New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossa, R.; Goczał, J. Global Diversity and Distribution of Longhorn Beetles (Coleoptera: Cerambycidae). Eur. Zool. J. 2021, 88, 289–302. [Google Scholar] [CrossRef]
- Tavakilian, G.; Chevillotte, H. Titan: Base de Données Internationales Sur Les Cerambycidae Ou Longicornes. Available online: http://titan.gbif.fr/index.html (accessed on 22 July 2022).
- Haack, R.A. Cerambycid Pests in Forests and Urban Trees. In Cerambycidae of the World: Biology and Pest Management; Wang, Q., Ed.; CRC Press: London, UK; New York, NY, USA, 2017; pp. 352–397. ISBN 9781315313245. [Google Scholar]
- Martínez, C. Escarabajos Longicornios (Coleoptera: Cerambycidae) de Colombia. Available online: http://hdl.handle.net/20.500.11761/32687 (accessed on 22 July 2022).
- Noguera, F.A. Biodiversidad de Cerambycidae (Coleoptera) en México. Rev. Mex. Biodivers. 2014, 85, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Monné, M.A. Catalogue of the Cerambycidae (Coleoptera) of the Neotropical Region. Part II. Subfamily Laminae. Available online: https://cerambycids.com/catalog/Monne_Jun2022_NeotropicalCat_part_II.pdf (accessed on 22 July 2022).
- Nascimento, F.E.L.; Botero, J.P. Synopsis of the Neotropical Genus Jupoata Martins & Monné, 2002 (Coleoptera: Cerambycidae). Pap. Avulsos Zool. 2018, 58, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Monné, M.A.; Nascimento, F.E.L.; Monné, M.L.; Santos-Silva, A. New Records, New Genera, and New Species in Acanthocinini (Lamiinae) from the Neotropical Region, and New Synonym in Cerambycinae (Coleoptera, Cerambycidae). Zootaxa 2019, 4624, 491–506. [Google Scholar] [CrossRef]
- Nascimento, F.E.L.; Santos-Silva, A.; McClarin, J. Flat-Faced Longhorn Beetles (Coleoptera: Cerambycidae: Lamiinae) from the Neotropical Region: New Species from Ecuador, Nomenclatural Changes and Notes. Ann. Soc. Entomol. Fr. 2020, 56, 215–234. [Google Scholar] [CrossRef]
- Santos-Silva, A.; Botero, J.P.; Wappes, J.E. Neotropical Acanthoderini (Coleoptera, Cerambycidae, Lamiinae): Synonymies and New Status in Some Genera, New Species, Transferences and New Distributional Records. Pap. Avulsos Zool. 2020, 60, e20206006. [Google Scholar] [CrossRef]
- Lingafelter, S.W.; Morris II, R.F.; Frederick, W.S.J.; Santos-Silva, A. A New Genus Cicatrisphaerion, New Species, New Records, and Redescriptions of Neotropical Cerambycidae (Coleoptera). Available online: https://journals.flvc.org/mundi/article/view/128844/129962 (accessed on 22 July 2022).
- Seidel, M.; Lüttke, M.; Cocquempot, C.; Potts, K.; Heeney, W.J.; Husemann, M. Citizen Scientists Significantly Improve Our Knowledge on the Non-Native Longhorn Beetle Chlorophorus Annularis (Fabricius, 1787) (Coleoptera, Cerambycidae) in Europe. BioRisk 2021, 16, 1–13. [Google Scholar] [CrossRef]
- Levine, J.M.; D’Antonio, C.M. Forecasting Biological Invasions with Increasing International Trade. Conserv. Biol. 2003, 17, 322–326. [Google Scholar] [CrossRef]
- Brasier, C.M. The Biosecurity Threat to the UK and Global Environment from International Trade in Plants. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Hulme, P.E. Trade, Transport and Trouble: Managing Invasive Species Pathways in an Era of Globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No Saturation in the Accumulation of Alien Species Worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Haack, R.A.; Hérard, F.; Sun, J.; Turgeon, J.J. Managing Invasive Populations of Asian Longhorned Beetle and Citrus Longhorned Beetle: A Worldwide Perspective. Annu. Rev. Entomol. 2010, 55, 521–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haack, R.A.; Bauer, L.S.; Gao, R.T.; McCarthy, J.J.; Miller, D.L.; Petrice, T.R.; Poland, T.M. Anoplophora Glabripennis Within-Tree Distribution, Seasonal Development, and Host Suitability in China and Chicago. Available online: https://scholar.valpo.edu/tgle/vol39/iss2/7 (accessed on 22 July 2022).
