Invasion Pattern of Aedes aegypti in the Native Range of Ae. albopictus in Vietnam Revealed by Biogeographic and Population Genetic Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of Study Area
2.2. Mosquito Sampling and Identification
2.3. Mitochondrial DNA Sequencing and Analysis
3. Results
3.1. Habitat, Abundance, and Distribution of Aedes Species in Vietnam
3.2. Population Genetics and Phylogenetic Relationships of Aedes aegypti in Vietnam
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juliano, S.A.; Lounibos, L.P. Ecology of invasive mosquitoes: Effects on resident species and on human health. Ecol. Lett. 2005, 8, 558–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.; Sylla, M.; Goss, L.; Burugu, M.W.; Sang, R.; Kamau, L.W.; Kenya, E.U.; Bosio, C.; Muñoz, M.D.L.; Sharakova, M.; et al. Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA. PLoS Negl. Trop. Dis. 2013, 7, e2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paupy, C.; Delatte, H.; Bagny, L.; Corbel, V.; Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 2009, 11, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector-Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminade, C.; Medlock, J.M.; Ducheyne, E.; McIntyre, K.M.; Leach, S.; Baylis, M.; Morse, A.P. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: Recent trends and future scenarios. J. R. Soc. Interface 2012, 9, 2708–2717. [Google Scholar] [CrossRef] [Green Version]
- Hawley, W.A.; Reiter, P.; Copeland, R.S.; Pumpuni, C.B.; Craig, G.B. Aedes albopictus in North America: Probable introduction in used tires from Northern Asia. Science 1987, 236, 1114–1116. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratz, N.G. Critical review of the vector status of Aedes albopictus. Med. and Veter. Ent. 2004, 18, 215–227. [Google Scholar] [CrossRef]
- Gubler, D.J. Resurgent vector- borne disease as a global health problem. Emerg. Infect. Dis. 1988, 4, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.G.; Halstead, S.B.; Artsob, H.; Buchy, P.; Farrar, J.; Gubler, D.J.; Hunsperger, E.; Kroeger, A.; Margolis, H.S.; Martínez, E.; et al. Dengue: A continuing global threat. Nat. Rev. Microbiol. 2010, 8, S7–S16. [Google Scholar] [CrossRef] [PubMed]
- Lwande, O.W.; Obanda, V.; Lindström, A.; Ahlm, C.; Evander, M.; Näslund, J.; Bucht, G. Globe-trotting Aedes aegypti and Aedes albopictus: Risk factors for arbovirus pandemics. Vector-Borne Zoonotic Dis. 2020, 20, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roiz, D.; Wilson, A.L.; Scott, T.W.; Fonseca, D.M.; Jourdain, F.; Müller, P.; Corbel, V. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 2018, 12, e0006845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paupy, C.; Ollomo, B.; Kamgang, B.; Moutailler, S.; Rousset, D.; Demanou, M.; Hervé, J.P.; Leroy, E.; Simard, F. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in central Africa. Vector-Borne Zoonotic Dis. 2010, 10, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedjou, A.N.; Kamgang, B.; Yougang, A.P.; Njiokou, F.; Wondji, C.S. Update on the geographical distribution and prevalence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae), two major arbovirus vectors in Cameroon. PLoS Negl. Trop. Dis. 2018, 13, e0007137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamgang, B.; Wilson-Bahun, T.A.; Irving, H.; Kusimo, M.O.; Lenga, A.; Wondji, C.S. Geographical distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and genetic diversity of invading population of Ae. albopictus in the Republic of the Congo. Wellcome Open Res. 2018, 3, 79. [Google Scholar] [CrossRef] [PubMed]
