Competition: A Missing Component of Fruit Fly (Diptera: Tephritidae) Risk Assessment and Planning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biological Background
2.1. Theoretical Framework
2.2. Competition by Invasive Fruit Flies
2.3. Asymmetrical Competition and Competitive Hierarchy
2.4. Mechanisms of Competition
3. Proposed Scenarios and Biosecurity Impacts
- Replacement or reduction of a previous key pest following establishment of a new pest,
- Displacement of existing pest species in space, time or host following establishment of a new pest,
- Non-establishment of a new pest in areas with competitively dominant species,
- Lesser fly resurgence following removal of a competitively superior species.
3.1. Replacement or Reduction of a Previous Key Pest following Establishment of a New Pest
3.2. Displacement of Existing Species in Space, Time, or Host with Establishment of New Pest
3.3. Non-Establishment of a New Pest in Areas with Competitively Dominant Species
3.4. Lesser Fly Resurgence following Removal of a Competitively Superior Species
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vargas, R.I.; Piñero, J.C.; Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 2015, 6, 297–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekesi, S.; De Meyer, M.; Mohamed, S.A.; Virgilio, M.; Borgemeister, C. Taxonomy, ecology, and management of native and exotic fruit fly species in Africa. Annu. Rev. Entomol. 2016, 61, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Frampton, E.R.; Nalder, K. A novel analysis of the risk of fresh produce imports. N. Z. Plant Prot. 2009, 62, 114–123. [Google Scholar] [CrossRef]
- Szyniszewska, A.; Leppla, N.C.; Huang, Z.; Tatem, A.J. Analysis of seasonal risk for importation of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), via air passenger traffic arriving in Florida and California. J. Econ. Entomol. 2016, 109, 2317–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dohino, T.; Hallman, G.J.; Grout, T.G.; Clarke, A.R.; Follett, P.A.; Cugala, D.R.; Tu, D.M.; Murdita, W.; Hernandez, E.; Pereira, R.; et al. Phytosanitary treatments against Bactrocera dorsalis (Diptera: Tephritidae): Current situation and future prospects. J. Econ. Entomol. 2017, 110, 67–79. [Google Scholar]
- Leach, P. Phytosanitary measures. In Biology and Management of Bactrocera and Related Fruit Flies; Clarke, A.R., Ed.; CAB International: Wallingford, UK, 2019; pp. 195–225. [Google Scholar]
- Clarke, A.R. Biology and Management of Bactrocera and Related Fruit Flies; CAB International: Wallingford, UK, 2019; pp. xiv + 254p. [Google Scholar]
- Nugnes, F.; Russo, E.; Viggiani, G.; Bernardo, U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trombik, J.; Ward, S.F.; Norrbom, A.L.; Liebhold, A.M. Global drivers of historical true fruit fly (Diptera: Tephritidae) invasions. J. Pest Sci. 2022, 1–13. [Google Scholar] [CrossRef]
- Ekesi, S.; Mohamed, S.A.; De Meyer, M. (Eds.) Fruit Fly Research and Development in Africa. Towards a Sustainable Management Strategy to Improve Horticulture; Springer: Basel, Switzerland, 2016. [Google Scholar]
- Papadopoulos, N. Fruit fly invasion: Historical, biological, economic aspects and management. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Shelly, T., Epsky, N., Jang, E.B., Reyes-Flores, J., Vargas, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 219–252. [Google Scholar]
- Neeley, A.D.; Bloem, S. Pest risk analysis for economically important Tephritidae: The crossroads between science, plant protection, and safe trade. In Proceedings of the 9th International Symposium on Fruit Flies of Economic Importance, Bangkok, Thailand, 12–16 May 2014; pp. 412–419. [Google Scholar]