- Ernstsons, A.S.; Lin, M.Y.; Li, Y.; Hulcr, J. Host Associations between Xylophagous Longhorn Beetles (Coleoptera: Cerambycidae) and American Commodity Tree Species from Chinese Collection Sources. Manag. Biol. Invasions 2021, 12, 858–872. [Google Scholar] [CrossRef]
- Hänfling, B.; Edwards, F.; Gherardi, F. Invasive Alien Crustacea: Dispersal, Establishment, Impact and Control. BioControl 2011, 56, 573–595. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Peterson, A.T.; Soberón, J.; Overton, J.M.; Aragón, P.; Lobo, J.M. Use of Niche Models in Invasive Species Risk Assessments. Biol. Invasions 2011, 13, 2785–2797. [Google Scholar] [CrossRef]
- Robinson, N.M.; Nelson, W.A.; Costello, M.J.; Sutherland, J.E.; Lundquist, C.J. A Systematic Review of Marine-Based Species Distribution Models (SDMs) with Recommendations for Best Practice. Front. Mar. Sci. 2017, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Soberon, J.; Peterson, A.T. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodivers. Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.G.; Dawson, T.P. Predicting the Impacts of Climate Change on the Distribution of Species: Are Bioclimate Envelope Models Useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Soberón, J. Grinnellian and Eltonian Niches and Geographic Distributions of Species. Ecol. Lett. 2007, 10, 1115–1123. [Google Scholar] [CrossRef]
- Bascompte, J. Mutualistic Networks. Front. Ecol. Environ. 2009, 7, 429–436. [Google Scholar] [CrossRef]
- van Dam, N.M. How Plants Cope with Biotic Interactions. Plant Biol. 2009, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wisz, M.S.; Pottier, J.; Kissling, W.D.; Pellissier, L.; Lenoir, J.; Damgaard, C.F.; Dormann, C.F.; Forchhammer, M.C.; Grytnes, J.A.; Guisan, A.; et al. The Role of Biotic Interactions in Shaping Distributions and Realised Assemblages of Species: Implications for Species Distribution Modelling. Biol. Rev. 2013, 88, 15–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões, M.V.P.; Peterson, A.T. Utility and Limitations of Climate-Matching Approaches in Detecting Different Types of Spatial Errors in Biodiversity Data. Insect Conserv. Divers. 2018, 11, 407–414. [Google Scholar] [CrossRef]
- Dias, P.C. Sources and Sinks in Population Biology. Trends Ecol. Evol. 1996, 11, 326–330. [Google Scholar] [CrossRef]
- Schipper, J. Humid Chaco. Available online: https://www.oneearth.org/ecoregions/dry-chaco/ (accessed on 22 July 2022).