- O’meara, G.F.; Evans, L.F.; Gettman, A.D.; Cuda, J.P. Spread of Aedes albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida. J. Med. Entomol. 1995, 32, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Braks, M.A.H.; Honório, N.A.; Lounibos, L.P.; Lourenço-de-Oliveira, R.; Juliano, S.A. Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann. Entomol. Soc. Am. 2004, 97, 130–139. [Google Scholar] [CrossRef]
- Braks, M.A.H.; Honório, N.A.; Lourenço-De-Oliveira, R.; Juliano, S.A.; Lounibos, L.P. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Southeastern Brazil and Florida. J. Med. Entomol. 2003, 40, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Juliano, S.A. Species introduction and replacement among mosquitoes: Interspecific resource competition or apparent competition? Ecology 1998, 79, 255–268. [Google Scholar] [CrossRef]
- Juliano, S.A.; Lounibos, L.P. Invasions by mosquitoes: The roles of behaviour across the life cycle. In Biological Invasions and Animal Behaviour; Weis, J.S., Sol, D., Eds.; Cambridge University Press: Cambridge, UK, 2016; Volume 245, pp. 221–244. [Google Scholar]
- Nasci, R.S.; Willis, F.S. Interspecific mating between Louisiana strains of Aedes albopictus and Aedes aegypti in the field and laboratory. J. Am. Mosq. Control. Assoc. 1989, 5, 416–421. [Google Scholar]
- Lounibos, L.P.; Juliano, S.A. Where vectors collide: The importance of mechanisms shaping the realized niche for modeling ranges of invasive Aedes mosquitoes. Biol. Invasions. 2018, 20, 1913–1929. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.D.; Lawton, J.H. The ecological consequences of shared natural enemies. Annu. Rev. Ecol. Syst. 1994, 25, 495–520. [Google Scholar] [CrossRef]
- Gilotra, S.K.; Rozeboom, L.E.; Bhattacharya, N.C. Observations on possible competitive displacement between populations of Aedes aegypti Linnaeus and Aedes albopictus Skuse in Calcutta. Bull. World Health Organ. 1967, 37, 437. [Google Scholar] [PubMed]
- Chan, Y.C.; Chan, K.L.; Ho, B.C. Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City: 1. Distribution and density. Bull. World Health Organ. 1971, 44, 617. [Google Scholar] [PubMed]
- Lawson Handley, L.; Estoup, A.; Evans, D.M.; Thomas, C.E.; Lombaert, E.; Facon, B.; Aebi, A.; Roy, H.E. Ecological genetics of invasive alien species. Biol. Invasions 2011, 56, 409–428. [Google Scholar] [CrossRef] [Green Version]
- Estoup, A.; Guillemaud, T. Reconstructing routes of invasion using genetic data: Why, how and so what? Mol. Ecol. 2010, 19, 4113–4130. [Google Scholar] [CrossRef]
- Blanchet, S. The use of molecular tools in invasion biology: An emphasis on freshwater ecosystems. Fish. Manag. Ecol. 2012, 19, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Paupy, C.; Le Goff, G.; Brengues, C.; Guerra, M.; Revollo, J.; Barja Simon, Z.; Hervé, J.-P.; Fontenille, D. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infect. Genet. Evol. 2012, 12, 1260–1269. [Google Scholar] [CrossRef]
- Fernando, H.S.D.; Hapugoda, M.; Perera, R.; Black, W.C.; De Silva, B.G.D.N.K. Mitochondrial metabolic genes provide phylogeographic relationships of global collections of Aedes aegypti (Diptera: Culicidae). PLoS ONE 2020, 15, e0235430. [Google Scholar] [CrossRef]
- Bennett, K.L.; Shija, F.; Linton, Y.M.; Misinzo, G.; Kaddumukasa, M.; Djouaka, R.; Anyaele, O.; Harris, A.; Irish, S.; Hlaing, T.; et al. Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: A precursor to successful worldwide colonization? Mol. Ecol. 2016, 25, 4337–4354. [Google Scholar] [CrossRef] [Green Version]
