Trunk Injection with Insecticides Manages Xylotrechus chinensis (Chevrolat) (Coleoptera: Cerambycidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Formulations
2.2. Application of Insecticidal Formulations
2.3. Statistical Analysis
3. Results
3.1. The Overall Effectiveness of the Trunk Injection Method
3.2. Effectiveness of Insecticides in a Two-Year Period and Performance of Each Insecticide during the Trials
3.3. Insecticidal Activity in Relation to Tree Height and Infestation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leivadara, E.; Leivadaras, I.; Vontas, I.; Trichas, A.; Simoglou, K.; Roditakis, E.; Avtzis, D.N. First record of Xylotrechus chinensis (Coleoptera, Cerambycidae) in Greece and in the EPPO region. EPPO Bull. 2018, 48, 277–280. [Google Scholar] [CrossRef]
- Sarto i Monteys, V.; Torras i Tutusaus, G. A new alien invasive longhorn beetle, Xylotrechus chinensis (Cerambycidae), is infesting mulberries in Catalonia (Spain). Insects 2018, 9, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Lyu, D. Taxonomic review of the genus Xylotrechus (Coleoptera: Cerambycidae: Cerambycinae) in Korea with a newly recorded species. Korean J. Appl. Entomol. 2010, 49, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Sama, G.; Löbl, I. Cerambycinae. In Catalogue of Palaearctic Coleoptera. Chrysomeloidea; Löbl, I., Smetana, A., Eds.; Apollo Books: Stenstrup, Denmark, 2010; pp. 143–207. [Google Scholar]
- Schrader, G. Express—PRA zu Xylotrechus chinensis. Available online: https://pflanzengesundheit.julius-kuehn.de/dokumente/upload/b75e3_xylotrechus-chinensis_express-pra.pdf (accessed on 29 October 2022).
- Demetriou, J.; Kalaentzis, K.; Kazilas, C.; Koutsoukos, E.; Avtzis, D.; Georgiadis, C. Revisiting the non-native insect fauna of Greece: Current trends and an updated checklist. NeoBiota 2021, 65, 93–108. [Google Scholar] [CrossRef]
- Bragard, C.; Baptista, P.; Chatzivassiliou, E.; Di Serio, F.; Gonthier, P.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A. Pest categorisation of Xylotrechus chinensis. EFSA J. 2021, 19, e07022. [Google Scholar] [PubMed]
- Cho, P.S. A study on the damaged plants of longicorn beetles in Korea (Cerambycidae). Collect. Pap. Shinheung Coll. 1959, 2, 355–386. [Google Scholar]
- Cherepanov, A.I. Cerambycidae of Northern Asia. Lamiinae. Part 1; Kopthekar, V.S., Ed.; Amerind Publishing Co. Pvt. Ltd.: New Delhi, India, 1990. [Google Scholar]
- Hua, L.Z. List of Chinese Insects; University Press: Guangzhou, China, 2002. [Google Scholar]
- Kang, E.Y.; Oh, H.Y.; Oh, H.Y. A larval host plant list of the Cerambycidae (Coleoptera) in South Korea. Lucanus 2002, 3, 1–5. [Google Scholar]
- Lim, J.; Jung, S.Y.; Lim, J.S.; Jang, J.; Kim, K.M.; Lee, Y.M.; Lee, B.W. A review of host plants of Cerambycidae (Coleoptera: Chrysomeloidea) with new host records for fourteen Cerambycids, including the Asian longhorn beetle (Anoplophora glabripennis Motschulsky), in Korea. Korean J. Appl. Entomol. 2014, 53, 111–133. [Google Scholar] [CrossRef] [Green Version]
- EPPO (European and Mediterranean Plant Protection Organization). Alert list—Xylotrechus chinensis (Coleoptera: Cerambycidae). Available online: https://www.eppo.int/ACTIVITIES/plant_quarantine/alert_list_insects/xylotrechus_chinensis (accessed on 29 October 2022).
