Nutritional Composition of Some Commonly Available Aquatic Edible Insects of Assam, India
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Biochemical and Elemental Analysis
2.3. Data Analysis
3. Results
3.1. Proximate Composition
3.2. Elemental Composition
3.3. Antioxidant Properties
3.4. Antinutritional Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hlongwane, Z.T.; Slotow, R.; Munyai, T.C. Indigenous Knowledge about Consumption of Edible Insects in South Africa. Insects 2020, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Li, Y.O. Edible insects as a means to address global malnutrition and food insecurity issues. Food Qual. Saf. 2018, 2, 17–26. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and sensory quality of edible insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Melo, V.; Garcia, M.; Sandoval, H.; Jimenez, H.D.; Calvo, C. Quality proteins from edible indigenous insect food of Latin America and Asia. Emir. J. Food Agric. 2011, 23, 283–289. [Google Scholar]
- Schluter, O.; Rumpold, B.; Holzhauser, T.; Roth, A.; Vogel, R.F.; Quasigroch, W.; Vogel, S.; Heinz, V.; Jager, H.; Bandick, N.; et al. Safety aspects of the production of foods and food ingredients from insects. Mol. Nutr. Food Res. 2017, 61, 1600520. [Google Scholar] [CrossRef]
- Bukkens, S.G. The nutritional value of edible insects. Ecol. Food Nutr. 1997, 36, 287–319. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O.; Borkovcova, M.; Bednarova, M. A comprehensive look at the possibilities of edible insects as food in Europe—A review. Pol. J. Food Nutr. Sci. 2014, 64, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Rumpold, B.A.; Schluter, O.K. Nutritional composition and safety attributes of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar]
- Van Huis, A. Edible insects are the future? Proc. Nutr. Soc. 2016, 75, 294–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polhemus, J.T. Aquatic and Semi aquatic Hemiptera. In An Introduction to the Aquatic Insects of North America; Meritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall Hunt: Dubuque, IA, USA, 2008; pp. 385–423. [Google Scholar]
- Muzzarelli, R.A.A.; Terbojevich, M.; Muzzarelli, C.; Miliani, M.; Francescangeli, O. Partial depolymerization of chitosan with the aid of papain. In Chitin Enzymology; Muzzarelli, R.A.A., Ed.; Atec: Grottammare, Italy, 2001; pp. 405–414. [Google Scholar]
- Rumpold, B.A.; Schluter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Defoliart, G.R. Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. Crop Prot. 1992, 11, 395–399. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of sex on the nutritional value house cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef]
- Williams, D.; Williams, S. Aquatic insects and their potential to contribute to the diet of the globally expanding human population. Insects 2017, 8, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanboonsong, Y. Edible Insects and Associated Food Habits in Thailand. In Forest Insects as Food: Humans Bite Back, Proceedings of a Workshop on Asia-Pacific Resources and Their Potential for Development, Chiang Mai, Thailand, 19–21 February 2008; Durst, P.B., Johnson, D.V., Leslie, R.L., Shono, K., Eds.; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2010; pp. 173–182. [Google Scholar]
- Chen, X.; Feng, Y.; Chen, Z. Common edible insects and their utilization in China. Entomol. Res. 1998, 39, 299–303. [Google Scholar] [CrossRef]
