am. Mosq. Control Assoc. 2017, 33, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Ho-ório, N.A.; Codeço, C.T.; Alves, F.C.; Magalhães, M.a.F.M.; Lourenço-De-Oliveira, R. Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps. J. Med. Entomol. 2009, 46, 1001–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.D.; Benjamin, S.; Saranum, M.M.; Chiang, Y.F.; Lee, H.L.; Nazni, W.A.; Sofian-Azirun, M. Dengue vector surveillance in urban residential and settlement areas in Selangor, Malaysia. Trop. Biomed. 2005, 22, 39–43. [Google Scholar] [PubMed]
- Liew, C.; Curtis, C.F. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med. Vet. Entomol. 2004, 18, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez-Gonzalez, J.G.; Mercado-Hernandez, R.; Flores-Suarez, A.E.; Fernández-Salas, I. The use of sticky ovitraps to estimate dispersal of Aedes aegypti in northeastern Mexico. J. Am. Mosq. Control Assoc. 2001, 17, 93–97. [Google Scholar] [PubMed]
- de Melo, D.P.O.; Scherrer, L.R.; Eiras, Á.E. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: A space-time clusters analysis. PLoS ONE 2012, 7, e42125. [Google Scholar] [CrossRef] [PubMed]
- Chadee, D.D.; Ritchie, S.A. Efficacy of sticky and standard ovitraps for Aedes aegypti in Trinidad, West Indies. J. Vector Ecol. 2010, 35, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Eiras, A.E.; Resende, M.C. Preliminary evaluation of the “Dengue-MI” technology for Aedes aegypti monitoring and control. Cad. Saude Publica 2009, 25, S45–S58. [Google Scholar] [CrossRef] [Green Version]
- Fávaro, E.A.; Dibo, M.R.; Mondini, A.; Ferreira, A.C.; Barbosa, A.A.C.; Eiras, A.E.; Barata, E.A.; Chiaravalloti-Neto, F. Physiological state of Aedes (Stegomyia) aegypti mosquitoes captured with MosquiTRAPs in Mirassol, São Paulo, Brazil. J. Vector Ecol. 2006, 31, 285–291. [Google Scholar] [CrossRef]
- Ritchie, S.A.; Long, S.; Hart, A.; Webb, C.E.; Russell, R.C. An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J. Am. Mosq. Control Assoc. 2003, 19, 235–242. [Google Scholar]
- Sissoko, F.; Junnila, A.; Traore, M.M.; Traore, S.F.; Doumbia, S.; Dembele, S.M.; Schlein, Y.; Traore, A.S.; Gergely, P.; Xue, R.-D.; et al. Frequent sugar feeding behavior by Aedes aegypti in Bamako, Mali makes them ideal candidates for control with attractive toxic sugar baits (ATSB). PLoS ONE 2019, 14, e0214170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fikrig, K.; Johnson, B.J.; Fish, D.; Ritchie, S.A. Assessment of synthetic floral-based attractants and sugar baits to capture male and female Aedes aegypti (Diptera: Culicidae). Parasites Vectors 2017, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Barredo, E.; DeGennaro, M. Not just from blood: Mosquito nutrient acquisition from nectar sources. Trends Parasitol. 2020, 36, 473–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouagna, L.C.; Kerampran, R.; Lebon, C.; Brengues, C.; Toty, C.; Wilkinson, D.A.; Boyer, S.; Fontenille, D. Sugar-source preference, sugar intake and relative nutritional benefits in Anopheles arabiensis males. Acta Trop. 2014, 132, S70–S79. [Google Scholar] [CrossRef] [PubMed]
- Foster, W.A. Mosquito sugar feeding and reproductive energetics. Annu. Rev. Entomol. 1995, 40, 443–474. [Google Scholar] [CrossRef]
- Olson, M.F.; Garcia-Luna, S.; Juarez, J.G.; Martin, E.; Harrington, L.C.; Eubanks, M.D.; Badillo-Vargas, I.E.; Hamer, G.L. Sugar feeding patterns for Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) mosquitoes in South Texas. J. Med. Entomol. 2020, 57, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Upshur, I.F.; Bose, E.A.; Hart, C.; Lahondère, C. Temperature and sugar feeding effects on the activity of a laboratory strain of Aedes aegypti. Insects 2019, 10, 347. [Google Scholar] [CrossRef] [Green Version]
