Differences in EAG Response and Behavioral Choices between Honey Bee and Bumble Bee to Tomato Flower Volatiles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Flower Volatiles Collection and GC–MS
2.2. Preparation of Standard Compounds
2.3. EAG Responses
2.4. Y-Tube Olfactometer Test
2.5. Statistical Analyses
3. Results
3.1. GC–MS of Tomato Flower Volatiles
3.2. EAG Response of Bees to Different Compounds
3.3. Y-Tube Tests of Bee Choice to Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cooley, H.; Vallejo-Marín, M. Buzz-pollinated crops: A global review and meta-analysis of the effects of supplemental bee pollination in tomato. J. Econ. Entomol. 2021, 114, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Amala, U.; Shivalingaswamy, T. Role of native buzz pollinator bees in enhancing fruit and seed set in tomatoes under open field conditions. J. Entomol. Zool. Stud. 2017, 5, 1742–1744. [Google Scholar]
- Higo, H.A.; Rice, N.D.; Winston, M.L.; Lewis, B. Honey bee (Hymenoptera: Apidae) distribution and potential for supplementary pollination in commercial tomato greenhouses during winter. J. Econ. Entomol. 2004, 97, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Hanna, H.Y. Assisting natural wind pollination of field tomatoes with an air blower enhances yield. Hortscience 1999, 34, 846–847. [Google Scholar] [CrossRef]
- Ministry of Agricultural and Rural of People’s Republic of China. Summary of China National Agricultural Statistics. 2015 Statistical Division. Available online: http://www.moa.gov.cn/ (accessed on 25 August 2022).
- Zhang, H.; Han, C.; Breeze, T.D.; Li, M.; Mashilingi, S.K.; Hua, J.; Zhang, W.; Zhang, X.; Zhang, S.; An, J. Bumblebee pollination enhances yield and flavor of tomato in gobi desert greenhouses. Agriculture 2022, 12, 795. [Google Scholar] [CrossRef]
- Glover, B.J.; Bunnewell, S.; Martin, C. Convergent evolution within the genus Solanum: The specialised anther cone develops through alternative pathways. Gene 2004, 331, 1–7. [Google Scholar] [CrossRef]
- Vinícius-Silva, R.; Parma, D.D.F.; Tostes, R.B.; Arruda, V.M.; Werneck, M.D.V. Importance of bees in pollination of Solanum lycopersicum L. (Solanaceae) in open-field of the Southeast of Minas Gerais State, Brazil. Hoehnea 2017, 44, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Cauich, O.; Quezada-Euán, J.J.G.; Macias-Macias, J.O.; Reyes-Oregel, V.; Medina-Peralta, S.; Parra-Tabla, V. Behavior and pollination efficiency of Nannotrigona perilampoides (Hymenoptera: Meliponini) on greenhouse tomatoes (Lycopersicon esculentum) in Subtropical México. J. Econ. Entomol. 2004, 97, 475–481. [Google Scholar] [CrossRef]
- Bell, M.C.; Spooner-Hart, R.N.; Haigh, A.M. Pollination of greenhouse tomatoes by the Australian bluebanded bee Amegilla (Zonamegilla) holmesi (Hymenoptera: Apidae). J. Econ. Entomol. 2006, 99, 437–442. [Google Scholar] [CrossRef]
- Vergara, C.H.; Fonseca-Buendía, P. Pollination of greenhouse tomatoes by the Mexican bumblebee Bombus ephippiatus (Hymenoptera: Apidae). J. Poll. Ecol. 2012, 7, 27–30. [Google Scholar] [CrossRef]
- Ahmad, M.; Bodlah, I.; Mehmood, K.; Sheikh, U.A.A.; Aziz, M.A. Pollination and foraging potential of European bumblebee, Bombus terrestris (Hymenoptera: Apidae) on tomato crop under greenhouse system. Pak. J. Zool. 2015, 47, 1279–1285. [Google Scholar]
