Effects of PVY-Infected Tobacco Plants on the Adaptation of Myzus persicae (Hemiptera: Aphididae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials
2.1.1. Aphids
2.1.2. Virus
2.2. Test Methods
2.2.1. EPG Recording
2.2.2. Life Table Analysis
2.2.3. Amino Acid and Soluble Sugar Analysis
2.2.4. Statistical Analysis
3. Results
3.1. Feeding Behavior of M. Persicae on PVY-Infected and Uninfected Tobacco Plants
3.1.1. Non-phloem-Phase EPG Measurements
3.1.2. Phloem-Phase EPG Measurements
3.2. Life Table Parameters of M. Persicae on PVY-Infected and Uninfected Tobacco Plants
3.3. Quantification of Amino Acids and Soluble Sugars in PVY-Infected and Uninfected Tobacco Tissues
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, Y.; Jiao, X.G.; Xie, W.; Wang, S.L.; Wu, Q.J.; Shi, X.B.; Chen, G.; Su, Q.; Yang, X.; Pan, H.P.; et al. Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Sci. Rep. 2013, 3, 2876. [Google Scholar] [CrossRef] [Green Version]
- Quentin, C.; Aude, C.; Maryline, U.; Véronique, B.; Arnaud, A. Plant infection by two different viruses induce contrasting changes of vectors fitness and behavior. Insect Sci. 2017, 26, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Mauck, K.E.; De-Moraes, C.M.; Mescher, M.C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. USA 2010, 107, 3600–3605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.B.; Li, J.; Liu, S.S. Differential profiles of direct and indirect modification of vector feeding behaviour by a plant virus. Sci Rep. 2015, 5, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.L.; Chen, Q.F.; Zhao, J.J.; Guo, T.; Wang, X.W.; Hariton-Shalev, A.; Czosnek, H.; Liu, S.S. Clathrin-mediated endocytosis is involved in Tomato yellow leaf curl virus transport across the midgut barrier of its whitefly vector. Virology 2017, 502, 152–159. [Google Scholar] [CrossRef]
- Bosque-Pérez, N.A.; Eigenbrode, S.D. The influence of virus-induced changes in plants on aphid vectors: Insights from luteovirus pathosystems. Virus Res. 2011, 159, 201–205. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.Y.; Xu, P.J.; Liu, Y.J.; Dong, Y.H.; Zang, Y.; Cai, X.J.; Ren, G.W. Changes in the nutrient composition of tobacco plants after Potato virus Y infection and their effects on the growth and development of the vector Myzus persicae (Hemiptera: Aphididae). Acta Entomol. Sin. 2020, 63, 181–190. [Google Scholar] [CrossRef]
- He, Y.Q.; Zhang, Y.Q.; Chen, J.N.; Chen, W.L.; Zeng, X.Y.; Chen, H.T.; Ding, W. Effects of Aphidius gifuensis on the feeding behavior and potato virus Y transmission ability of Myzus persicae. Insect Sci. 2017, 25, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.F.; Rondon, S.I.; Moreno, A.; Fereres, A. Effect of Potato virus Y presence in solanum tuberosum (Solanales: Solanaceae) and chenopodium album on aphid (Hemiptera: Aphididae) behavior. Environ. Entomol. 2018, 47, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Gray, S.M. Sequential acquisition of Potato virus Y strains by Myzus persicae favors the transmission of the emerging recombinant strains. Virus Res. 2017, 241, 116–124. [Google Scholar] [CrossRef]
- Belliure, B.; Janssen, A.; Maris, P.C.; Peters, D.; Sabelis, M.W. Herbivore arthropods benefit from vectoring plant viruses. Soil Ecol. Lett. 2005, 8, 70–79. [Google Scholar] [CrossRef]
- George, J.; Kanissery, R.; Ammar, E.-D.; Cabral, I.; Markle, L.T.; Patt, J.M.; Stelinski, L.L. Feeding behavior of Asian citrus psyllid [Diaphorina citri (Hemiptera: Liviidae)] nymphs and adults on common weeds occurring in cultivated citrus described using electrical penetration graph recordings. Insects 2020, 11, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjallingii, W.F. Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot. 2006, 57, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Cen, Y.J.; Yang, C.L.; Holford, P.; Beattie, G.A.C.; Spooner-Hart, R.N.; Liang, G.W.; Deng, X.L. Feeding behaviour of the Asiatic citrus psyllid, Diaphorina citri , on healthy and huanglongbing-infected citrus. Entomol. Exp. Appl. 2012, 143, 13–22. [Google Scholar] [CrossRef]