- IPPC Secretariat. Glossary of Phytosanitary Terms. International Standard for Phytosanitary Measures No. 5; FAO on behalf of the Secretariat of the International Plant Protection Convention: Rome, Italy, 2021. [Google Scholar]
- Venette, R.C.; Kriticos, D.J.; Magarey, R.D.; Koch, F.H.; Baker, R.H.A.; Worner, S.P.; Raboteaux, N.N.G.; McKenney, D.W.; Dobesberger, E.J.; Yemshanov, D.; et al. Pest risk maps for invasive alien species: A roadmap for improvement. BioScience 2010, 60, 349–362. [Google Scholar] [CrossRef]
- Wakie, T.; Yee, W.; Neven, L. Assessing the risk of establishment of Rhagoletis cerasi (Diptera: Tephritidae) in the United States and globally. J. Econ. Entomol. 2018, 111, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Wang, C.; Zhao, Z.; Pan, X.; Li, Z. Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Clim. Change 2019, 155, 145–156. [Google Scholar] [CrossRef]
- Sultana, S.; Baumgartner, J.B.; Dominiak, B.C.; Royer, J.E.; Beaumont, L.J. Impacts of climate change on high priority fruit fly species in Australia. PLoS ONE 2020, 15, e0213820. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Baumgartner, J.B.; Dominiak, B.C.; Royer, J.E.; Beaumont, L.J. Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Sci. Rep. 2017, 7, 13025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maino, J.L.; Schouten, R.; Umina, P. Predicting the global invasion of Drosophila suzukii to improve Australian biosecurity preparedness. J. Appl. Ecol. 2020, 58, 789–800. [Google Scholar] [CrossRef]
- Baker, R.; Gilioli, G.; Behring, C.; Candiani, D.; Gogin, A.; Kaluski, T.; Kinkar, M.; Mosbach-Schulz, O.; Neri, F.M.; Preti, S.; et al. Bactrocera dorsalis Pest Report to Support Ranking of EU Candidate Priority Pests; EN-1641; European Food Safety Authority: Parma, Italy, 2019; p. 44. [Google Scholar]
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.-A.; Miret, J.A.J.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest categorisation of non-EU Tephritidae. EFSA J. 2020, 18, 5931. [Google Scholar]
- Birch, L.C. Natural selection between two species of tephritid fruit flies of the genus Dacus. Evolution 1961, 15, 360–374. [Google Scholar] [CrossRef]
- Keiser, I.; Kobayashi, R.M.; Miyashita, D.H.; Harris, E.J.; Schneider, E.L.; Chambers, D.L. Suppression of Mediterranean fruit flies by Oriental fruit flies in mixed infestations in guava. J. Econ. Entomol. 1974, 67, 355–360. [Google Scholar] [CrossRef]
- Bateman, M.A. Dispersal and species interaction as factors in the establishment and success of tropical fruit flies in new areas. Proc. Ecol. Soc. Aust. 1977, 10, 106–112. [Google Scholar]
- Fitt, G.P. The role of interspecific interactions in the dynamics of Tephritid populations. In World Crop Pests, Volume 3B, Fruit Flies, Their Biology, Natural Enemies and Control; Robinson, A.S., Cooper, G., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1989; Volume 3B, pp. 281–300. [Google Scholar]
- Duyck, P.-F.; David, P.; Quilici, S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol. Entomol. 2004, 29, 511–520. [Google Scholar] [CrossRef]
- Duyck, P.-F.; David, P.; Junod, G.; Brunel, C.; Dupont, R.; Quilici, S. Importance of competition mechanisms in successive invasions by polyphagous tephritids in La Reunion. Ecology 2006, 97, 1770–1780. [Google Scholar] [CrossRef]
- Vargas, R.I.; Leblanc, L.; Putoa, R.; Eitam, A. Impact of introduction of Bactrocera dorsalis (Diptera: Tephritidae) and classical biological control releases of Fopius arisanus (Hymenoptera: Braconidae) on economically important fruit flies in French Polynesia. J. Econ. Entomol. 2007, 100, 670–679. [Google Scholar] [CrossRef]