- Garibaldi, L.A.; Aizen, M.A.; Cunningham, S.; Klein, A.M. Pollinator shortage and global crop yield: Looking at the whole spectrum of pollinator dependency. Commun. Integr. Biol. 2009, 2, 37–39. [Google Scholar] [CrossRef]
- Velthuis, H.H.W.; van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 2006, 37, 421–451. [Google Scholar] [CrossRef] [Green Version]
- Hogendoorn, K.; Gross, C.L.; Sedgley, M.; Keller, M.A. Increased tomato yield through pollination by native Australian Amegilla chlorocyanea (Hymenoptera: Anthophoridae). J. Econ. Entomol. 2006, 99, 828–833. [Google Scholar] [CrossRef]
- Cribb, D.M.; Hand, D.W.; Edmondson, R.N. A comparative study of the effects of using the honeybee as a pollinating agent of glasshouse tomato. J. Hortic. Sci. 2015, 68, 79–88. [Google Scholar] [CrossRef]
- Paydas, S.; Eti, S.; Kaftanoglu, O.; Yasa, E.; Derin, K. Effects of pollination of strawberries grown in plastic greenhouses by honeybees and bumblebees on the yield and quality of the fruits. Acta Hortic. 1998, 513, 443–452. [Google Scholar] [CrossRef]
- Zhang, H.; Shan, S.; Gu, S.; Huang, X.; Li, Z.; Khashaveh, A.; Zhang, Y. Prior experience with food reward influences the behavioral responses of the honeybee Apis mellifera and the bumblebee Bombus lantschouensis to tomato floral scent. Insects 2020, 11, 884. [Google Scholar] [CrossRef]
- Sabara, H.A.; Gillespie, D.R.; Elle, E.; Winston, M.L. Influence of brood, vent screening, and time of year on honey bee (Hymenoptera: Apidae) pollination and fruit quality of greenhouse tomatoes. J. Econ. Entomol. 2004, 97, 727–734. [Google Scholar] [CrossRef]
- Rachersberger, M.; Cordeiro, G.D.; Schäffler, I.; Dötterl, S. Honeybee pollinators use visual and floral scent cues to find apple (Malus domestica) flowers. J. Agr. Food Chem. 2019, 67, 13221–13227. [Google Scholar] [CrossRef]
- Giurfa, M.; Núñez, J.; Backhaus, W. Odour and colour information in the foraging choice behaviour of the honeybee. J. Comp. Physiol. A 1994, 175, 773–779. [Google Scholar] [CrossRef]
- Zhang, S.W.; Schwarz, S.; Pahl, M.; Zhu, H.; Tautz, J. Honeybee memory: A honeybee knows what to do and when. J. Exp. Biol. 2006, 209, 4420–4428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, L.; De Jong, R. Multi-odour memory influenced by learning order. Behav. Process. 1993, 30, 175–183. [Google Scholar] [CrossRef]
- Knauer, A.C.; Schiestl, F.P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 2015, 18, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Haber, A.I.; Sims, J.W.; Mescher, M.C.; De Moraes, C.M.; Carr, D.E. A key floral scent component (β-trans-bergamotene) drives pollinator preferences independently of pollen rewards in seep monkeyflower. Funct. Ecol. 2019, 33, 218–228. [Google Scholar] [CrossRef]
- Byers, K.J.R.P.; Bradshaw, H.D.; Riffell, J.A. Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus). J. Exp. Biol. 2013, 217, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Twidle, A.M.; Mas, F.; Harper, A.R.; Horner, R.M.; Welsh, T.J.; Suckling, D.M. Kiwifruit flower odor perception and recognition by honey bees, Apis mellifera. J. Agr. Food Chem. 2015, 63, 5597–5602. [Google Scholar] [CrossRef]