- Gomez Lutz, M.C.; Godoy, M.C. Diversidad y Grupos Funcionales de Formicidae (Insecta, Hymenoptera) de La Reserva Natural Educativa Colonia Benítez (Provincia Del Chaco, Argentina). Rev. FABICIB 2010, 14, 180–195. [Google Scholar] [CrossRef] [Green Version]
- Escobar, M.J.; Avalos, G.; Damborsky, M.P. Diversidad de Araneae (Arachnida) En La Reserva Colonia Benitez, Chaco Oriental Húmedo, Argentina. FACENA 2012, 28, 3–17. [Google Scholar] [CrossRef]
- Ibarra-Polesel, M.G.; Damborsky, M.P.; Porcel, E. Escarabajos Copronecrófagos (Scarabaeidae: Scarabaeinae) de La Reserva Natural Educativa Colonia Benítez, Chaco, Argentina. Rev. Mex. Biodivers. 2015, 86, 744–753. [Google Scholar] [CrossRef]
- Ibarra Polesel, M.G.; Damborsky, M.P. Changes in the Structure of Melolonthidae (Coleoptera: Scarabaeoidea) Assemblages along a Temporal Gradient in a Natural Reserve in Chaco, Argentina. Austral Entomol. 2017, 57, 377–386. [Google Scholar] [CrossRef]
- Morrone, J.J. Biogeographical Regionalisation of the Neotropical Region. Zootaxa 2014, 3782, 1–110. [Google Scholar] [CrossRef] [Green Version]
- Morello, J. Ecorregíón Chaco Húmedo. In Ecorregiones Y Complejos Ecosistémicos Argentinos; Morello, J., Matteucci, S., Rodriguez, A., Silva, M., Eds.; Orientación Gráfica Editora: Buenos Aires, Argentina, 2012; pp. 205–224. [Google Scholar]
- Bates, H.W. IX. On the Longicorn Coleoptera of Chontales, Nicaragua. Trans. R. Entomol. Soc. Lond. 1872, 20, 163–238. [Google Scholar] [CrossRef]
- Barros, R.C.; Da Fonseca, M.G.; Vendramini, V.E.; Julio, C.E.D.A. Species of Lamiinae (Insecta, Coleoptera, Cerambycidae) from East Paraná State (Brazil), with New Geographic Records. Zootaxa 2019, 4545, 179–204. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, A.; Botero, J.P.; Nascimento, F.E.D.L.; Silva, W.D. A New Synonym and Seventeen New Distributional Records in South American Cerambycidae (Coleoptera), with Notes on Chlorethe Scabrosa Zajciw, 1963. Pap. Avulsos Zool. 2020, 60, e20206010. [Google Scholar] [CrossRef]
- Melzer, J. Longicórneos Do Brasil, Novos Ou Pouco Conhecidos II (Coleoptera, Cerambycidae). Arch. Inst. Biol. 1930, 3, 187–208. [Google Scholar]
- Gilmour, E.F. On the Neotropical Acanthocinini (Coleoptera, Cerambycidae, Lamiinae). Some New Species of Lepturges Bates. Available online: https://repositorio.unal.edu.co/handle/unal/43192 (accessed on 22 July 2022).
- Tavakilian, G.; Berkov, A.; Meurer-Grimes, B.; Mori, S. Neotropical Tree Species and Their Faunas of Xylophagous Longicorns (Coleoptera: Cerambycidae) in French Guiana. Bot. Rev. 1997, 63, 303–355. [Google Scholar] [CrossRef]
- Turnbow, R.H.; Cave, R.D.; Thomas, M.C. A List of the Cerambycidae of Honduras, with Additions of Previously Unrecorded Species. Available online: http://hdl.handle.net/11036/3196 (accessed on 22 July 2022).
- Maes, J.M.; Berghe, E.; Dauber, D.; Audureau, A.; Nearns, E.; Skilman, F.; Monné, M.A. Catalogo Ilustrado de Los Cerambycidae (Coleoptera) de Nicaragua. Parte IV. Lamiinae-Disteniinae. Available online: https://www.zin.ru/animalia/Coleoptera/pdf/nicaragua_cerambycidae_2010-s4-lamiinae.pdf (accessed on 22 July 2022).
- Morvan, O.; Roguet, J.P. Inventaire Des Cerambycidae de Guyane (Coleoptera). Suppl. Bull. Liaison d’ACOREP Fr. “Le Coleopt. 2013, 7, 3–44. [Google Scholar]
- Roguet, J. Lamiaires Du Monde. Available online: https://lamiinae.org/about.html (accessed on 22 July 2022).
- Galileo, M.H.M.; Martins, U.R.; Santos-Silva, A. Two new species and one new genus of South American Cerambycidae (Coleoptera), with redescriptions and distributional records for other taxa. Insecta Mundi 2014, 360, 1–14. [Google Scholar]
- Cobos, M.E.; Jiménez, L.; Nuñez-Penichet, C.; Romero-Alvarez, D.; Simões, M. Sample data and training modules for cleaning biodiversity information. Biodivers. Inform. 2018, 13, 49–50. [Google Scholar] [CrossRef] [Green Version]
- RStudio, T. RStudio: Integrated Development for R. Available online: http://www.rstudio.com/ (accessed on 22 July 2022).