- Hershey, A.E.; Lamberti, G.A. Aquatic insect ecology. In Ecology and Classification of North American Freshwater Invertebrates, 2nd ed.; Thorp, J.H., Covich, A.P., Eds.; Academic Press: San Diego, CA, USA, 2001; Chapter 18; pp. 733–775. [Google Scholar] [CrossRef]
- Williams, D.D.; Williams, S.S.; van Huis, A. Can we farm aquatic insects for human food or livestock feed? J. Insects Food Feed. 2021, 7, 121–127. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. AOAC Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Hedge, J.E.; Hofreiter, B.T. Carbohydrate Chemistry 17; Whistler, R.L., Be Miller, J.N., Eds.; Academic Press: New York, NY, USA, 1962. [Google Scholar]
- Kjeldahl, J. New method for the determination of nitrogen in organic substances. Anal. Bioanal. Chem. 1883, 22, 366–383. [Google Scholar]
- Association of Official Analytical Chemists. AOAC Official Method of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1970. [Google Scholar]
- FAO. Food Energy—Methods of Analysis and Conversion Factors; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; Volume 77, pp. 1–93. [Google Scholar]
- John, C.; Van, L. Atomic Absorption Spectrometer. In Analytical Atomic Absorption Spectroscopy; Academic Press, Inc.: Orlando, FL, USA, 1980; pp. 11–293. [Google Scholar]
- Mission, G. Colorimetric estimation of phosphorus in steels. Chem. Ztg. 1908, 32, 633. [Google Scholar]
- Malick, C.P.; Singh, M.B. Plant Enzymology and Histoenzymology; Kalyani Publications: New Delhi, India, 1980; p. 286. [Google Scholar]
- Woisky, R.G.; Salatino, A. Use of aluminum chloride in the flavonoids quantification of propolis samples. Mensagem Doce 1998, 46, 3–9. [Google Scholar]
- Makkar, H.P.S.; Blummel, M.; Borowy, N.K.; Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 1993, 61, 161–165. [Google Scholar] [CrossRef]
- Wheeler, E.L.; Ferrel, R.E. A method for phytic acid determination in wheat and wheat flour. Cereal Chem. 1971, 48, 312–320. [Google Scholar]
- Dye, W.B. Chemical studies of Halogeton glomeratus. Weeds 1956, 4, 55–59. [Google Scholar] [CrossRef]
- Siulapwa, N.; Mwambungu, A.; Lungu, E.; Sichilima, W. Nutritional value of four common edible insects in Zambia. Int. J. Sci. Res. 2014, 3, 876–884. [Google Scholar]
- Narzari, S.; Sarmah, J. Proximate composition of wild edible insects consumed by the bodo tribe of Assam, India. Int. J. Bioassays 2015, 4, 4050–4054. [Google Scholar]
- Shantibala, T.; Lokeshwari, R.K.; Debaraj, H. Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. J. Insect Sci. 2014, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Lakemond, C.; Sagis, L.; Eisner-Schadler, V.; Huis, A.; Boekel, M. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Bhulaidok, S.; Sihamala, O.; Shen, L.; Li, D. Nutritional and fatty acid profiles of sun-dried edible black ants (Polyrhachis vicina Roger). Maejo Int. J. Sci. Technol. 2010, 4, 101–112. [Google Scholar]
- Gbogouri, G.A.; Beugre, G.A.M.; Brou, K.; Atchibri, O.A.; Linder, M. Rhynchophorus palmarum L. larva, an edible insect in Côte d’Ivoire: Nutritional value and characterization of the lipid fraction. Int. J. Chem. Sci. 2013, 11, 1692–1704. [Google Scholar]
- Beski, S.S.M.; Swick, R.A.; Iji, P.A. Specialized protein products in broiler chicken nutrition: A review. Ani. Nutr. 2015, 1, 47–53. [Google Scholar] [CrossRef]