- Su, W.; Ma, W.; Zhang, Q.; Hu, X.; Ding, G.; Jiang, Y.; Huang, J. Honey bee foraging decisions influenced by pear volatiles. Agriculture 2022, 12, 1074. [Google Scholar] [CrossRef]
- Sasso, R.; Iodice, L.; Woodcock, C.M.; Pickett, J.A.; Guerrieri, E. Electrophysiological and behavioural responses of Aphidius ervi (Hymenoptera: Braconidae) to tomato plant volatiles. Chemoecology 2009, 19, 195–201. [Google Scholar] [CrossRef]
- Paudel, S.; Lin, P.; Foolad, M.R.; Ali, J.G.; Rajotte, E.G.; Felton, G.W. Induced plant defenses against herbivory in cultivated and wild tomato. J. Chem. Ecol. 2019, 45, 693–707. [Google Scholar] [CrossRef]
- Darshanee, H.L.C.; Ren, H.; Ahmed, N.; Zhang, Z.; Liu, Y.; Liu, T. Volatile-mediated attraction of greenhouse whitefly Trialeurodes vaporariorum to tomato and eggplant. Front. Plant Sci. 2017, 8, 1285. [Google Scholar] [CrossRef] [Green Version]
- Morse, A.; Kevan, P.; Shipp, L.; Khosla, S.; Mcgarvey, B. The impact of greenhouse tomato (Solanales: Solanaceae) floral volatiles on bumble bee (Hymenoptera: Apidae) pollination. Environ. Entomol. 2012, 41, 855–864. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Holighaus, G.; Weißbecker, B.; Schütz, S. Electroantennographic responses of red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) to volatile organic compounds. J. Appl. Entomol. 2016, 141, 477–486. [Google Scholar] [CrossRef]
- Krishna, S.; Keasar, T. Morphological complexity as a floral signal: From perception by insect pollinators to co-evolutionary implications. Int. J. Mol. Sci. 2018, 19, 1681. [Google Scholar] [CrossRef] [Green Version]
- Kessler, D.; Gase, K.; Baldwin, I.T. Field experiments with transformed plants reveal the sense of floral scents. Science 2008, 321, 1200–1202. [Google Scholar] [CrossRef] [Green Version]
- Blight, M.M.; Métayer, M.L.; Delègue, M.P.; Pickett, J.A.; Marion-Poll, F.; Wadhams, L.J. Identification of floral volatiles involved in recognition of oilseed rape flowers, Brassica napus by honeybees, Apis mellifera. J. Chem. Ecol. 1997, 23, 1715–1727. [Google Scholar] [CrossRef]
- Borg-Karlson, A.; Tengö, J.; Valterová, I.; Unelius, C.R.; Taghizadeh, T.; Tolasch, T.; Francke, W. (S)-(+)-Linalool, a mate attractant pheromone component in the bee Colletes cunicularius. J. Chem. Ecol. 2003, 29, 1–14. [Google Scholar] [CrossRef]
- Lucas Barbosa, D.; Sun, P.; Hakman, A.; Beek, T.A.; Loon, J.J.A.; Dicke, M. Visual and odour cues: Plant responses to pollination and herbivory affect the behaviour of flower visitors. Funct. Ecol. 2016, 30, 431–441. [Google Scholar] [CrossRef]
- Larue, A.A.C.; Raguso, R.A.; Junker, R.R. Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field. J. Anim. Ecol. 2016, 85, 396–408. [Google Scholar] [CrossRef]
- Ma, W.H.; Long, D.L.; Wang, Y.; Li, X.Y.; Huang, J.X.; Shen, J.S.; Su, W.T.; Jiang, Y.S.; Li, J. Electrophysiological and behavioral responses of Asian and European honeybees to pear flower volatiles. J. Asia-Pac. Entomol. 2021, 24, 221–228. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Prajapati, V.; Kumar, S. Bioactivities of l-carvone, d-carvone, and dihydrocarvone toward three stored product beetles. J. Econ. Entomol. 2003, 96, 1594–1601. [Google Scholar] [CrossRef]