- Ekesi, S.; Billah, M.K.; Peterson, W.; Nderitu, W.; Lux, S.A.; Rwomushana, I. Evidence for competitive displacement of Ceratitis cosyra by the invasive fruit fly Bactrocera invadens (Diptera: Tephritidae) on mango and mechanisms contributing to the displacement. J. Econ. Entomol. 2009, 102, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Rwomushana, I.; Ekesi, S.; Ogol, C.; Gordon, I. Mechanisms contributing to the competitive success of the invasive fruit fly Bactrocera invadens over the indigenous mango fruit fly, Ceratitis cosyra: The role of temperature and resource pre-emption. Entomol. Exp. Appl. 2009, 133, 27–37. [Google Scholar] [CrossRef]
- Mze Hassani, I.; Raveloson-Ravaomanarivo, L.H.; Delatte, H.; Chiroleu, F.; Allibert, A.; Nouhou, S.; Quilici, S.; Duyck, P.F. Invasion by Bactrocera dorsalis and niche partitioning among tephritid species in Comoros. Bull. Entomol. Res. 2016, 106, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Rwomushana, I.; Tanga, C.M. Fruit fly species composition, distribution and host plants with emphasis on mango-infesting species. In Fruit Fly Research and Development in Africa. Towards a Sustainable Management Strategy to Improve Horticulture; Ekesi, S., Mohamed, S.A., Meyer, M.D., Eds.; Springer: Basel, Switzerland, 2016; pp. 71–106. [Google Scholar]
- Mahmoud, M.E.E.; Mohamed, S.A.; Ndlela, S.; Azrag, A.G.A.; Khamis, F.M.; Bashir, M.A.E.; Ekesi, S. Distribution, relative abundance, and level of infestation of the invasive peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) and its associated natural enemies in Sudan. Phytoparasitica 2020, 48, 589–605. [Google Scholar] [CrossRef]
- Facon, B.; Hafsi, A.; Masseliere, M.C.D.L.; Robin, S.; Massol, F.; Dubart, M.; Chiquet, J.E.; Duyck, P.-F.; Ravigne, V. Joint species distributions reveal the combined effects of host plants, abiotic factors and species competition as drivers of species abundances in fruit flies. Ecol. Lett. 2021, 24, 1905–1916. [Google Scholar] [CrossRef]
- Duyck, P.-F.; Jourdan, H.; Mille, C. Sequential invasions by fruit flies (Diptera: Tephritidae) in Pacific and Indian Ocean islands: A systematic review. Ecol. Evol. 2022, 12, e8880. [Google Scholar] [CrossRef]
- Paini, D.R.; Funderburk, J.E.; Reitz, S.R. Competitive exclusion of a worldwide invasive pest by a native. Quantifying competition between two phytophagous insects on two host plant species. J. Anim. Ecol. 2008, 77, 184–190. [Google Scholar] [CrossRef]
- Kenis, M.; Rabitsch, W.; Auger-Rozenberg, M.A.; Roques, A. How can alien species inventories and interception data help us prevent insect invasions? Bull. Entomol. Res. 2007, 97, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Goldson, S.L. Biosecurity, risk and policy: A New Zealand perspective. J. Verbrauch. Lebensm. 2011, 6, 41–47. [Google Scholar] [CrossRef]
- Biasazin, T.D.; Wondimu, T.W.; Herrera, S.L.; Larsson, M.; Mafra-Neto, A.; Gessese, Y.W.; Dekker, T. Dispersal and competitive release affect the management of native and invasive tephritid fruit fies in large and smallholder farms in Ethiopia. Sci. Rep. 2021, 11, 2690. [Google Scholar] [CrossRef]
- Moquet, L.; Payet, J.; Glenac, S.; Delatte, H. Niche shift of tephritid species after the Oriental fruit fly (Bactrocera dorsalis) invasion in La Reunion. Divers. Distrib. 2021, 27, 109–129. [Google Scholar] [CrossRef]
- Silva, D.R.d.B.; Roriz, A.K.P.; Petitinga, C.S.C.D.A.; Lima, I.V.G.; Nascimento, A.S.d.; Joachim-Bravo, I.S. Competitive interactions and partial displacement of Anastrepha obliqua by Ceratitis capitata in the occupation of host mangoes (Mangifera indica). Agric. For. Entomol. 2021, 23, 70–78. [Google Scholar] [CrossRef]