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Hijmans, R.J. Geographic Data Analysis and Modeling. R Package Version 3.4-5. Available online: https://cran.r-project.org/package=raster (accessed on 22 July 2022).
- Bivand, R.; Keitt, T.; Rowlingson, B. Bindings for the “Geospatial” Data Abstraction Library. R Package Version 1.5-32. Available online: https://cran.r-project.org/package=rgdal (accessed on 22 July 2022).
- Bezark, L.G. A Photographic Catalog of the Cerambycidae of the New World. Available online: http://bezbycids.com/byciddb/wdefault.asp?w=n/ (accessed on 22 July 2022).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Escobar, L.E.; Lira-Noriega, A.; Medina-Vogel, G.; Peterson, A.T. Potential for Spread of the White-Nose Fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to Assure Strict Model Transference. Geospat. Health 2014, 9, 221. [Google Scholar] [CrossRef]
- Campbell, L.P.; Luther, C.; Moo-Llanes, D.; Ramsey, J.M.; Danis-Lozano, R.; Peterson, A.T. Climate Change Influences on Global Distributions of Dengue and Chikungunya Virus Vectors. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140135. [Google Scholar] [CrossRef] [PubMed]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R Package for Detailed Development of Ecological Niche Models Using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://www.r-project.org/ (accessed on 22 July 2022).
- Dey, L.S.; Husemann, M.; Hochkirch, A.; Simões, M.V.P. Species Distribution Modelling Sheds Light on the Widespread Distribution of Sphingonotus (Sphingonotus) rubescens (Orthoptera: Acrididae: Oedipodinae). Biol. J. Linn. Soc. 2021, 132, 912–924. [Google Scholar] [CrossRef]
- Drake, J.M. Range Bagging: A New Method for Ecological Niche Modelling from Presence-Only Data. J. R. Soc. Interface 2015, 12, 20150086. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, L.; Soberón, J.; Christen, J.A.; Soto, D. On the Problem of Modeling a Fundamental Niche from Occurrence Data. Ecol. Model. 2019, 397, 74–83. [Google Scholar] [CrossRef]
- Nuñez-Penichet, C.; Osorio-Olvera, L.; Gonzalez, V.H.; Cobos, M.E.; Jiménez, L.; DeRaad, D.A.; Alkishe, A.; Contreras-Díaz, R.G.; Nava-Bolaños, A.; Utsumi, K.; et al. Geographic Potential of the World’s Largest Hornet, Vespa mandarinia Smith (Hymenoptera: Vespidae), Worldwide and Particularly in North America. PeerJ 2021, 9, e10690. [Google Scholar] [CrossRef]
- Brown, J.H. On the Relationship between Abundance and Distribution of Species. Available online: http://www.jstor.org/stable/2461494 (accessed on 22 July 2022).
- Osorio-Olvera, L.; Soberón, J.; Falconi, M. On Population Abundance and Niche Structure. Ecography 2019, 42, 1415–1425. [Google Scholar] [CrossRef]
- Cobos, M.E.; Osorio-Olvera, L.; Soberón, J.; Peterson, A.T.; Barve, V.; Barve, N. Ellipsenm: Ecological Niche’s Characterizations Using Ellipsoids. R Package. Available online: https://github.com/marlonecobos/ellipsenm (accessed on 22 July 2022).
- Van Aelst, S.; Rousseeuw, P. Minimum Volume Ellipsoid. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 71–82. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking Receiver Operating Characteristic Analysis Applications in Ecological Niche Modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Anderson, R.P.; Lew, D.; Peterson, A.T. Evaluating Predictive Models of Species’ Distributions: Criteria for Selecting Optimal Models. Ecol. Model. 2003, 162, 211–232. [Google Scholar] [CrossRef]
- Barve, N.; Barve, V.; Jiménez-Valverde, A.; Lira-Noriega, A.; Maher, S.P.; Peterson, A.T.; Soberón, J.; Villalobos, F. The Crucial Role of the Accessible Area in Ecological Niche Modeling and Species Distribution Modeling. Ecol. Model. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]
- Haack, R.A.; Keena, M.A.; Eyre, D. Life History and Population Dynamics of Cerambycids. In Cerambycidae of the World: Biology and Pest Management; Wang, Q., Ed.; CRC Press: London, UK; New York, NY, USA, 2017; pp. 71–94. ISBN 9781315313245. [Google Scholar]
- Williams, J.N.; Seo, C.; Thorne, J.; Nelson, J.K.; Erwin, S.; O’Brien, J.M.; Schwartz, M.W. Using Species Distribution Models to Predict New Occurrences for Rare Plants. Divers. Distrib. 2009, 15, 565–576. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A Python-Based GIS Toolkit for Landscape Genetic, Biogeographic and Species Distribution Model Analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- QGIS Development Team QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://www.qgis.org/ (accessed on 22 July 2022).