- Huang, Y.; Lam, S.L.; Ho, S.H. Bioactivities of essential oil from Elletaria cardamomum (L.) Maton. to Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J. Stored Prod. Res. 2000, 36, 107–117. [Google Scholar] [CrossRef]
- Nunes-Silva, P.; Hrncir, M.; Shipp, L.; Kevan, P.; Imperatriz-Fonseca, V.L. The behaviour of Bombus impatiens (Apidae, Bombini) on tomato (Lycopersicon esculentum Mill., Solanaceae) flowers: Pollination and reward perception. J. Poll. Ecol. 2013, 11, 33–40. [Google Scholar] [CrossRef]
- Morse, A. Floral Scent and Pollination of Greenhouse Tomatoes. Master Thesis, The University of Guelph, Guelph, Canada, 2009. [Google Scholar]
No. | Compounds | CAS Number | Company | Purity |
---|---|---|---|---|
1 | β-Caryophyllene | 87-44-5 | Macklin 1 | >80% |
2 | Terpinolene | 586-62-9 | Aladdin 2 | 85% |
3 | γ-Terpinene | 99-85-4 | Aladdin | >95% |
4 | β-Ocimene | 13877-91-3 | Aladdin | >90% |
5 | Myrcene | 123-35-3 | Aladdin | ≥90.0% |
6 | (−)-β-Pinene | 18172-67-3 | Aladdin | 98% |
7 | p-Cymene | 99-87-6 | Aladdin | ≥99.5% |
8 | 1,3-Xylene | 108-38-3 | Aladdin | >99.0% |
9 | Toluene | 108-88-3 | Sigma-Aldrich 3 | 99.80% |
10 | 2,4-Dimethyl styrene | 1195-32-0 | Aladdin | >95% |
11 | Piperitone | 89-81-6 | Aladdin | >94.0% |
12 | Eucarvone | 503-93-5 | Macklin | ≥96% |
13 | (+)-Dihydrocarvone | 7764-50-3 | Aladdin | 98% |
14 | Linalool | 78-70-6 | Aladdin | 98% |
15 | 1-Nonanal | 124-19-6 | Aladdin | 96% |
16 | Tetradecane | 629-59-4 | Aladdin | >99% |
17 | Mineral oil | 8042-47-5 | Aladdin | 99% |
No. | CAS | Compounds | Relative Content (%) |
---|---|---|---|
1 | 115-10-6 | Dimethyl ether | 0.057 |
2 | 645-88-5 | O-(Carboxymethyl)hydroxylamine | 0.058 |
3 | 87980-11-8 | 3-Amino-2,3-dihydrobenzoic acid | 0.946 |
4 | 108-88-3 | Toluene | 0.389 |
5 | 108-38-3 | 1,3-Xylene | 0.079 |
6 | 3479-89-8 | 1,3,5-Cycloheptatriene, 3,7,7-trimethyl- | 0.537 |
7 | 99-87-6 | p-Cymene | 23.185 |
8 | 460-01-5 | 2,6-Dimethyl-1,3,5,7-octatetraene, E,E- | 0.119 |
9 | 18172-67-3 | (−)-β-Pinene | 0.309 |
10 | 127-91-3 | β-Pinene | 3.23 |
11 | 123-35-3 | Myrcene | 3.23 |
12 | 28634-89-1 | Bicyclo [3.1.0]hex-2-ene, 4-methyl-1-(1-methylethyl)- | 0.083 |
13 | 527-84-4 | ο-Cymene | 0.891 |
14 | 3779-61-1 | (E)-β-Ocimene | 0.672 |
15 | 13877-91-3 | β-Ocimene | 4.488 |
16 | 99-85-4 | γ-Terpinene | 4.605 |
17 | 1195-32-0 | 2,4-Dimethyl styrene | 0.135 |
18 | 586-62-9 | Terpinolene | 11.736 |
19 | 78-70-6 | Linalool | 0.145 |
20 | 124-19-6 | 1-Nonanal | 0.1 |
21 | 18368-95-1 | 1,3,8-ρ-Menthatriene | 0.405 |
22 | 38667-10-6 | 3,3,5,5-Tetramethylcyclopentene | 2.764 |
23 | 21391-98-0 | 1-Cyclohexene-1-carboxaldehyde,4-(1-methylethyl)- | 1.131 |
24 | 70786-44-6 | 3,6-Dimethyl-2,3,3a,4,5,7a-hexahydro-benzofuran | 1.304 |
25 | 7764-50-3 | (+)-Dihydrocarvone | 0.143 |
26 | 1197-06-4 | 2-Cyclohexen-1-ol,2-methyl-5-(1-methylethenyl)-, (1R,5R)-rel- | 0.044 |
27 | 503-93-5 | Eucarvone | 0.085 |
28 | 89-81-6 | Piperitone | 0.395 |
29 | 20307-84-0 | (+/−)-δ-Elemene | 4.403 |
30 | 17699-14-8 | (−)-α-Cubebene | 0.051 |
31 | 469-92-1 | (−)-Clovene | 0.049 |
32 | 3856-25-5 | α-Copaene | 0.51 |
33 | 515-13-9 | β-Elemene | 0.867 |