- Bhattacharyya, B.; Choudhury, B.; Das, P.; Dutta, S.K.; Bhagawati, S.; Pathak, K. Nutritional Composition of Five Soil-Dwelling Scarab Beetles (Coleoptera: Scarabaeidae) of Assam, India. Coleopt. Bull. 2018, 72, 339–346. [Google Scholar] [CrossRef]
- Omotoso, O.T. Nutritional quality, functional properties and anti-nutrient compositions of the larva of Cirinaforda (Westwood) (Lepidoptera: Saturniidae). J. Zhejiang Univ. Sci. B 2006, 7, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinyuru, J.N.; Kenji, G.M.; Njoroge, S.M.; Ayieko, M. Effect of processing methods on the in-vitro protein digestibility and vitamincontent of edible winged termite (Macrotermes subhylanus) and grasshoppers (Ruspolia differens). Food Bioprocess. Technol. 2010, 3, 778–782. [Google Scholar] [CrossRef]
- Adámková, A.; Mlček, J.; Kouřimská, L.; Borkovcová, M.; Bušina, T.; Adámek, M.; Bednářová, M.; Krajsa, J. Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra. Int. J. Environ. Res. Public Health 2017, 14, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Dietary reference values for nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar]
- Banjo, A.D.; Lawal, O.A.; Songonuga, E.A. The nutritional value of fourteen species of edible insects in southern Nigeria. Afr. J. Biotechnol. 2006, 5, 298–301. [Google Scholar]
- Paoletti, M.G.; Norberto, L.; Damini, R.; Musumeci, S. Human gastric juice contains chitinase that can degrade chitin. Ann. Nutr. Metab. 2007, 51, 244–251. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A.; Boudrant, J.; Meyer, D.; Manno, N.; de Marchis, M.; Paoletti, M.G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 2012, 87, 995–1012. [Google Scholar] [CrossRef]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef]
- Adesina, A.J. Proximate and antinutritional composition of two common edible insects: Yam beetle (Heteroligus meles) and palm weevil (Rhynchophorus phoenicis). J. Elixir Food Sci. 2012, 49, 9782–9786. [Google Scholar]
- Chapman, R.F. The Insects: Structure and Function; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Williams, P. Nutritional Composition of Red Meat. Nutr. Diet. 2007, 64, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Babich, H.; Davis, D.L. Phenol: A review of environmental and health risks. Regul. Toxicol. Pharmachology 1981, 1, 90–109. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substance & Disease Registry). Toxprofile: Toxicological Profile Information Sheet. ATSDR: Atlanta, GA, USA, 2011. Available online: www.atsdr.cdc.gov/ToxProfiles/ (accessed on 22 February 2021).
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res.-Fund. Mol. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef] [PubMed]
Insect Species | Moisture (g/100 g, f.w.) ** | Carbohydrate (g/100 g, d.w.) * | Crude Protein (g/100 g, d.w.) * | Crude Fat (g/100 g, d.w.) * | Crude Fibre (g/100 g, d.w.) * | Ash Content (g/100 g, d.w.) * | Energy Content (kJ/100 g, d.w.) *** |
---|---|---|---|---|---|---|---|
Diplonychus rusticus | 9.06 ± 0.38 a | 3.18 ± 0.19 abc | 57.67 ± 0.30 a | 27.87 ± 0.17 b | 2.48 ± 0.26 d | 4.74 ± 0.23 a | 2088 ± 9 a |
Cybister sp. | 4.71 ± 0.26 c | 3.68 ± 0.18 a | 51.42 ± 0.31 d | 28.95 ± 0.20 a | 12.68 ± 0.23 a | 3.25 ± 0.23 b | 2118 ± 3 a |
Lethocerus indicus | 3.38 ± 0.22 d | 2.92 ± 0.17 bc | 50.03 ± 0.27 e | 26.63 ± 0.33 c | 11.66 ± 0.19 b | 2.39 ± 0.29 c | 1986 ± 17 b |