- Benker, U. Stowaways in wood packaging material. Current situation in Bavaria. Forstsch. Aktuell 2008, 44, 30–31. [Google Scholar]
- Sarto i Monteys, V.; Ribes, A.C.; Savin, I. The invasive longhorn beetle Xylotrechus chinensis, pest of mulberries, in Europe: Study on its local spread and efficacy of abamectin control. PLoS ONE 2021, 16, e0245527. [Google Scholar] [CrossRef]
- Sarto i Monteys, V. El Escarabajo-Avispa, Nueva Especie Invasora en Europa. Adelantos Digital. Available online: https://www.adelantosdigital.com/web/escarabajo-avispa-nueva-especie-invasora-europa/ (accessed on 29 October 2022).
- EPPO (European and Mediterranean Plant Protection Organization). New data on quarantine pests and pests of the EPPO alert list. EPPO Rep. Serv. 2020, 91, 5. [Google Scholar]
- EPPO (European and Mediterranean Plant Protection Organization). First report of Xylotrechus chinensis in France. EPPO Rep. Serv. 2018, 220, 11. [Google Scholar]
- Cocquempot, C.; Desbles, F.; Mouttet, R.; Valladares, L. Xylotrechus chinensis (Chevrolat, 1852), nouvelle espèce invasive pour la France métropolitaine (Coleoptera: Cerambycidae: Clytini). Bull. Soc. Entomol. Fr. 2019, 124, 27–32. [Google Scholar] [CrossRef]
- EPPO (European and Mediterranean Plant Protection Organization). Invasive alien wood borers: Trapping studies in France. EPPO Rep. Serv. 2021, 157, 7. [Google Scholar]
- Trematerra, P.; Athanassiou, C.; Stejskal, V.; Sciarretta, A.; Kavallieratos, N.; Palyvos, N. Large-scale mating disruption of Ephestia spp. and Plodia interpunctella in Czech Republic, Greece and Italy. J. Appl. Entomol. 2011, 135, 749–762. [Google Scholar] [CrossRef]
- Fettig, C.J.; Grosman, D.M.; Munson, A.S. Efficacy of abamectin and tebuconazole injections to protect lodgepole pine from mortality attributed to mountain pine beetle (Coleoptera: Curculionidae) attack and progression of blue stain fungi. J. Entomol. Sci. 2013, 48, 270–278. [Google Scholar] [CrossRef]
- Fishel, F.M. Pesticide Injection and Drenching. Available online: https://edis.ifas.ufl.edu/publication/PI274/ (accessed on 29 October 2022).
- VanWoerkom, A.H. Trunk Injection: A New and Innovative Technique for Pesticide Delivery in Tree Fruits. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2012. [Google Scholar]
- Kou, H.; Sun, Y.; Dong, Z.; Zhang, Z. Comparison between sustained effects of spray and injection thiamethoxam on apple aphids and non-target insects in apple orchard. Ecotoxicol. Environ. Saf. 2021, 207, 111307. [Google Scholar] [CrossRef]
- Sall, J.; Lehman, A.; Creighton, L. JMP start statistics. In A Guide to Statistics and Data Analysis Using JMP and JMP in Software; Duxbury Press: Belmont, ON, Canada, 2001. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Pearson Education Limited: Essex, UK, 2014. [Google Scholar]
- Scheff, D.S.; Arthur, F.H. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging. J. Pest Sci. 2018, 91, 717–725. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry; Freeman & Company: New York, NY, USA, 1995. [Google Scholar]
- SAS Institute Inc. Using JMP 16.2; SAS Institute Inc.: Cary, NC, USA, 2021. [Google Scholar]