- Jeger, M.; Bragard, C.; Caffier, D.; Candresse, T.; Chatzivassiliou, E.; Dehnen-Schmutz, K.; Grégoire, J.C.; Miret, J.A.J.; MacLeod, A.; Navarro, M.N.; et al. Guidance on quantitative pest risk assessment. EFSA J. 2018, 16, e05350. [Google Scholar] [PubMed]
- Heger, T. A model for interpreting the process of invasion: Crucial situations favouring special characteristics of invasive species. In Plant Invasions: Species Ecology and Ecosystem Management; Brundu, G., Brock, J., Camarda, I., Child, L., Wade, M., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2001. [Google Scholar]
- Welsh, M.J.; Turner, J.A.; Epanchin-Niell, R.S.; Monge, J.J.; Soliman, T.; Robinson, A.P.; Kean, J.M.; Phillips, C.; Stringer, L.D.; Vereijssen, J.; et al. Approaches for estimating benefits and costs of interventions in plant biosecurity across invasion phases. Ecol. Appl. 2021, 31, e02319. [Google Scholar] [CrossRef] [PubMed]
- Hardin, G. The competitive exclusion principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBach, P. The competitive displacement and coexistence principles. Annu. Rev. Entomol. 1966, 11, 183–212. [Google Scholar] [CrossRef]
- Gause, G. Experimental analysis of Vito Volterrra’s mathematical theory of the struggle for existence. Science 1934, 79, 16–17. [Google Scholar] [CrossRef]
- Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. B 2002, 269, 2541–2550. [Google Scholar] [CrossRef] [Green Version]
- Amarasekare, P. Competitive coexistence in spatially structured environments: A synthesis. Ecol. Lett. 2003, 6, 1109–1122. [Google Scholar] [CrossRef]
- Barber, J.N.; Sezmis, A.L.; Woods, L.C.; Anderson, T.D.; Voss, J.M.; McDonald, M.J. The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae. ISME J. 2021, 15, 746–761. [Google Scholar] [CrossRef]
- Ke, P.-J.; Wan, J. Effects of soil microbes on plant competition: A perspective from modern coexistence theory. Ecol. Monogr. 2020, 90, e01391. [Google Scholar] [CrossRef]
- Kaplan, I.; Denno, R.F. Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory. Ecol. Lett. 2007, 10, 977–994. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.L.; Ames, E.M.; Wright, J.R.; Matthiopoulos, J.; Marra, P.P. Interspecific competition between resident and wintering birds: Experimental evidence and consequences of coexistence. Ecology 2021, 102, e03208. [Google Scholar] [CrossRef]
- Mwatawala, M.W.; De Meyer, M.; Makundi, R.H.; Maerere, A.P. Host range and distribution of fruit-infesting pestiferous fruit flies (Diptera, Tephritidae) in selected areas of Central Tanzania. Bull. Entomol. Res. 2009, 99, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Vargas, R.I.; Leblanc, L.; Putoa, R.; Piñero, J. Population dynamics of three Bactrocera spp. fruit flies (Diptera: Tephritidae) and two introduced natural enemies, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), after an invasion by Bactrocera dorsalis (Hendel) in Tahiti. Biol. Control 2012, 60, 199–206. [Google Scholar]
- Isabirye, B.E.; Akol, A.M.; Mayamba, A.; Nankinga, C.K.; Rwomushana, I. Species composition and community structure of fruit flies (Diptera: Tephritidae) across major mango-growing regions in Uganda. Int. J. Trop. Insect Sci. 2015, 35, 66–79. [Google Scholar] [CrossRef]
- Duyck, P.-F.; Patrice, D.; Quilici, S. Climatic niche partitioning following successive invasions by fruit flies in La Réunion. J. Anim. Ecol. 2006, 75, 518–526. [Google Scholar] [CrossRef]
- Geurts, K.; Mwatawala, M.W.; De Meyer, M. Dominance of an invasive fruit fly species, Bactrocera invadens, along an altitudinal transect in Morogoro, Eastern Central Tanzania. Bull. Entomol. Res. 2014, 104, 288–294. [Google Scholar] [CrossRef]