- Soberón, J.; Nakamura, M. Niches and Distributional Areas: Concepts, Methods, and Assumptions. Proc. Natl. Acad. Sci. USA 2009, 106, 19644–19650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, A.E.; Goulden, M.L. Rapid Shifts in Plant Distribution with Recent Climate Change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef] [Green Version]
- Lenoir, J.; Gégout, J.C.; Marquet, P.A.; De Ruffray, P.; Brisse, H. A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Thuiller, W.; Jiguet, F. How Much Do We Overestimate Future Local Extinction Rates When Restricting the Range of Occurrence Data in Climate Suitability Models? Ecography 2010, 33, 878–886. [Google Scholar] [CrossRef]
- Dullinger, S.; Gattringer, A.; Thuiller, W.; Moser, D.; Zimmermann, N.E.; Guisan, A.; Willner, W.; Plutzar, C.; Leitner, M.; Mang, T.; et al. Extinction Debt of High-Mountain Plants under Twenty-First-Century Climate Change. Nat. Clim. Chang. 2012, 2, 619–622. [Google Scholar] [CrossRef]
- Fassbender, J.L. Diversity, Resource Partitioning, and Species Turnover in Neotropical Saproxylic Beetles (Coleoptera: Cerambycidae, Curculionidae) Associated with Trees in the Brazil Nut Family (Lecythidaceae). Ph.D. Thesis, City University of New York, New York, NY, USA, 2013. [Google Scholar]
- Holdefer, D.R.; Sartor, V.; Mello García, F.R. Flutuação Populacional De Espécies Predominantes De Cerambycidae Em Mata Atlântica Do Sul Do Brasil. Available online: https://www.interciencia.net/wp-content/uploads/2017/11/745-Holdefer-6.pdf (accessed on 22 July 2022).
- Berkov, A. Seasonality and Stratification: Neotropical Saproxylic Beetles Respond to a Heat and Moisture Continuum with Conservatism and Plasticity. In Saproxylic Insects: Diversity, Ecology and Conservation; Ulyshen, M.D., Ed.; Springer: Heidelberg, Germany, 2018; pp. 547–578. [Google Scholar]
- POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew, UK. Available online: http://www.plantsoftheworldonline.org/ (accessed on 22 July 2022).
- Chudnoff, M. Tropical Timbers of the World; USDA Forest Service: Washington, DC, USA, 1984. [Google Scholar]
- Mark, J.; Newton, A.; Oldfield, S.; Rivers, M. The International Timber Trade: A Working List of Commercial Timber Tree Species. Available online: http://eprints.bournemouth.ac.uk/24470/7/TimberWorkingList.pdf (accessed on 22 July 2022).