- Simon-Delso, N.; Amaralrogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.A.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Gant, D.B.; Chalmers, A.E.; Wolff, M.A.; Hoffman, H.B.; Bushey, D.F. Fipronil: Action at the GABA receptor. Rev. Toxicol. 1998, 2, 147–156. [Google Scholar]
- Caboni, P.; Sammelson, R.E.; Casida, J.E. Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: Ethiprole compared with fipronil. J. Agric. Food Chem. 2003, 51, 7055–7061. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2010, 59, 2897–2908. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Shad, S.A. Risk of resistance and cross-resistance development to selection with imidacloprid and level of heritability in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae): A potential pest of cotton. Phytoparasitica 2021, 49, 287–297. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, A.; Kumar, A. Accidental human poisoning with a neonicotinoid insecticide, imidacloprid: A rare case report from rural India with a brief review of literature. Egypt. J. Food Sci. 2013, 3, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, M.; Shad, S.A. Inheritance mode and realized heritability of resistance to imidacloprid in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae). Crop Prot. 2018, 112, 90–95. [Google Scholar] [CrossRef]
- Brück, E.; Elbert, A.; Fischer, R.; Krueger, S.; Kühnhold, J.; Klueken, A.M.; Nauen, R.; Niebes, J.F.; Reckmann, U.; Schnorbach, H.J.; et al. Movento®®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance. Crop Prot. 2009, 28, 838–844. [Google Scholar] [CrossRef]
- Nauen, R.; Slater, R.; Sparks, T.C.; Elbert, A.; McCaffery, A. IRAC: Insecticide resistance and mode-of-action classification of insecticides. In Modern Crop Protection Compounds; Wiley: Weinheim, Germany, 2019; pp. 995–1012. [Google Scholar]
- Pan, Y.; Wen, S.; Chen, X.; Gao, X.; Zeng, X.; Liu, X.; Tian, F.; Shang, Q. UDP-glycosyltransferases contribute to spirotetramat resistance in Aphis gossypii Glover. Pestic. Biochem. Physiol. 2020, 166, 104565. [Google Scholar] [CrossRef] [PubMed]
- Van Pottelberge, S.; Van Leeuwen, T.; Khajehali, J.; Tirry, L. Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Manag. Sci. 2009, 65, 358–366. [Google Scholar] [CrossRef]
- Khajehali, J.; Van Nieuwenhuyse, P.; Demaeght, P.; Tirry, L.; Van Leeuwen, T. Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in the Netherlands. Pest Manag. Sci. 2011, 67, 1424–1433. [Google Scholar] [CrossRef]
- Lümmen, P.; Khajehali, J.; Luther, K.; Leeuwen, T.V. The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction. Insect Biochem. Mol. Biol. 2014, 55, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assouguem, A.; Kara, M.; Mansouri, I.; Imtara, H.; AlZain, M.N.; Mechchate, H.; Conte, R.; Squalli, W.; Farah, A.; Lazraq, A. Evaluation of the Effectiveness of spirotetramat on the diaspine Scale Parlatoria pergandii in citrus orchards. Agronomy 2021, 11, 1562. [Google Scholar] [CrossRef]
- Bai, S.H.; Ogbourne, S. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere 2016, 154, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Burg, R.W.; Miller, B.M.; Baker, J.; Birnbaum, E.E.; Currie, S.A.; Hartman, R.R.; Kong, Y.L.; Monaghan, R.L.; Olsen, G.; Putter, I.; et al. Avermectins, new family of potent anthelmintic agents: Producing organism and fermentation. Antimicrob. Agents Chemother. 1979, 15, 361–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddique, S.; Syed, Q.; Adnan, A.; Nadeem, M.; Irfan, M.; Qureshi, F.A. Production of avermectin B1b from Streptomyces avermitilis 41445 by batch submerged fermentation. Jundishapur J. Microbiol. 2013, 6, e7198. [Google Scholar] [CrossRef] [Green Version]