- Bennett, K.L.; McMillan, W.O.; Enríquez, V.; Barraza, E.; Díaz, M.; Baca, B.; Whiteman, A.; Medina, J.C.; Ducasa, M.; Martínez, C.G.; et al. The role of heterogenous environmental conditions in shaping the spatiotemporal distribution of competing Aedes mosquitoes in Panama: Implications for the landscape of arboviral disease transmission. Biol. Invasions 2021, 23, 1933–1948. [Google Scholar] [CrossRef] [PubMed]
- Paduan, K.D.S.; Ribolla, P.E.M. Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J. Med. Entomol. 2008, 45, 59–67. [Google Scholar] [CrossRef]
- Stanton, A.T. The Mosquitos of Far Eastern Ports with special reference to the Prevalence of Stegomyia fasciata, F. Bull. Entomol. Res. 1920, 10, 333–344. [Google Scholar] [CrossRef]
- Huber, K.; Le, L.L.; Tran, H.H.; Tran, K.T.; Rodhain, F.; Failloux, A.B. Aedes aegypti in South Vietnam: Ecology, genetic structure, vectorial competence and resistance to insecticides. Southeast Asian J. Trop. Med. Public Health 2003, 34, 81–86. [Google Scholar]
- Pham, T.K.L.; Briant, L.; Gavotte, L.; Labbe, P.; Perriat-Sanguinet, M.; Cornillot, E.; Vu, T.D.; Nguyen, T.Y.; Tran, V.P.; Nguyen, V.S.; et al. Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vietnam. Parasites Vectors 2017, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Kutsuna, S.; Tajima, S.; Nakayama, E.; Maeki, T.; Taniguchi, S.; Lim, C.-K.; Katanami, Y.; Takeshita, N.; Hayakawa, K.; et al. Importation of Zika virus from Vietnam to Japan, November 2016. Emerg. Infect. Dis. 2017, 23, 1222–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihov, P.C.; Chu, V.T.; Hoang, P.T. A propos d’une épidémie du type des fièvres hémorragiques à Hanoi. Folia Medica 1959, 1, 169–173. [Google Scholar]
- Do, Q.H.; Trinh, Q.H. Dengue activity in Viet Nam and its control programme, 1997–1998. Dengue Bull. 1997, 22, 35–40. [Google Scholar]
- Trinh, M.H.; Clapham, E.H.; Bettis, A.A.; Hoang, Q.C.; Thwaites, G.E.; Wills, B.A.; Boni, M.F.; Turner, H.C. The estimates of the health and economic burden of dengue in Vietnam. Trends Parasitol. 2018, 34, 904–918. [Google Scholar]
- Pham, T.K.L.; Vu, T.D.; Gavotte, L.; Cornillot, E.; Phan, T.N.; Briant, L.; Frutos, R.; Duong, T.N. Role of Aedes aegypti and Aedes albopictus during the 2011 dengue fever epidemics in Hanoi, Vietnam. Asian Pac. J. Trop. Med. 2015, 8, 543–548. [Google Scholar]
- Chareonviriyaphap, T.; Akratanakul, P.; Nettanomsak, S.; Huntamai, S. Larval habitats and distribution patterns of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Thailand. Southeast Asian J. Trop. Med. Public Health 2003, 34, 529–535. [Google Scholar]
- Nguyen, D.N.; Nguyen, T.H. Climate and Climate Resources in Vietnam; Agriculture Publisher: Hanoi, Vietnam, 2004. [Google Scholar]
- Higa, Y.; Nguyen, T.Y.; Kawada, H.; Tran, H.S.; Nguyen, T.H.; Takagi, M. Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam. J. Am. Mosq. Control. Assoc. 2010, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Lundkvist, A.; Lindah, J. Urban transmission of mosquito-borne flaviviruses–A review of the risk for humans in Vietnam. Infect. Ecol Epidemiol. 2019, 9, 1660129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duong, V.C.; Kang, J.H.; Nguyen, V.V.; Bae, Y.J. Genetic diversity and population structure of the Asian tiger mosquito (Aedes albopictus) in Vietnam: Evidence for genetic differentiation by climate region. Genes 2021, 12, 1579. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Posada, D. Bioinformatics for DNA Sequence Analysis. In Methods in Molecular Biology; Walker, J.M., Ed.; Humana Press: New York, NY, USA, 2009; pp. 93–112. [Google Scholar]