- De la Masselière, M.C.; Ravigné, V.; Facon, B.; Lefeuvre, P.; Massol, F.; Quilici, S.; Duyck, P.-F. Changes in phytophagous insect host ranges following the invasion of their community: Long-term data for fruit flies. Ecol. Evol. 2017, 7, 5181–5190. [Google Scholar] [CrossRef] [Green Version]
- Petitinga, C.S.C.D.A.; Roriz, A.K.P.; Joachim-Bravo, I.S. Competitive strategies between Anastrepha fraterculus and Anastrepha obliqua (Diptera: Tephritidae) regulating the use of host fruits. J. Appl. Entomolgy 2021, 145, 612–620. [Google Scholar] [CrossRef]
- Mze Hassani, I.; Delatte, H.; Ravaomanarivo, L.H.R.; Nouhou, S.; Duyck, P.-F. Niche partitioning via host plants and altitude among fruit flies following the invasion of Bactrocera dorsalis. Agric. For. Entomol. 2022, 24, 575–585. [Google Scholar] [CrossRef]
- Reitz, S.R.; Trumble, J.T. Competitive displacement among insects and arachnids. Annu. Rev. Entomol. 2002, 47, 435–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lux, S.A.; Copeland, R.S.; White, I.M.; Manrakhan, A.; Billah, M.K. A new invasive fruit fly species from the Bactrocera dorsalis (Hendel) group detected in East Africa. Insect Sci. Appl. 2003, 23, 355–361. [Google Scholar] [CrossRef]
- Drew, R.A.I.; Tsuruta, K.; White, I.M. A new species of pest fruit fly (Diptera: Tephritidae: Dacinae) from Sri Lanka and Africa. Afric. Entomol. 2005, 13, 149–154. [Google Scholar]
- Vayssières, J.-F.; De Meyer, M.; Ouagoussounon, I.; Sinzogan, A.; Adandonon, A.; Korie, S.; Wargui, R.; Anato, F.; Houngbo, H.; Didier, C.; et al. Seasonal abundance of mango fruit flies (Diptera: Tephritidae) and ecological implications for their management in mango and cashew orchards in Benin (Centre & North). J. Econ. Entomol. 2015, 108, 2213–2230. [Google Scholar] [PubMed]
- Vayssières, J.F.; Goergen, G.; Lokossou, O.; Dossa, P.; Akponon, C. A new Bactrocera species in Benin among mango fruit fly (Diptera: Tephritidae) species. Fruits 2009, 60, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Vayssières, J.F.; Korie, S.; Ayegnon, D. Correlation of fruit fly (Diptera Tephritidae) infestation of major mango cultivars in Borgou (Benin) with abiotic and biotic factors and assessment of damage. Crop Prot. 2009, 28, 477–488. [Google Scholar] [CrossRef]
- Vargas, R.I.; Walsh, W.A.; Nishida, T. Colonization of newly planted coffee fields: Dominance of Mediterranean fruit fly over oriental fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 1995, 88, 620–627. [Google Scholar] [CrossRef]
- Mwatawala, M.W.; De Meyer, M.; Makundi, R.H.; Maerere, A.P. Seasonality and host utilization of the invasive fruit fly, Bactrocera invadens (Dipt., Tephritidae) in central Tanzania. J. Appl. Entomol. 2006, 130, 530–537. [Google Scholar] [CrossRef]
- Dominiak, B.C.; Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 2012, 51, 104–115. [Google Scholar] [CrossRef]
- Dominiak, B.C.; Mapson, R. Revised distribution of Bactrocera tryoni in eastern Australia and effect on possible incursions of Mediterranean fruit fly: Development of Australia’s eastern trading block. J. Econ. Entomol. 2017, 110, 2459–2465. [Google Scholar] [CrossRef] [PubMed]
- Isbell, L.A. Contest and scramble competition: Patterns of female aggression and ranging behavior among primates. Behav. Ecol. 1991, 2, 143–155. [Google Scholar] [CrossRef]
- Lawton, J.H.; Hassell, M.P. Asymmetrical competition in insects. Nature 1981, 289, 793–795. [Google Scholar] [CrossRef]
- Shen, K.; Hu, J.; Wu, B.; An, K.; Zhang, J.; Liu, J.; Zhang, R. Competitive interactions between immature stages of Bactrocera cucurbitae (Coquillett) and Bactrocera tau (Walker) (Diptera: Tephritidae) under laboratory conditions. Neotrop. Entomol. 2014, 43, 335–343. [Google Scholar] [CrossRef]