- Putter, I.; Mac Connell, J.G.; Preiser, F.A.; Haidri, A.A.; Ristich, S.S.; Dybas, R.A. Avermectins: Novel insecticides, acaricides and nematicides from a soil microorganism. Cell. Mol. Life Sci. 1981, 37, 963–964. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Shi, L.; Liu, J.; Shen, G.; Zhang, P.; Lu, W.; He, L. Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval). Insect Sci. 2018, 27, 276–291. [Google Scholar] [CrossRef] [Green Version]
- Lasota, J.A.; Dybas, R.A. Avermectins, a novel class of compounds: Implications for use in arthropod pest control. Annu. Rev. Entomol. 1991, 36, 91–117. [Google Scholar] [CrossRef]
- Jansson, R.K.; Brown, R.; Cartwright, B.; Cox, D.; Dunbar, D.M.; Dybas, R.A.; Eckel, C.; Lasota, J.A.; Mookerjee, P.K.; Norton, J.A.; et al. Emamectin benzoate: A novel avermectin derivative for control of lepidopterous pests. In Proceedings of the 3rd International Workshop Management of Diamondback Moth Other Crucifer Pests, Kuala Lumpur, Malaysia, 29 October–1 November 1997; pp. 172–177. [Google Scholar]
- Hu, J.; Jiang, J.; Wang, N. Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 2018, 108, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Werrie, P.Y.; Burgeon, C.; Le Goff, G.J.; Hance, T.; Fauconnier, M.L. Biopesticide trunk injection into apple trees: A proof of concept for the systemic movement of mint and cinnamon essential oils. Front. Plant Sci. 2021, 12, 650132. [Google Scholar] [CrossRef]
- Archer, L.; Crane, J.H.; Albrecht, U. Trunk injection as a tool to deliver plant protection materials—An overview of basic principles and practical considerations. Horticulturae 2022, 8, 552. [Google Scholar] [CrossRef]
- Doccola, J.J.; Wild, P.M. Tree Injection as an Alternative Method of Insecticide Application. In Insecticides—Basic and Other Applications; Soloneski, S., Ed.; InTech: Rijeka, Croatia, 2012; pp. 61–78. [Google Scholar]
- Wise, J.C.; VanWoerkom, A.H.; Acimovic, S.G.; Sundin, G.W.; Cregg, B.M.; Vandervoort, C.V. Trunk injection: An alternative technique for pesticide delivery in apples. Crop Prot. 2014, 65, 173–185. [Google Scholar]
- Sánchez Zamora, M.A.; Fernández Escobar, R. Injector-size and the time of application affects uptake of tree trunk-injected solutions. Sci. Hortic. 2000, 84, 163–177. [Google Scholar] [CrossRef]
- Kobza, M.; Juhásová, G.; Adamčíková, K.; Onrušková, E. Tree injection in the management of horse-chestnut leaf miner, Cameraria Ohridella (Lepidoptera: Gracillariidae). Gesunde Pflanz. 2011, 62, 139–143. [Google Scholar] [CrossRef]
- Ferracini, C.; Alma, A. How to preserve horse chestnut trees from Cameraria ohridella in the urban environment. Crop Prot. 2008, 27, 1251–1255. [Google Scholar] [CrossRef]
- Doccola, J.J.; Hascher, W.; Aiken, J.J.; Wild, P.M. Treatment strategies using imidacloprid in hemlock woolly adelgid (Adelges tsugae Annand) infested eastern hemlock (Tsuga Canadensis Carriere) trees. Arboric. Urban For. 2012, 38, 41–49. [Google Scholar] [CrossRef]