- Haack, R.A.; Britton, K.O.; Brockerhoff, E.G.; Cavey, J.F.; Garrett, L.J.; Kimberley, M.; Lowenstein, F.; Nuding, A.; Olson, L.J.; Turner, J.; et al. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on Reducing Wood Borer Infestation Rates in Wood Packaging Material Entering the United States. PLoS ONE 2014, 9, e96611. [Google Scholar] [CrossRef] [Green Version]
- Rassati, D.; Faccoli, M.; Haack, R.A.; Rabaglia, R.J.; Toffolo, E.P.; Battisti, A.; Marini, L. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA. PLoS ONE 2016, 11, e0158519. [Google Scholar] [CrossRef] [Green Version]
- Meurisse, N.; Rassati, D.; Hurley, B.P.; Brockerhoff, E.G.; Haack, R.A. Common Pathways by Which Non-Native Forest Insects Move Internationally and Domestically. J. Pest Sci. 2019, 92, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Rabitsch, W. Pathways and Vectors of Alien Arthropods in Europe. Chapter 3. BioRisk 2010, 4, 27–43. [Google Scholar] [CrossRef]
- Coyle, D.R.; Trotter, R.T.; Bean, M.S.; Pfister, S.E. First Recorded Asian Longhorned Beetle (Coleoptera: Cerambycidae) Infestation in the Southern United States. J. Integr. Pest Manag. 2021, 12, 10. [Google Scholar] [CrossRef]
- Hierro, J.L.; Maron, J.L.; Callaway, R.M. A Biogeographical Approach to Plant Invasions: The Importance of Studying Exotics in Their Introduced and Native Range. J. Ecol. 2005, 93, 5–15. [Google Scholar] [CrossRef]
- Mitchell, C.E.; Power, A.G. Release of Invasive Plants from Fungal and Viral Pathogens. Nature 2003, 421, 625–627. [Google Scholar] [CrossRef]
- Torchin, M.E.; Lafferty, K.D.; Dobson, A.P.; McKenzie, V.J.; Kuris, A.M. Introduced Species and Their Missing Parasites. Nature 2003, 421, 628–630. [Google Scholar] [CrossRef]
- Sax, D.F.; Kinlan, B.P.; Smith, K.F. A Conceptual Framework for Comparing Species Assemblages in Native and Exotic Habitats. Oikos 2005, 108, 457–464. [Google Scholar] [CrossRef]
- Callaway, R.M.; Maron, J.L. What Have Exotic Plant Invasions Taught Us over the Past 20 Years? Trends Ecol. Evol. 2006, 21, 369–374. [Google Scholar] [CrossRef]
- Mitchell, C.E.; Agrawal, A.A.; Bever, J.D.; Gilbert, G.S.; Hufbauer, R.A.; Klironomos, J.N.; Maron, J.L.; Morris, W.F.; Parker, I.M.; Power, A.G.; et al. Biotic Interactions and Plant Invasions. Ecol. Lett. 2006, 9, 726–740. [Google Scholar] [CrossRef]
- Whitney, K.D.; Gabler, C.A. Rapid Evolution in Introduced Species, ‘Invasive Traits’ and Recipient Communities: Challenges for Predicting Invasive Potential. Divers. Distrib. 2008, 14, 569–580. [Google Scholar] [CrossRef]
- Kovalev, O. The Solitary Population Wave, a Physical Phenomenon Accompanying the Introduction of a Chrysomelid. In New Developments in the Biology of Chrysomelidae; Jolivet, P., Santiago-Blay, J.A., Schmitt, M., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 2004; pp. 591–601. [Google Scholar]
- Kergoat, G.J.; Meseguer, A.S.; Jousselin, E. Evolution of Plant–Insect Interactions: Insights from Macroevolutionary Approaches in Plants and Herbivorous Insects. Adv. Bot. Res. 2017, 81, 25–53. [Google Scholar] [CrossRef]
- Berkov, A.; Tavakilian, G. Host utilization of the Brazil nut family (Lecythidaceae) by sympatric wood-boring species of Palame (Coleoptera, Cerambycidae, Lamiinae, Acanthocinini). Biol. J. Linn. Soc. 1999, 67, 181–198. [Google Scholar] [CrossRef]