34 | 629-59-4 | Tetradecane | 0.166 |
35 | 118-65-0 | Isocaryophyllene | 0.137 |
36 | 87-44-5 | β-Caryophyllene | 23.164 |
37 | 136296-38-3 | 10,10-Dimethyl-2,6-dimethylenebicyclo [7.2.0]undecane | 0.302 |
38 | 29873-99-2 | γ-Elemene | 0.136 |
39 | 6753-98-6 | α-Caryophyllene | 5.545 |
40 | 483-77-2 | (−)-Calamenene | 0.176 |
41 | 95910-36-4 | (−)-Isoledene | 1.074 |
42 | 523-47-7 | β-Cadinene | 1.435 |
43 | 483-76-1 | Δ-Cadinene | 0.224 |
44 | 6813-21-4 | Selina-3,7(11)-diene | 0.16 |
45 | 1139-30-6 | Caryophyllene oxide | 0.132 |
46 | 77171-55-2 | Spathulenol | 0.205 |
Absolute Mean EAG Response to Different Compounds (Diluted in Mineral Oil) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CONC (μg/μL) | p-Cymene | 1,3-Xylene | Toluene | 2,4-Dimethyl Styrene | (+)-Dihydrocarvone | 1-Nonanal | ||||||
B. terrestris | A. mellifera | B. terrestris | A. mellifera | B. terrestris | A. mellifera | B. terrestris | A. mellifera | B. terrestris | A. mellifera | B. terrestris | A. mellifera | |
10 | 0.61 ± 0.24 b | 0.11 ± 0.13 a | 0.70 ± 0.61 a | 0.13 ± 0.26 a | 0.04 ± 0.06 b | 0.07 ± 0.11 b | 0.10 ± 0.09 b | 0.13 ± 0.04 a | 0.27 ± 0.10 a | 0.45 ± 0.41 a | 0.22 ± 0.34 a | 0.86 ± 0.63 a |
100 | 0.16 ± 0.18 b | 0.24 ± 0.15 a | 1.99 ± 1.43 a | 1.37 ± 0.66 a | 0.41 ± 0.14 a | 1.35 ± 0.45 a | 0.17 ± 0.10 ab | 0.12 ± 0.14 a | 1.38 ± 0.16 a | 1.06 ± 0.65 a | 0.61 ± 0.70 a | 4.12 ± 1.92 a |
200 | 0.12 ± 0.25 b | 0.07 ± 0.15 a | 2.34 ± 1.66 a | 1.31 ± 0.63 a | 0.84 ± 0.23 a | 1.25 ± 0.40 a | 0.61 ± 0.24 a | 0.37 ± 0.20 a | 1.31 ± 0.38 a | 1.16 ± 0.64 a | 0.84 ± 0.72 a | 4.32 ± 2.02 a |
300 | 0.73 ± 0.06 a | 0.19 ± 0.14 a | 2.57 ± 1.84 a | 1.52 ± 0.64 a | 0.80 ± 0.18 a | 1.47 ± 0.37 a | 0.84 ± 0.27 a | 0.20 ± 0.13 a | 1.80 ± 0.46 a | 1.75 ± 0.72 a | 0.87 ± 0.93 a | 4.70 ± 2.17 a |
400 | 0.54 ± 0.11 a | 0.42 ± 0.20 a | 2.61 ± 2.00 a | 1.52 ± 0.68 a | 0.87 ± 0.30 a | 1.55 ± 0.33 a | 0.84 ± 0.36 a | 0.12 ± 0.10 a | 1.54 ± 0.56 a | 1.69 ± 0.78 a | 1.14 ± 0.87 a | 4.65 ± 2.13 a |
500 | 0.53 ± 0.14 a | 0.27 ± 0.09 a | 2.42 ± 1.85 a | 1.57 ± 0.79 a | 1.03 ± 0.36 a | 1.91 ± 0.34 a | 0.65 ± 0.22 a | 0.25 ± 0.20 a | 1.61 ± 0.48 a | 1.72 ± 0.81 a | 0.88 ± 0.94 a | 4.78 ± 2.24 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, J.; Shen, J.; Zhao, H.; Ma, W.; Jiang, Y. Differences in EAG Response and Behavioral Choices between Honey Bee and Bumble Bee to Tomato Flower Volatiles. Insects 2022, 13, 987. https://doi.org/10.3390/insects13110987
Liu J, Zhang J, Shen J, Zhao H, Ma W, Jiang Y. Differences in EAG Response and Behavioral Choices between Honey Bee and Bumble Bee to Tomato Flower Volatiles. Insects. 2022; 13(11):987. https://doi.org/10.3390/insects13110987
Chicago/Turabian StyleLiu, Jinjia, Jiangchao Zhang, Jinshan Shen, Huiting Zhao, Weihua Ma, and Yusuo Jiang. 2022. "Differences in EAG Response and Behavioral Choices between Honey Bee and Bumble Bee to Tomato Flower Volatiles" Insects 13, no. 11: 987. https://doi.org/10.3390/insects13110987
APA StyleLiu, J., Zhang, J., Shen, J., Zhao, H., Ma, W., & Jiang, Y. (2022). Differences in EAG Response and Behavioral Choices between Honey Bee and Bumble Bee to Tomato Flower Volatiles. Insects, 13(11), 987. https://doi.org/10.3390/insects13110987