- Coslor, C.C.; Vandervoort, C.; Wise, J.C. Control of insect pests using trunk injection in a newly established apple orchard. Int. J. Fruit Sci. 2019, 19, 151–164. [Google Scholar] [CrossRef]
- Berger, C.; Laurent, F. Trunk injection of plant protection products to protect trees from pests and diseases. Crop Prot. 2019, 124, 104831. [Google Scholar] [CrossRef]
- Pajares, J.A.; Lanier, G.N. Pyrethroid insecticides for control of European elm bark beetle (Coleoptera: Scolytidae). J. Econ. Entomol. 1989, 82, 873–878. [Google Scholar] [CrossRef]
- Svihra, P.; Crosby, D.F.; Duckles, B. Emergence suppression of bark and ambrosia beetles in infested oaks. J. Arboric. 2004, 30, 62–66. [Google Scholar]
- Herms, D.A.; Mccullough, D.G.; Smitley, D.R.; Sadof, C.S.; Cranshaw, W. Insecticide Options for Protecting Ash Trees from Emerald Ash Borer, 2nd ed.; North Central IPM Center Bulletin: Champaign, IL, USA, 2014. [Google Scholar]
- Grosman, D.M.; Fettig, C.J.; Jorgensen, C.L.; Munson, A.S. Effectiveness of two systemic insecticides for protecting western conifers from mortality due to bark beetle attack. West J. Appl. For. 2010, 25, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Mashal, M.M.; Obeidat, B.F. The efficacy assessment of emamectin benzoate using micro injection system to control red palm weevil. Heliyon 2019, 5, e01833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCullough, D.G.; Poland, T.M.; Tluczek, A.R.; Anulewicz, A.; Wieferich, J.; Siegert, N.W. Emerald ash borer (Coleoptera: Buprestidae) densities over a 6-yr period on untreated trees and trees treated with systemic insecticides at 1-, 2-, and 3-yr intervals in a central Michigan forest. J. Econ. Entomol. 2019, 112, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Chihaoui-Meridja, S.; Harbi, A.; Abbes, K.; Chaabane, H.; la Pergola, A.; Chermiti, B.; Suma, P. Systematicity, Persistence and efficacy of selected insecticides used in endotherapy to control the red palm weevil Rhynchophorus ferrugineus (Olivier, 1790) on Phoenix canariensis. Phytoparasitica 2020, 48, 75–85. [Google Scholar] [CrossRef]
- Düker, A.; Kubiak, R. Stem application of metalaxyl for the protection of Vitis vinifera L. (‘Riesling’) leaves and grapes against downy mildew (Plasmopara viticola). Vitis J. Grapevine Res. 2009, 48, 43–48. [Google Scholar]
- Byrne, F.J.; Urena, A.A.; Robinson, L.J.; Krieger, R.I.; Doccola, J.; Morse, J.G. Evaluation of neonicotinoid, organophosphate and avermectin trunk injections for the management of avocado thrips in California avocado groves. Pest Manag. Sci. 2012, 68, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, S.G.; Vanwoerkom, A.H.; Reeb, P.D.; Vandervoort, C.; Garavaglia, T.; Cregg, B.M.; Wise, J.C. Spatial and temporal distribution of trunk-injected imidacloprid in apple tree canopies. Pest Manag. Sci. 2014, 70, 1751–1760. [Google Scholar] [CrossRef]
- Khalaf, M.Z.; Alrubeai, H.F. Chemical control of date palm tree borers, Oryctes species (Coleoptera: Scarabaeidae: Dynastinae). Pak. Entomol. 2016, 38, 1–5. [Google Scholar]