- Linsley, E.G. Ecology of Cerambycidae. Annu. Rev. Entomol. 1959, 4, 99–138. [Google Scholar] [CrossRef]
- Serra, C.A.; Jorge, P.E.; Abud-Antún, A.J.; Alvarez, P.; Perguero, B. Invasive Alien Species Inthe Dominican Republic: Their Impact and Strategies to Manage Introduced Pests. In Proceedings of the 39th Annual Meeting, West Indies, Grenada, 13–18 July 2003; Volume 39, pp. 102–118. [Google Scholar]
- Atauchi, P.J.; Peterson, A.T.; Flanagan, J. Species Distribution Models for Peruvian Plantcutter Improve with Consideration of Biotic Interactions. J. Avian Biol. 2018, 49, jav-01617. [Google Scholar] [CrossRef]
- Barbaro, L.; Allan, E.; Ampoorter, E.; Castagneyrol, B.; Charbonnier, Y.; De Wandeler, H.; Kerbiriou, C.; Milligan, H.T.; Vialatte, A.; Carnol, M.; et al. Biotic Predictors Complement Models of Bat and Bird Responses to Climate and Tree Diversity in European Forests. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182193. [Google Scholar] [CrossRef] [Green Version]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- The Nature Conservancy. Evaluación Ecoregional Del Gran Chaco Americano. Evaluación Ecoregional Del Gran Chaco Americano. Fundación Vida Silvestre Argentina, 1st ed.; The Nature Conservancy, Fundación DeSdel Chaco, Wildlife Conservation Society-Bolivia: Buenos Aires, Argentina, 2005; ISBN 9509427128. [Google Scholar]
- Aide, T.M.; Clark, M.L.; Grau, H.R.; López-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Núñez, M.J.; Muñiz, M. Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
Locality Name | Latitude | Longitude | Reference |
---|---|---|---|
Itatiaia, Rio de Janeiro (Brazil) | 22°29′46″ S | 44°33′47″ W | speciesLink (2022) |
Valentim Gentil, Sao Paulo (Brazil) | 20°22′25″ S | 50°05′17″ W | GBIF.org (2022) |
Céu Azul, Parana (Brazil) | 25°04′09″ S | 53°39′35″ W | GBIF.org (2022) |
Laranja da Terra, Río Guandú, Espirito Santo (Brazil) | 19°54′39″ S | 41°05′04″ W | [41] |
Parintins, Amazonas (Brazil) | 02°38′06″ S | 56°43′55″ W | MZSP |
Rio Purus, Amazonas (Brazil) | 03°41′20″ S | 61°26′46″ W | MZSP |
Maués, Amazonas (Brazil) | 03°23′00″ S | 57°43′06″ W | MZSP |
Salobra, Mato Grosso (Brazil) | 20°11′59″ S | 56°31′39″ W | MZSP |
Fazenda Beija Flor, Mato Grosso (Brazil) | 21°02′06″ S | 56°27′23″ W | MZSP |
Nova Teutônia, Santa Catarina (Brazil) | 27°09′48″ S | 52°25′22″ W | MZSP |
Linhares, Espírito Santo (Brazil) | 19°23′57″ S | 40°03′56″ W | MZSP |
Córrego do Itá, Espírito Santo (Brazil) | 18°38′21″ S | 40°51′42″ W | MZSP |
Rio Nhamundá, Pará (Brazil) | 01°10′09″ S | 57°57′51″ W | MZSP |
Pouso Alegre, Minas Gerais (Brazil) | 22°13′41″ S | 45°56′01″ W | MZSP |
Belo Horizonte, Minas Gerais (Brazil) | 19°55′41″ S | 43°56′31″ W | MZSP |
Viçosa, Minas Gerais (Brazil) | 20°45′14″ S | 42°52′55″ W | MZSP |
Rondon, Brasilien (Brazil) | 24°38′00″ S | 54°07′00″ W | Smithsonian Institute |
Hotel F & F, Buena Vista, Santa Cruz (Bolivia) | 17°27′31″ S | 63°40′09″ W | Smithsonian Institute |
Guanay (Bolivia) | 15°29′54″ S | 67°53′03″ W | MZSP |
Area de Conservación Guanacaste, La Cruz, Finca Jenny, Guanacaste (Costa Rica) | 10°51′57″ N | 85°34′26″W | GBIF.org (2022) |
Bagaces, Parque Nacional Palo Verde, Sector Palo Verde, Guanacaste (Costa Rica) | 10°20′56″ N | 85°21′08″ W | GBIF.org (2022) |
A.C.P.C, Garabito, Tarcoles, Estación Quebrada Bonita, Puntarenas (Costa Rica) | 09°46′02″ N | 84°36′29″ W | GBIF.org (2022) |