- Juliano, S.A.; Meara, G.F.O. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 2002, 130, 458–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sota, T.; Mogi, M. Survival time and resistance to desiccation of diapause and non-diapause eggs of temperate Aedes (Stegomyia) mosquitoes. Entomol. Exp. Appl. 1992, 63, 155–161. [Google Scholar] [CrossRef]
- Christophers, S.S.R. Aedes aegypti (L.), the Yellow Fever Mosquito. Its Life History, Bionomics, and Structure; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar]
- Armbruster, P.A. Photoperiodic diapause and the establishment of Aedes albopictus (Diptera: Culicidae) in North America. J. Med. Entomo. 2016, 53, 1013–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, M.U.G.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooney, H.A.; Cleland, E.E. The evolutionary impact of invasive species. Proc. Natl. Acad. Sci. USA 2001, 98, 5446–5451. [Google Scholar] [CrossRef] [Green Version]
- Endersby, N.M.; Hoffmann, A.A.; White, V.L.; Lowenstein, S.; Ritchie, S.; Johnson, P.H.; Rapley, L.P.; Ryan, P.A.; Nam, V.S.; Yen, N.T.; et al. Genetic structure of Aedes aegypti in Australia and Vietnam revealed by microsatellite and exon primed intron crossing markers suggests feasibility of local control options. J. Med. Entomol. 2009, 46, 1074–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, K.L.; McMillan, W.O.; Loaiza, J.R. The genomic signal of local environmental adaptation in Aedes aegypti mosquitoes. Evol. Appl. 2021, 14, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Vellend, M.; Vellend, M. The consequences of genetic diversity in competitive communities. Ecology 2006, 87, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Waldock, J.; Chandra, N.L.; Lelieveld, J.; Proestos, Y.; Michael, E.; Christophides, G.; Parham, P.E. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog Glob. Health 2013, 07, 224–241. [Google Scholar]
ID | Localities | Latitude | Longitude | Collection Date | Number of Individuals | |
---|---|---|---|---|---|---|
Ae. aegypti (%) | Ae. albopictus (%) | |||||
S1 | Lai Chau | 22.38825 | 103.46001 | July 2019 | 0 (NC) | 1431 |
S2 | Dien Bien | 21.42103 | 103.00957 | July 2019 | 0 (NC) | 859 |
S3 | Son La | 21.29897 | 103.91367 | July 2019 | 0 (NC) | 1025 |
S4 | Ha Giang | 22.82850 | 104.98580 | July 2019 | 0 (NC) | 711 |
S5 | Cao Bang | 22.670478 | 106.255141 | July 2019 | 0 (NC) | 626 |
S6 | Lang Son | 21.84563 | 106.76363 | July 2019 | 0 (NC) | 617 |
S7 | Hanoi | 20.991845 | 105.802818 | June 2019 | 509 (34.9) | 951 (65.1) |
S8 | Hai Phong | 20.79475 | 106.98955 | June 2019 | 169 (27.9) | 437 (72.1) |
S9 | Nam Dinh | 20.410715 | 106.159643 | October 2020 | 153 (22.3) | 532 (77.7) |
S10 | Thanh Hoa | 19.88138 | 105.95152 | October 2020 | 103 (15.4) | 565 (84.6) |
S11 | Nghe An | 18.676604 | 105.70048 | October 2020 | 80 (13.7) | 504 (86.3) |
S12 | Da Nang | 16.05247 | 108.15341 | October 2020 | 633 (66.8) | 315 (33.2) |
S13 | Quy Nhon | 13.771584 | 109.224653 | October 2020 | 1144 (78.9) | 305 (21.1) |
S14 | Nha Trang | 12.242141 | 109.185087 | October 2020 | 967 (79.5) | 249 (20.5) |
S15 | Gia Lai | 13.990133 | 107.992312 | October 2020 | 591 (65.8) | 307 (34.2) |
S16 | Dak Lak | 12.67239 | 108.042828 | October 2020 | 555 (66.2) | 284 (33.8) |
S17 | Sai Gon | 10.754719 | 106.701183 | October 2020 | 1016 (88.5) | 132 (11.5) |
S18 | Can Tho | 10.005611 | 105.741194 | October 2020 | 856 (76.7) | 260 (23.3) |
Type of Containers | Number of Positive Containers per Species and Number of Individuals | NP/NT (%) | Total No. of Individual | |||