- Coslor, C.C.; Sundin, G.W.; Wise, J.C. The efficacy of trunk injections of emamectin benzoate and phosphorous acid for control of obliquebanded leafroller and apple scab on semi-dwarf apple. Crop Prot. 2019, 118, 44–49. [Google Scholar] [CrossRef]
- Byrne, F.J.; Almanzor, J.; Tellez, I.; Eskalen, A.; Grosman, D.M.; Morse, J.G. Evaluation of trunk-injected emamectin benzoate as a potential management strategy for kuroshio shot hole borer in avocado trees. Crop Prot. 2020, 132, 105136. [Google Scholar] [CrossRef]
- Wheeler, C.E.; Vandervoort, C.; Wise, J.C. Organic control of pear psylla in pear with trunk injection. Insects 2020, 11, 650. [Google Scholar] [CrossRef]
- Mokhtaryan, A.; Sheikhigarjan, A.; Arbab, A.; Mohammadipour, A.; Ardestanirostami, H. The efficiency of systemic insecticides and complete fertilizer by trunk injection method against leopard moth in infested walnut trees. J. Basic Appl. Zool. 2021, 82, 55. [Google Scholar] [CrossRef]
- Kiss, M.; Hachoumi, I.; Nagy, V.; Ladányi, M.; Gutermuth, Á.; Szabó, Á.; Sörös, C. Preliminary results about the efficacy of abamectin trunk injection against the walnut husk fly (Rhagoletis completa). J. Plant Dis. Prot. 2021, 128, 333–338. [Google Scholar] [CrossRef]
- Zhang, F.M.; Jiang, Z.W.; Yu, Q. Control of Aphis citricola by trunk injection. Hebei Fruits 2000, 2, 41. [Google Scholar]
- Laxmi, A. Management of cerambycid wood borer, Celosterna scabrator Fab. In grape vines. J. Entomol. Zool. Stud. 2021, 9, 446–450. [Google Scholar]
- Sunitha, N.D. Studies on management of grape stem borer Celosterna scabrator Fab. (Cerambycidae: Coleoptera). J. Entomol. Zool. Stud. 2021, 9, 399–404. [Google Scholar]
- Funaki, Y. The emergency approach to pesticide registration for the red–necked longhorn beetle, Aromia bungii. Plant Prot. 2019, 73, 7–13. [Google Scholar]
- Sunamura, E.; Tamura, S.; Shoda-Kagaya, E. Efficacy of insecticide trunk injection against larvae of invasive red–necked longhorn beetle Aromia bungii in cherry blossom trees. Jpn. J. Environ. Entomol. Zool. 2020, 31, 13–19. [Google Scholar]
- Archer, L.; Qureshi, J.; Albrecht, U. Efficacy of trunk injected imidacloprid and oxytetracycline in managing huanglongbing and Asian citrus psyllid in infected sweet orange (Citrus sinensis) trees. Agriculture 2022, 12, 1592. [Google Scholar] [CrossRef]
- Herms, D.A.; McCullough, D.G. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annu. Rev. Entomol. 2014, 59, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Qiu, H.; Li, Q.; Tang, L.; Zeng, D.; Liu, K.; Gao, Y. Flower injection of imidacloprid and spirotetramat: A novel tool for the management of banana thrips Thrips hawaiiensis. J. Pest Sci. 2020, 93, 1073–1084. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Aldana-Madrid, M.L.; Silveira-Gramont, M.I.; Aguiar, H.L. Spirotetramat—An Alternative for the Control of Parasitic Sucking Insects and its Fate in the Environment. In Insecticide Resistance; Tardan, S., Ed.; IntechOpen: London, UK, 2016; pp. 41–55. [Google Scholar]
- Azod, F.; Shahidi-Noghabi, S.; Mahdian, K.; Smagghe, G. Lethal and sublethal effects of spirotetramat and abamectin on predatory beetles (Menochilus sexmaculatus) via prey (Agonoscena pistaciae) exposure, important for integrated pest management in pistachio orchards. Belg. J. Zool. 2016, 146, 113–122. [Google Scholar] [CrossRef]