- Vayssieres, J.-F.; Cayol, J.-P.; Caplong, P.; Seguret, J.; Midgarden, D.; van Sauers Muller, A.; Zucchi, R.A.; Uramoto, K.; Malavasi, A. Diversity of fruit fly (Diptera: Tephritidae) species in French Guiana: Their main host plants with associated parasitoids during the period 1994–2003 and prospects for management. Fruits 2013, 68, 219–243. [Google Scholar] [CrossRef] [Green Version]
- Deus, E.G.; Godoy, W.A.C.; Sousa, M.S.M.; Lopes, G.N.; Jesus-Barros, C.R.; Silva, J.G.; Adaime, R. Co-infestation and spatial distribution of Bactrocera carambolae and Anastrepha spp. (Diptera: Tephritidae) in common guava in the eastern Amazon. J. Insect Sci. 2016, 16, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duyck, P.-F.; David, P.; Quilici, S. Can more K-selected species be better invaders? A case study of fruit flies in La Réunion. Divers. Distrib. 2007, 13, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, C.; Hou, B.H.; Ou-Yang, G.C.; Ma, J. Interspecific competition between Ceratitis capitata and two Bactrocera spp. (Diptera: Tephritidae) evaluated via adult behavioral interference under laboratory conditions. J. Econ. Entomol. 2017, 110, 1145–1155. [Google Scholar] [CrossRef]
- Liendo, M.C.; Parreno, M.A.; Cladera, J.L.; Vera, M.T.; Segura, D.F. Coexistence between two fruit fly species is supported by the different strength of intra- and interspecific competition. Ecol. Entomol. 2018, 43, 294–303. [Google Scholar] [CrossRef]
- Cook, D.C.; Liu, S.; Murphy, B.; Lonsdale, W.M. Adaptive approaches to biosecurity governance. Risk Anal. 2010, 30, 1303–1314. [Google Scholar] [CrossRef]
- Cantrell, B.; Chadwick, B.; Cahill, A. Fruit Fly Fighters: Eradication of the Papaya Fruit Fly; CSIRO Publishing: Collingwood, Australia, 2001. [Google Scholar]
- Bellas, T. The Papaya Fruit Fly—A Failure of Quarantine; Parliament of Australia: Canberra, Australia, 1996.
- El-Sayed, A.M.; Suckling, D.M.; Byers, J.A.; Jang, E.B.; Wearing, C.H. Potential of ‘lure and kill’ in long-term pest management and eradication of invasive species. J. Econ. Entomol. 2009, 102, 815–835. [Google Scholar] [CrossRef] [PubMed]
- Stringer, L.D.; Kean, J.M.; Beggs, J.R.; Suckling, D.M. Management and eradication options for Queensland fruit fly. Popul. Ecol. 2017, 59, 259–273. [Google Scholar] [CrossRef]
- Grechi, I.; Preterre, A.L.; Lardenois, M.; Ratnadass, A. Bactrocera dorsalis invasion increased fruit fly incidence on mango production in Reunion Island. Crop Prot. 2022, 161, 106056. [Google Scholar] [CrossRef]
- Vargas, R.I.; Stark, J.D.; Kido, M.H.; Ketter, H.M.; Whitehand, L.C. Methyl eugenol and cue-lure traps for suppression of male oriental fruit flies and melon flies (Diptera: Tephritidae) in Hawaii: Effects of lure mixtures and weathering. J. Econ. Entomolgy 2000, 93, 81–87. [Google Scholar] [CrossRef]
- Grout, T.G. Cold and heat treatment technologies for post-harvest control of fruit flies in Africa. In Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture; Ekesi, S., Mohamed, S., De Meyer, M., Eds.; Springer Nature: Cham, Switzerland, 2016; pp. 465–473. [Google Scholar]
- Badii, K.B.; Billah, M.K.; Afreh-Nuamah, K.; Obeng-Ofori, D. Species composition and host range of fruit-infesting flies (Diptera: Tephritidae) in northern Ghana. Int. J. Trop. Insect Sci. 2015, 35, 137–151. [Google Scholar] [CrossRef]
- Geurts, K.; Mwatawala, M.; De Meyer, M. Indigenous and invasive fruit fly diversity along an altitudinal transect in Eastern Central Tanzania. J. Insect Sci. 2012, 12, 12. [Google Scholar] [CrossRef]
- Hancock, D.L.; Hamacek, E.L.; Lloyd, A.C.; Elson-Harris, M.M. The Distribution and Host Plants of Fruit Flies (Diptera: Tephritidae) in Australia; DPI Publications: Brisbane, Australia, 2000. [Google Scholar]