- Kittayapong, P.; Ninphanomchai, S.; Limohpasmanee, W.; Chansang, C.; Chansang, U.; Mongkalangoon, P. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl. Trop. Dis. 2019, 13, e0007771. [Google Scholar] [CrossRef] [Green Version]
- Kittayapong, P.; Thongyuan, S.; Olanratmanee, P.; Aumchareoun, W.; Koyadun, S.; Kittayapong, R.; Butraporn, P. Application of eco-friendly tools and eco-bio-social strategies to control dengue vectors in urban and peri-urban settings in Thailand. Pathog. Glob. Health 2012, 106, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Verdonschot, P.F.M.; Besse-Lototskaya, A.A. Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 2014, 45, 69–79. [Google Scholar] [CrossRef]
- Schäfer, M.; Storch, V.; Kaiser, A.; Beck, M.; Becker, N. Dispersal behavior of adult snow melt mosquitoes in the Upper Rhine Valley, Germany. J. Vector Ecol. 1997, 22, 1–5. [Google Scholar] [PubMed]
- Schäfer, M.L.; Lundström, J.O.; Pfeffer, M.; Lundkvist, E.; Landin, J. Biological diversity versus risk for mosquito nuisance and disease transmission in constructed wetlands in southern Sweden. Med. Vet. Entomol. 2004, 18, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Dugassa, S.; Lindh, J.M.; Torr, S.J.; Oyieke, F.; Lindsay, S.W.; Fillinger, U. Electric nets and sticky materials for analysing oviposition behaviour of gravid malaria vectors. Malar. J. 2012, 11, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Walker, E.D.; Giroux, P.Y.; Vulule, J.; Miller, J.R. Ovipositional site selection by Anopheles gambiae: Influences of substrate moisture and texture. Med. Vet. Entomol. 2005, 19, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Isoe, J.; Millar, J.G.; Beehler, J.W. Bioassays for Culex (Diptera: Culicidae) mosquito oviposition attractants and stimulants. J. Med. Entomol. 1995, 32, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.J.; Hurst, T.; Quoc, H.L.; Unlu, I.; Freebairn, C.; Faraji, A.; Ritchie, S.A. Field comparisons of the gravid Aedes trap (GAT) and BG-Sentinel trap for monitoring Aedes albopictus (Diptera: Culicidae) populations and notes on indoor GAT collections in Vietnam. J. Med. Entomol. 2017, 54, 340–348. [Google Scholar]
- Schoof, H.F. Mating, resting habits and dispersal of Aedes aegypti. Bull. World Health Organ. 1967, 36, 600–601. [Google Scholar]
- Ruth, L.M. A study of mosquito behavior: An experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). Am. Midl. Nat. 1948, 40, 265–352. [Google Scholar] [CrossRef]
- Juarez, J.G.; Garcia-Luna, S.; Chaves, L.F.; Carbajal, E.; Valdez, E.; Avila, C.; Tang, W.; Martin, E.; Barrera, R.; Hemme, R.R.; et al. Dispersal of female and male Aedes aegypti from discarded container habitats using a stable isotope mark-capture study design in South Texas. Sci. Rep. 2020, 10, 6803. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.C.; Pilitt, D.R. Observations on the sexual behavior of free-flying Aedes aegypti mosquitoes. Biol. Bull. 1973, 144, 480–488. [Google Scholar] [CrossRef]
- Farajollahi, A.; Kesavaraju, B.; Price, D.C.; Williams, G.M.; Healy, S.P.; Gaugler, R.; Nelder, M.P. Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. J. Med. Entomol. 2009, 46, 919–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, T.W.; Morrison, A. Aedes aegypti density and the risk of dengue virus transmission. In Ecological Aspects for Application of Genetically Modified Mosquitoes; Takken, W., Scott, T.W., Eds.; Kluwer Academic Publishers: Dordrecht, Germany, 2003; pp. 187–206. [Google Scholar]
- Ortega-López, L.D.; Pondeville, E.; Kohl, A.; León, R.; Betancourth, M.P.; Almire, F.; Torres-Valencia, S.; Saldarriaga, S.; Mirzai, N.; Ferguson, H.M. The mosquito electrocuting trap as an exposure-free method for measuring human-biting rates by Aedes mosquito vectors. Parasites Vectors 2020, 13, 31. [Google Scholar] [CrossRef] [PubMed]
Source | Type III Sum of Squares | Df | Mean Square | F | p-Value |
---|---|---|---|---|---|