- Zeinadini, M.; Sahebzadeh, N.; Ravan, S.; Basirat, M. Side effects of spirotetramat and imidacloprid on Hippodamia variegata Goezee feeding on Agonoscena pistaciae Burckhardt & Lauterer. J. Nuts 2019, 10, 35–45. [Google Scholar]
- Planes, L.; Catalán, J.; Tena, A.; Porcuna, J.L.; Jacas, J.A.; Izquierdo, J.; Urbaneja, A. Lethal and sublethal effects of spirotetramat on the mealybug destroyer, Cryptolaemus montrouzieri. J. Pest Sci. 2013, 86, 321–327. [Google Scholar] [CrossRef]
- Tingle, C.C.D.; Rother, J.A.; Dewhurst, C.F.; Lauer, S.; King, W.J. Fipronil: Environmental fate, ecotoxicology, and human health concerns. Rev. Environ. Contam. Toxicol. 2003, 176, 1–66. [Google Scholar]
- Singh, N.S.; Sharma, R.; Singh, S.K.; Singh, D.K. A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites. Environ. Res. 2021, 199, 111316. [Google Scholar] [CrossRef]
- Wakil, W.; Kavallieratos, N.G.; Ghazanfar, M.U.; Usman, M. Laboratory and field studies on the combined application of Beauveria bassiana and fipronil against four major stored-product coleopteran insect pests. Environ. Sci. Pollut. Res. 2022, 29, 34912–34929. [Google Scholar] [CrossRef]
- Aajoud, A.; Ravanel, P.; Tissut, M. Fipronil metabolism and dissipation in a simplified aquatic ecosystem. J. Agric. Food. Chem. 2003, 51, 1347–1352. [Google Scholar] [CrossRef]
- Abbassy, M.A.; Salim, Y.M.M.; Shawir, M.S.; Nassar, A.M.K. Disappearance and hazard quotient of chlorpyrifos-methyl, fipronil, and imidacloprid insecticides from dates. J. Consum. Prot. Food Saf. 2017, 12, 223–230. [Google Scholar] [CrossRef]
- Wang, J.H.; Che, S.C.; Qiu, L.F.; Li, G.; Shao, J.L.; Zhong, L.; Zhang, G.F.; Xu, H. Efficacy of emamectin benzoate trunk injection against the Asian long-horned beetle [Anoplophora glabripennis (Coleoptera: Cerambycidae)]. J. Econ. Entomol. 2020, 113, 340–347. [Google Scholar] [CrossRef]
- Smitley, D.R.; Doccola, J.J.; Cox, D.L. Multiple-year protection of ash trees from emerald ash borer with a single trunk injection of emamectin benzoate, and single-year protection with an imidacloprid basal drench. Arboric. Urban For. 2010, 36, 206–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, D.; Li, L.; Hong, X.; Li-Byarlay, H.; Luo, S. Assessing the toxicological interaction effects of imidacloprid, thiamethoxam, and chlorpyrifos on Bombus terrestris based on the combination index. Sci. Rep. 2022, 12, 6301. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, P.K.; Warghat, A.R.; Sharma, R.K.; Yadav, A. Structure and genetic diversity of natural populations of Morus alba in the trans-himalayan Ladakh region. Biochem. Genet. 2014, 52, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Leit, V.G.; Kjellberg, F.; Pereira, R.A.S.; Teixera, S.P. What makes a fig: Insights from a comparative analysis of inflorescence morphogenesis in Moraceae. Ann. Bot. 2021, 127, 621–631. [Google Scholar] [CrossRef]