- Lloyd, A.C.; Hamacek, E.L.; Kopittke, R.A.; Peek, T.; Wyatt, P.M.; Neale, C.J.; Eelkema, M.; Gu, H.N. Area-wide management of fruit flies (Diptera: Tephritidae) in the Central Burnett district of Queensland, Australia. Crop Prot. 2010, 29, 462–469. [Google Scholar] [CrossRef]
- Lloyd, A.C.; Hamacek, E.L.; Smith, D.; Kopittke, R.A.; Gu, H. Host susceptibility of Citrus cultivars to Queensland fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 2013, 106, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Stephens, A.E.A.; Kriticos, D.J.; Leriche, A. The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull. Entomol. Res. 2007, 97, 369–378. [Google Scholar] [CrossRef]
- Kennedy, T.A.; Naeem, S.; Howe, K.M.; Knops, J.M.H.; Tilman, D.; Reich, P. Biodiversity as a barrier to ecological invasion. Nature 2002, 417, 636–638. [Google Scholar] [CrossRef]
- Levine, J.M.; Adler, P.B.; Yelenik, S.G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 2004, 7, 975–989. [Google Scholar] [CrossRef] [Green Version]
- Von Holle, B.; Simberloff, D. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 2005, 86, 3212–3218. [Google Scholar] [CrossRef] [Green Version]
- Malacrida, A.R.; Gomulski, L.M.; Bonizzoni, M.; Bertin, S.; Gasperi, G.; Guglielmino, C.R. Globalization and fruit fly invasion and expansion: The medfly paradigm. Genética 2007, 131, 1–9. [Google Scholar] [PubMed]
- San Jose, M.; Doorenweerd, C.; Leblanc, L.; Bar, N.; Geib, S.; Rubinoff, D. Tracking the origins of fly invasions; using mitochondrial haplotype diversity to identify potential source populations in two genetically intertwined fruit fly species (Bactrocera carambolae and Bactrocera dorsalis [Diptera: Tephritidae]). J. Econ. Entomol. 2018, 111, 2914–2926. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, E.A.; Mochida, O. From secondary to major pest status: The case of insecticide-induced rice brown planthopper, Nilaparvata lugens, resurgence. Prot. Ecol. 1984, 7, 201–218. [Google Scholar]
- Hardin, M.R.; Benrey, B.; Coll, M.; Lamp, W.O.; Roderick, G.K.; Barbosa, P. Arthropod pest resurgence: An overview of potential mechanisms. Crop Prot. 1995, 14, 3–18. [Google Scholar] [CrossRef]
- Dutcher, J.D. A Review of resurgence and replacement causing pest outbreaks in IPM. In General Concepts in Integrated Pest and Disease Management. Integrated Management of Plants Pests and Diseases, volume 1; Ciancio, A., Mukerji, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 27–43. [Google Scholar]
- Ito, Y. Effect of eradication of the Oriental fruit fly, Bactrocera dorsalis, on the population density of the melon fly, Bactrocera cucurbitae, in the Ryukyu Archipelago, estimated from the number of male flies captured by attractant traps. Appl. Enotomology Zool. 2005, 40, 625–630. [Google Scholar] [CrossRef] [Green Version]
- Duyck, V.A.; Hendrichs, J.; Robinson, A.S. (Eds.) Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Mankad, A.; Loechel, B.; Measham, P.F. Barriers and facilitators of area-wide management including sterile insect technique application: The example of Queensland Fruit Fly. In Area-Wide Integrated Pest Management: Development and Field Application; Hendrichs, J., Pereira, R., Vreysen, M.J.B., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 669–692. [Google Scholar]
- Calkins, C.O.; Klassen, W.; Liedo, P. (Eds.) Fruit Flies and the Sterile Insect Technique; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Osborne, R.; Meats, A.; Frommer, M.; Sved, J.A.; Drew, R.A.I.; Robson, M.K. Australian distribution of 17 species of fruit flies (Diptera: Tephritidae) caught in cue lure traps in February 1994. Aust. J. Entomol. 1997, 36, 45–50. [Google Scholar] [CrossRef]