---|---|---|---|---|---|---|
Ae. albopictus (N) | Ae. aegypti (N) | Shared (N) | ||||
Domestic | Flowerpot/vase | 9 (125) | 43 (997) | 52/67 (77.6) | 1122 | |
Ceramic jar | 8 (284) | 33 (135) | 41/45 (91.1) | 1414 | ||
Plastic containers (bucket, pot, trash, …) | 15 (196) | 14 (185) | 29/35 (82.9) | 381 | ||
Peri-Domestic | Used tires | 144 (3677) | 94 (3321) | 21 | 238/284 (83.8) | 6998 |
Cement tanks | 15 (246) | 1 (11) | 16/20 (80.0) | 257 | ||
Plastic containers (bucket, pot, …) | 66 (1171) | 30 (693) | 4 | 96/131 (73.3) | 1864 | |
Bonsai tank | 48 (2752) | 4 (140) | 1 | 52/78 (66.7) | 2892 | |
Polythene sheet | 11 (142) | 0 (NC) | 11/11 (100) | 142 | ||
Pagoda/garden ornament | 4 (113) | 7 (488) | 11/12 (91.7) | 601 | ||
Barrel | 8 (554) | 1 (28) | 9/9 (100) | 582 | ||
Others (glass vials, orchid basket, styrofoam box, etc.) | 13 (181) | 4 (37) | 17/26 (65) | 218 | ||
Natural | Rock holes | 6 (35) | 0 (NC) | 6/7 (85 | 35 | |
Tree holes | 14 (47) | 3 (7) | 17/19 (89.5) | 54 | ||
Leaf axils | 3 (31) | 0 (NC) | 3/4 (75) | 31 | ||
Bamboo joints | 53 (442) | 6 (32) | 59/62 (95.2) | 474 | ||
Coconut shells | 26 (145) | 3 (22) | 29/34 (85.3) | 167 | ||
Ground pools | 4 (46) | 0 (NC) | 4/4 (100) | 46 | ||
Total | 447 (10,182) | 243 (7,096) | 26 | 690/848 (81.4) | 17,278 |
ID | Region | Locality | Life-Stages Analyzed | N | No. Halotypes (NH) | Halotype Diversity (Hd) (SD) | Nucleotide Diversity (π) (SD) | Tajima’s D | Fu’s Fs |
---|---|---|---|---|---|---|---|---|---|
S7 | Northern | Hanoi | Adult and Larvae | 15 | 8 | 0.9048 (0.0502) | 0.0112 (0.0062) | 0.8382 | 0.9623 |
S8 | Hai Phong | Adult and Larvae | 15 | 7 | 0.7905 (0.1049) | 0.0089 (0.0051) | −0.1512 | 0.3057 | |
S9 | Nam Dinh | Adult and Larvae | 15 | 7 | 0.8286 (0.0823) | 0.0101 (0.0056) | 0.5880 | 1.6294 | |
S12 | Central | Da Nang | Adult and Larvae | 15 | 9 | 0.8667 (0.0567) | 0.0074 (0.0047) | −0.6752 | 0.6688 |
S14 | Khanh Hoa | Adult and Larvae | 15 | 10 | 0.9238 (0.0530) | 0.0103 (0.0058) | 0.4323 | −1.1288 | |
S15 | Dak Lak | Adult and Larvae | 15 | 7 | 0.8190 (0.0818) | 0.0097 (0.0055) | 0.9202 | 1.4991 | |
S17 | Southern | Ho Chi Minh city | Adult and Larvae | 17 | 12 | 0.9412 (0.0432) | 0.0104 (0.0058) | 0.0465 | −2.3716 |
S18 | Can Tho | Adult and Larvae | 15 | 8 | 0.8901 (0.0603) | 0.0077 (0.0045) | −0.2074 | −0.3867 | |
Total | 122 | 29 | 0.8730 | 0.0095 | −0.1105 | −1.0729 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, C.V.; Kang, J.H.; Nguyen, V.V.; Bae, Y.J. Invasion Pattern of Aedes aegypti in the Native Range of Ae. albopictus in Vietnam Revealed by Biogeographic and Population Genetic Analysis. Insects 2022, 13, 1079. https://doi.org/10.3390/insects13121079
Duong CV, Kang JH, Nguyen VV, Bae YJ. Invasion Pattern of Aedes aegypti in the Native Range of Ae. albopictus in Vietnam Revealed by Biogeographic and Population Genetic Analysis. Insects. 2022; 13(12):1079. https://doi.org/10.3390/insects13121079
Chicago/Turabian StyleDuong, Cuong Van, Ji Hyoun Kang, Van Vinh Nguyen, and Yeon Jae Bae. 2022. "Invasion Pattern of Aedes aegypti in the Native Range of Ae. albopictus in Vietnam Revealed by Biogeographic and Population Genetic Analysis" Insects 13, no. 12: 1079. https://doi.org/10.3390/insects13121079
APA StyleDuong, C. V., Kang, J. H., Nguyen, V. V., & Bae, Y. J. (2022). Invasion Pattern of Aedes aegypti in the Native Range of Ae. albopictus in Vietnam Revealed by Biogeographic and Population Genetic Analysis. Insects, 13(12), 1079. https://doi.org/10.3390/insects13121079