- Démares, F.J.; Schmehl, D.; Bloomquist, J.R.; Cabrera, A.R.; Huang, Z.Y.; Lau, P.; Rangel, J.; Sullivan, J.; Xie, X.; Ellis, J.D. Honey bee (Apis mellifera) exposure to pesticide residues in nectar and pollen in urban and suburban environments from four regions of the United States. Environ. Toxicol. Chem. 2022, 41, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.; Scott, J.; Campos, F.; Bloomquist, J. Resistance to avermectins: Extent, mechanisms, and management implications. Annu. Rev. Entomol. 1995, 40, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Fang, Y.; Che, W.; Zhang, Q.; Wang, J.; Luo, C. Metabolic resistance in abamectin-resistant Bemisia tabaci Mediterranean from northern China. Toxins 2022, 14, 424. [Google Scholar] [CrossRef]
Treatment | Trees before Trunk Injection 2020 | Trees after Trunk Injection 2021 | Trees after Trunk Injection 2022 | % Reduction of Exit Holes in 2021 (in Comparison with 2020) | % Reduction of Exit Holes in 2022 (in Comparison with 2020) |
---|---|---|---|---|---|
Imidacloprid | 209 | 95 | 50 | 54.5% | 76.1% |
Spirotetramat | 286 | 247 | 179 | 13.6% | 37.4% |
Fipronil | 312 | 121 | 88 | 61.2% | 71.8% |
Abamectin | 230 | 47 | 33 | 79.6% | 85.6% |
Control | 299 | 274 | 215 | 8.4% | 28.1% |
Effect | Exit Holes | ||
---|---|---|---|
Between years of application | |||
Source | DF | F | p |
Intercept | 1 | 217.0 | 0.01 |
Insecticide | 3 | 10.2 | <0.01 |
Height | 1 | 0.5 | 0.49 |
Insecticide × height | 3 | 1.1 | 0.34 |
Within years of application | |||
Source | DF | F | p |
Year | 1 | 10.5 | 0.03 |
Year × insecticide | 3 | 1.0 | 0.42 |
Year × height | 1 | 0.2 | 0.69 |
Year × insecticide × height | 3 | 4.8 | 0.01 |
Height | <1.5 m | >1.5 m | |||
---|---|---|---|---|---|
Year | 2021 | ||||
Treatment | DF | t | p | ||
Fipronil | 7.6 ± 2.2 bc | 4.5 ± 1.8 b | 18 | −1.1 | 0.28 |
Imidacloprid | 2.2 ± 0.7 c | 6.3 ± 1.3 ab * | 18 | 2.5 | 0.03 |
Spirotetramat | 12.4 ± 4.0 ab | 12.3 ± 2.8 a | 18 | 0.5 | 0.66 |
Abamectin | 2.0 ± 0.7 c | 2.7 ± 1.2 b | 18 | 0.4 | 0.72 |
Control | 18.7 ± 2.0 a | 14.8 ± 2.5 a | 18 | −1.5 | 0.17 |
F | 10.3 | 7.5 | |||
p | <0.01 | 0.01 | |||
2022 | |||||
Fipronil | 5.1 ± 1.6 bc | 3.7 ± 1.4 b | 18 | −0.7 | 0.47 |
Imidacloprid | 2.5 ± 0.9 c | 2.5 ± 0.8 b | 18 | 0.1 | 0.97 |
Spirotetramat | 8.1 ± 1.7 b | 9.8 ± 1.4 a | 18 | 1.1 | 0.27 |
Abamectin | 1.0 ± 0.4 c | 2.3 ± 0.9 b | 18 | 1.3 | 0.20 |
Control | 18.6 ± 1.8 a | 16.0 ± 2.0 a | 18 | −1.1 | 0.28 |
F | 15.7 | 13.5 | |||
p | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavallieratos, N.G.; Boukouvala, M.C.; Skourti, A.; Nika, E.P.; Papadoulis, G.T. Trunk Injection with Insecticides Manages Xylotrechus chinensis (Chevrolat) (Coleoptera: Cerambycidae). Insects 2022, 13, 1106. https://doi.org/10.3390/insects13121106
Kavallieratos NG, Boukouvala MC, Skourti A, Nika EP, Papadoulis GT. Trunk Injection with Insecticides Manages Xylotrechus chinensis (Chevrolat) (Coleoptera: Cerambycidae). Insects. 2022; 13(12):1106. https://doi.org/10.3390/insects13121106
Chicago/Turabian StyleKavallieratos, Nickolas G., Maria C. Boukouvala, Anna Skourti, Erifili P. Nika, and Georgios Th. Papadoulis. 2022. "Trunk Injection with Insecticides Manages Xylotrechus chinensis (Chevrolat) (Coleoptera: Cerambycidae)" Insects 13, no. 12: 1106. https://doi.org/10.3390/insects13121106
APA StyleKavallieratos, N. G., Boukouvala, M. C., Skourti, A., Nika, E. P., & Papadoulis, G. T. (2022). Trunk Injection with Insecticides Manages Xylotrechus chinensis (Chevrolat) (Coleoptera: Cerambycidae). Insects, 13(12), 1106. https://doi.org/10.3390/insects13121106