- Fitt, G.P. Factors Limiting the Host Range of Tephritid Fruit Flies: With Particular Emphasis on the Influence of Dacus tryoni on the Distribution and Abundance of Dacus jarvisi. Ph.D. Thesis, University of Sydney, Sydney, Australia, 1983. [Google Scholar]
- Fitt, G.P. The influence of a shortage of hosts on the specificity of oviposition behaviour in species of Dacus (Diptera, Tephritidae). Physiol. Entomol. 1986, 11, 133–143. [Google Scholar] [CrossRef]
- Fitt, G.P. Variation in ovariole number and egg size of species of Dacus (Diptera: Tephritidae) and their relation to host specialization. Ecol. Entomol. 1990, 15, 255–264. [Google Scholar] [CrossRef]
- Tam, M.; Capon, T.; Whitten, S.; Tapsuwan, S.; Kandulu, J.; Measham, P. Assessing the economic benefit of area wide management and the sterile insect technique for the Queensland fruit fly in pest-free vs. endemic regions of South-east Australia. Int. J. Pest Manag. 2020, 1–17. [Google Scholar] [CrossRef]
- Pasquali, S.; Gilioli, G.; Janssen, D.; Winter, S. Optimal strategies for interception, detection, and eradication in plant biosecurity. Risk Anal. 2015, 35, 1663–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, G.H. Competitive exclusion, coexistence and community structure. Acta Biotheor. 1988, 37, 281–313. [Google Scholar] [CrossRef]
- French, C. Fruit flies. Journal of the Department of Agriculture Victoria 1907, 5, 301–312. [Google Scholar]
- Hely, P.C.; Pasfield, G.; Gellatley, J.G. Insect Pests of Fruit and Vegetables in New South Wales; Inkata Press: Sydney, Australia, 1982. [Google Scholar]
- Vera, M.T.; Rodriguez, R.; Segura, D.F.; Cladera, J.L.; Sutherst, R.W. Potential geographical distribution of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), with emphasis on Argentina and Australia. Environmental Entomology 2002, 31, 1009–1022. [Google Scholar] [CrossRef] [Green Version]
- Allman, S.L. The Queensland fruit fly. Observations on breeding and development. New South Wales Agricultural Gazette 1939, 50, 499–501, 547–549. [Google Scholar]
- O’Loughlin, G.T. A new look at fruit fly in Victoria. Journal of Agriculture (Victoria) 1975, 45, 8–15. [Google Scholar]
- Andrewartha, H.G.; Birch, L.C. The Distribution and Abundance of Animals; Chicago University Press: Chicago, IL, USA, 1954. [Google Scholar]
- Hogan, T.W. The history of economic entomology in Victoria from the time of Charles French. Journal of the Australian Entomological Society 1994, 33, 278–298. [Google Scholar] [CrossRef] [Green Version]
- Suckling, D.M.; Tobin, P.C.; McCullough, D.G.; Herms, D.A. Combining tactics to exploit allee effects for eradication of alien insect populations. Journal of Economic Entomolgy 2012, 105, 1–13. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clarke, A.R.; Measham, P.F. Competition: A Missing Component of Fruit Fly (Diptera: Tephritidae) Risk Assessment and Planning. Insects 2022, 13, 1065. https://doi.org/10.3390/insects13111065
Clarke AR, Measham PF. Competition: A Missing Component of Fruit Fly (Diptera: Tephritidae) Risk Assessment and Planning. Insects. 2022; 13(11):1065. https://doi.org/10.3390/insects13111065
Chicago/Turabian StyleClarke, Anthony R., and Penelope F. Measham. 2022. "Competition: A Missing Component of Fruit Fly (Diptera: Tephritidae) Risk Assessment and Planning" Insects 13, no. 11: 1065. https://doi.org/10.3390/insects13111065
APA StyleClarke, A. R., & Measham, P. F. (2022). Competition: A Missing Component of Fruit Fly (Diptera: Tephritidae) Risk Assessment and Planning. Insects, 13(11), 1065. https://doi.org/10.3390/insects13111065