Corrected model | 123.095 a | 15 | 8.206 | 38.877 | <0.001 |
Intercept | 680.805 | 1 | 680.805 | 3225.239 | <0.001 |
Trap | 36.980 | 1 | 36.980 | 175.189 | <0.001 |
Sex | 4.805 | 1 | 4.805 | 22.763 | <0.001 |
Position | 14.750 | 3 | 4.917 | 23.292 | <0.001 |
Trap vs. Sex | 23.120 | 1 | 23.120 | 109.528 | <0.001 |
Trap vs. Position | 21.325 | 3 | 7.108 | 33.675 | <0.001 |
Sex vs. Position | 14.010 | 3 | 4.670 | 22.124 | <0.001 |
Trap vs. Sex vs. Position | 8.105 | 3 | 2.702 | 12.799 | <0.001 |
Error | 672.100 | 3184 | 0.211 | ||
Total | 1476.000 | 3200 | |||
Corrected total | 795.195 | 3199 |
Source | Type III Sum of Squares | Df | Mean Square | F | p-Value |
---|---|---|---|---|---|
Corrected model | 4.582 a | 3 | 1.527 | 6.311 | <0.001 |
Intercept | 530.151 | 1 | 530.151 | 2190.504 | <0.001 |
Trap | 0.681 | 1 | 0.681 | 2.812 | 0.094 |
Exp | 3.901 | 1 | 3.901 | 16.117 | <0.001 |
Trap vs. Exp | 0.001 | 1 | 0.001 | 0.003 | 0.959 |
Error | 386.267 | 1596 | 0.242 | ||
Total | 921.000 | 1600 | |||
Corrected total | 390.849 | 1599 |
Source | Type III Sum of Squares | Df | Mean Square | F | p-Value |
---|---|---|---|---|---|
Corrected model | 3.802 a | 3 | 1.267 | 5.238 | 0.001 |
Intercept | 537.081 | 1 | 537.081 | 2220.000 | <0.001 |
Trap | 0.456 | 1 | 0.456 | 1.883 | 0.170 |
Exp | 3.331 | 1 | 3.331 | 13.767 | <0.001 |
Trap vs. Exp | 0.016 | 1 | 0.016 | 0.065 | 0.799 |
Error | 386.118 | 1596 | 0.242 | ||
Total | 927.000 | 1600 | |||
Corrected total | 389.919 | 1599 |
Source | Type III Sum of Squares | Df | Mean Square | F | p-Value |
---|---|---|---|---|---|
Corrected model | 12.912 a | 2 | 6.456 | 28.261 | <0.001 |
Intercept | 441.653 | 1 | 441.653 | 1933.399 | <0.001 |
Trap | 12.912 | 2 | 6.456 | 28.261 | <0.001 |
Error | 273.435 | 1197 | 0.228 | ||
Total | 728.000 | 1200 | |||
Corrected total | 286.347 | 1199 |
Source | Type III Sum of Squares | Df | Mean Square | F | p-Value |
---|---|---|---|---|---|
Corrected model | 79.532 a | 3 | 26.511 | 147.070 | <0.001 |
Intercept | 203.776 | 1 | 203.776 | 1130.464 | <0.001 |
Trap | 20.026 | 1 | 20.026 | 111.094 | <0.001 |
Sex | 0.601 | 1 | 0.601 | 3.332 | 0.068 |
Trap vs. Sex | 58.906 | 1 | 58.906 | 326.784 | <0.001 |
Error | 287.693 | 1596 | 0.180 | ||
Total | 571.000 | 1600 | |||
Corrected total | 367.224 | 1599 |
Source | Type III Sum of Squares | Df | Mean Square | F | p-Value |
---|---|---|---|---|---|
Corrected model | 95.145 a | 3 | 31.715 | 248.158 | <0.001 |
Intercept | 153.125 | 1 | 153.125 | 1198.147 | <0.001 |
Trap | 76.880 | 1 | 76.880 | 601.558 | <0.001 |
Sex | 1.445 | 1 | 1.445 | 11.307 | 0.001 |
Trap vs. Sex | 16.820 | 1 | 16.820 | 131.610 | <0.001 |
Error | 101.730 | 796 | 0.128 | ||
Total | 350.000 | 800 | |||
Corrected total | 196.875 | 799 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittayapong, P.; Kittayapong, R.; Ninphanomchai, S.; Limohpasmanee, W. The MosHouse® Trap: Evaluation of the Efficiency in Trapping Sterile Aedes aegypti Males in Semi-Field Conditions. Insects 2022, 13, 1050. https://doi.org/10.3390/insects13111050
Kittayapong P, Kittayapong R, Ninphanomchai S, Limohpasmanee W. The MosHouse® Trap: Evaluation of the Efficiency in Trapping Sterile Aedes aegypti Males in Semi-Field Conditions. Insects. 2022; 13(11):1050. https://doi.org/10.3390/insects13111050
Chicago/Turabian StyleKittayapong, Pattamaporn, Rungrith Kittayapong, Suwannapa Ninphanomchai, and Wanitch Limohpasmanee. 2022. "The MosHouse® Trap: Evaluation of the Efficiency in Trapping Sterile Aedes aegypti Males in Semi-Field Conditions" Insects 13, no. 11: 1050. https://doi.org/10.3390/insects13111050
APA StyleKittayapong, P., Kittayapong, R., Ninphanomchai, S., & Limohpasmanee, W. (2022). The MosHouse® Trap: Evaluation of the Efficiency in Trapping Sterile Aedes aegypti Males in Semi-Field Conditions. Insects, 13(11), 1050. https://doi.org/10.3390/insects13111050