Laccotrephes sp. | 9.19 ± 0.23 a | 2.74 ± 0.23 c | 54.75 ± 0.34 c | 8.90 ± 0.22 d | 10.94 ± 0.40 b | 3.71 ± 0.18 b | 1389 ± 11 c |
Ranatra sp. | 7.07 ± 0.11 b | 3.52 ± 0.23 ab | 56.56 ± 0.25 b | 8.67 ± 0.22 d | 9.67 ± 0.36 c | 3.72 ± 0.16 b | 1413 ± 10 c |
Insect Species | Na * | P * | K * | Ca * | Mg * | S * |
---|---|---|---|---|---|---|
Diplonychus rusticus | 28.62 ± 0.13 a | 147.16 ± 0.12 b | 27.78 ± 0.29 b | 40.13 ± 0.21 c | 45.20 ± 0.27 a | 20.90 ± 0.18 c |
Cybister sp. | 22.49 ± 0.14 c | 153.32 ± 0.16 a | 34.60 ± 0.14 a | 32.09 ± 0.20 d | 38.40 ± 0.25 c | 16.89 ± 0.13 d |
Lethocerus indicus | 26.22 ± 0.19 b | 120.42 ± 0.23 c | 23.86 ± 0.15 c | 48.30 ± 0.19 b | 38.40 ± 0.32 c | 22.26 ± 0.14 b |
Laccotrephes sp. | 20.94 ± 0.13 d | 76.34 ± 0.15 e | 23.86 ± 0.21 c | 56.15 ± 0.20 a | 43.20 ± 0.26 b | 26.45 ± 0.18 a |
Ranatra sp. | 19.74 ± 0.12 e | 114.52 ± 0.06 d | 22.00 ± 0.12 d | 32.15 ± 0.23 d | 33.60 ± 0.35 d | 20.84 ± 0.23 c |
Insect Species | Fe * | Zn * | Mn * | Cu * |
---|---|---|---|---|
Diplonychus rusticus | 99.02 ± 0.09 b | 7.22 ± 0.16 a | 4.22 ± 0.15 a | 2.50 ± 0.16 b |
Cybister sp. | 25.30 ± 0.14 e | 4.98 ± 0.21 d | 3.70 ± 0.20 a | 2.78 ± 0.20 b |
Lethocerus indicus | 49.90 ± 0.15 d | 6.58 ± 0.19 b | 1.98 ± 0.22 c | 2.22 ± 0.14 b |
Laccotrephes sp. | 90.40 ± 0.21 c | 5.76 ± 0.16 c | 2.22 ± 0.14 bc | 3.80 ± 0.26 a |
Ranatra sp. | 112.10 ± 0.15 a | 6.20 ± 0.15 bc | 2.62 ± 0.18 b | 4.20 ± 0.17 a |
Insect Species | Total Phenolics (mg Catechol Equivalent/100 g) * | Flavonoid (mg Quercetin Equivalent/100 g) * | Antioxidant Activity (% DPPH Inhibition) * |
---|---|---|---|
Diplonychus rusticus | 193.80 ± 0.29 c | 37.34 ± 0.27 c | 90.38 ± 0.47 b |
Cybister sp. | 363.80 ± 0.29 a | 50.82 ± 0.29 a | 81.90 ± 0.28 d |
Lethocerus indicus | 129.30 ± 0.32 d | 30.56 ± 0.29 d | 87.29 ± 0.21 c |
Laccotrephes sp. | 117.39 ± 0.32 e | 41.69 ± 0.32 b | 80.82 ± 0.27 e |
Ranatra sp. | 245.67 ± 0.27 b | 17.70 ± 0.38 e | 91.47 ± 0.29 a |
Insect Species | Tannin (mg Tannic Acid Equivalent/100 g) * | Phytic Acid (mg/100 g) * | Oxalic Acid (mg/100 g) * |
---|---|---|---|
Diplonychus rusticus | 57.83 ± 0.32 b | 12.66 ± 0.23 d | 5.22 ± 0.18 a |
Cybister sp. | 27.39 ± 0.26 d | 11.72 ± 0.26 e | 3.48 ± 0.30 c |
Lethocerus indicus | 18.50 ± 0.31 e | 19.33 ± 0.32 c | 5.34 ± 0.24 a |
Laccotrephes sp. | 36.72 ± 0.26 c | 97.30 ± 0.31 a | 4.34 ± 0.23 b |
Ranatra sp. | 60.76 ± 0.27 a | 21.75 ± 0.29 b | 2.93 ± 0.17 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarmah, M.; Bhattacharyya, B.; Bhagawati, S.; Sarmah, K. Nutritional Composition of Some Commonly Available Aquatic Edible Insects of Assam, India. Insects 2022, 13, 976. https://doi.org/10.3390/insects13110976
Sarmah M, Bhattacharyya B, Bhagawati S, Sarmah K. Nutritional Composition of Some Commonly Available Aquatic Edible Insects of Assam, India. Insects. 2022; 13(11):976. https://doi.org/10.3390/insects13110976
Chicago/Turabian StyleSarmah, Mintu, Badal Bhattacharyya, Sudhansu Bhagawati, and Kritideepan Sarmah. 2022. "Nutritional Composition of Some Commonly Available Aquatic Edible Insects of Assam, India" Insects 13, no. 11: 976. https://doi.org/10.3390/insects13110976
APA StyleSarmah, M., Bhattacharyya, B., Bhagawati, S., & Sarmah, K. (2022). Nutritional Composition of Some Commonly Available Aquatic Edible Insects of Assam, India. Insects, 13(11), 976. https://doi.org/10.3390/insects13110976