Osa, Ciudad Puerto Cortes, Cuesta del Burro Puntarenas (Costa Rica) | 09°01′25″ N | 83°30′31″ W | GBIF.org (2022) |
Ebene Limón, Reventazon, Hamburg Farm (Costa Rica) | 10°04′45″ N | 83°34′39″ W | MZSP |
Sándalo, Golfo Dulce (Costa Rica) | 08°34′08″ N | 83°22′14″ W | Smithsonian Institute |
Zone Sinnamary, Crique Plomb, Sinnamary (French Guyana) | 05°00′00″ N | 52°57′14″ W | [43] |
Zone Bélizon, Route Forestière, Roura (French Guyana) | 04°16′33″ N | 52°38′34″ W | [46] |
Zone L’île de Cayenne, Rémire (Degrad des Cannes), Cayenne, (French Guyana) | 04°53′02″ N | 52°19′12″ W | [46] |
Zone Iracoubo, RN 1 (PK 172), Iracoubo (French Guyana) | 05°29′20″ N | 53°19′58″ W | [46] |
Zone Centrale, Saül, Saül (French Guyana) | 03°51′57″N | 53°23′13″ W | [46] |
El Paraiso, Caripe, (Honduras) | 13°58′55″N | 85°49′26″ W | [44] |
NE Ixtapa, Hwy 200, Guerro (Mexico) | 17°39′28″N | 101°34′32″ W | Smithsonian Institute |
Gomez Farias, Bocatoma, Tamaulipas (Mexico) | 22°59′15″ N | 99°08′55″ W | Smithsonian Institute |
Barro Colorado I., C. Zone (Panamá) | 09°09′58″ N | 79°50′21″ W | Smithsonian Institute |
W. Ipiti, Bayano (Panamá) | 09°09′00″ N | 78°50′00″ W | Smithsonian Institute |
Los Guatuzos, Rio Papaturro, Río San Juan (Nicaragua) | 11°02′27″ N | 85°05′13″ W | GBIF.org (2022) |
Las Flores, Masaya (Nicaragua) | 12°00′16″ N | 86°01′11″ W | GBIF.org (2022) |
Matagalpa, La Sombra (Nicaragua) | 13°11′06″ N | 85°45′00″ W | [47] |
Chontales, (Nicaragua) | 12°16′00″ N | 84°59′00″ W | [38] |
Caaguazú, Repatriación (Paraguay) | 25°32′16″ S | 55°59′24″ W | [48] |
Concepción, Azotey (Paraguay) | 23°19′08″ S | 56°29′16″ W | [48] |
Junín, Chanchamayo (Peru) | 11°03′00″ S | 75°18′14″ W | [42] |
Private field, Primero de Mayo, Colonia Benítez, Chaco (Argentina) | 27°20′17″ S | 58°58′01″ W | This publication |
Los Chaguares, Primero de Mayo, Colonia Benítez, Chaco (Argentina) | 27°19′59″ S | 58°57′57″ W | This publication |
Method | Mean AUC Ratio at 5% | p-Value (Partial ROC) | Valid Iterations | Omission Rate | Prevalence in E-Space | Prevalence in G-Space |
---|---|---|---|---|---|---|
covmat | 1.984 | <0.001 | 500 | 0 | 0.712 | 0.712 |
mve1 | 1.68 | <0.001 | 500 | 0 | 0.693 | 0.693 |
Bioclimatic Variables | Niche Volume: C. fragans | Niche Volume: L. limpidus | Overlap | Overlap (p-Value) | Size Ratio: Niche 1 vs. Niche 2 | Size Ratio: Niche 2 vs. Niche 1 |
---|---|---|---|---|---|---|
All | 4.947 | 114.518 | 0.529 | 0.845 | 0.529 | 1.890 |
Precipitation | 5.458 | 42.262 | 0.533 | 0.651 | 0.533 | 1.876 |
Temperature | 0.664 | 32.309 | 0.488 | 0.936 | 0.488 | 2.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valle, N.G.; Simões, M.V.P. New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population? Insects 2022, 13, 1069. https://doi.org/10.3390/insects13111069
Valle NG, Simões MVP. New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population? Insects. 2022; 13(11):1069. https://doi.org/10.3390/insects13111069
Chicago/Turabian StyleValle, Néstor G., and Marianna V. P. Simões. 2022. "New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population?" Insects 13, no. 11: 1069. https://doi.org/10.3390/insects13111069
APA StyleValle, N. G., & Simões, M. V. P. (2022). New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population? Insects, 13(11), 1069. https://doi.org/10.3390/insects13111069