- Zhao, R.N.; Wu, C.X.; He, Y.Q.; Yu, C.; Liu, J.F.; Li, T.S.; Zhou, C.Y.; Chen, W.L. Different host plants distinctly influence the feeding ability of the brown citrus aphid Toxoptera citricida. Insects 2021, 12, 864. [Google Scholar] [CrossRef]
- Rajendra, A.; Joseph, M.M.; Kumar, D.S.; Raj, S.S.; Kyeong-Yeoll, L. Impact of rice and potato host plants is higher on the reproduction than growth of corn strain fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 256. [Google Scholar] [CrossRef]
- Casteel, C.L.; Yang, C.L.; Nanduri, A.C.; De, J.H.N.; Whitham, S.A.; Jander, G. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J. Cell Mol. Biol. 2014, 77, 653–663. [Google Scholar] [CrossRef]
- Chi, H.; You, M.; Atlıhan, R.; Smith, C.L.; Kavousi, A.; Özgökçe, M.S.; Güncan, A.; Tuan, S.-J.; Fu, J.-W.; Xu, Y.-Y.; et al. Age-Stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2019, 40, 103–124. [Google Scholar] [CrossRef]
- Yan, F.M. Plant pathogen-insect vector interactions: Research progress and prospects. Acta Entomol. Sin. 2020, 63, 123–130. [Google Scholar] [CrossRef]
- He, Y.Q. Studies on Aphidius Gifuensis-Myzus Persicae-PVY Interactions. Ph.D. Thesis, Southwest University, Chongqing, China, 2017. [Google Scholar]
- Shrestha, D.; Wenninger, E.J.; Hutchinson, P.J.; Whitworth, J.L.; Mondal, S.; Eigenbrode, S.D.; Bosque-Pérez, N.A. Interactions among potato genotypes, growth stages, virus strains, and inoculation methods in the Potato virus Y and green peach aphid pathosystem. Environ. Entomol. 2014, 43, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Liu, Y.J.; Philip, D.; HaoDong, Y.; Chen, X.; Zang, Y.; Xu, P.J.; Ren, G.W. Preference of the aphid Myzus persicae (Hemiptera: Aphididae) for tobacco plants at specific stages of potato virus Y infection. Arch. Virol. 2019, 164, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.S.; Jia, C.X.; Li, Y.Q.; Mao, D.B.; Zhang, W.Y. Determination of free amino acids in tobacco with automatic analyzer. Tob. Sci. Technol. 2004, 8, 26–32. [Google Scholar]
- Zhang, S.W.; Zong, Y.J.; Fang, C.Y.; Huang, S.H.; Li, J.; Xu, J.H.; Wang, Y.F.; Liu, C.H. Optimization of anthrone colorimetric method for rapid determination of soluble sugar in barley leaves. Food Res. Dev. 2020, 41, 196–200. [Google Scholar]
- Zeng, X.Y.; He, Y.Y.; Wu, J.X.; Tang, Y.M.; Gu, J.T.; Ding, W.; Zhang, Y.Q. Sublethal effects of cyantraniliprole and imidacloprid on feeding behavior and life table parameters of Myzus persicae (Hemiptera: Aphididae). J. Econ. Entomol. 2016, 109, 1595–1602. [Google Scholar] [CrossRef]
- Sarria, E.; Cid, M.; Garzo, E.; Fereres, A. Excel workbook for automatic parameter calculation of EPG data. Comput. Electron. Agric. 2009, 67, 35–42. [Google Scholar] [CrossRef]
- Ingwell, L.L.; Eigenbrode, S.D.; Bosque-Perez, N.A. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2012, 2, 578. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Preisser, E.L.; Zhou, X.M.; Xie, W.; Liu, B.M.; Wang, S.L.; Wu, Q.J.; Zhang, Y.J. Manipulation of Host quality and defense by a plant virus improves performance of Whitefly vectors. J. Econ. Entomol. 2015, 108, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.M.; Chen, C.S.; Huang, F.; Yang, Q.Q.; Liu, G.F.; Yu, X.P.; Zhang, P.J. Advances in the transmission of plant viruses promoted by the interaction between the viruses and insect vectors. J. Plant Prot. 2022, 49, 711–720. [Google Scholar]
- Bak, A.; Patton, M.F.; Perilla-Henao, L.M.; Aegerter, B.J.; Casteel, C.L. Ethylene signaling mediates potyvirus spread by aphid vectors. Oecologia 2019, 190, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Fereres, A.; Moreno, A. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res. 2008, 141, 158–168. [Google Scholar] [CrossRef]
- Alvarez, A.E.; Garzo, E.; Verbeek, M.; Vosman, B.; Dicke, M.; Tjallingii, W.F. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomol. Exp. Appl. 2007, 125, 135–144. [Google Scholar] [CrossRef]
- Boquel, S.; Giordanengo, P.; Ameline, A. Divergent effects of PVY-infected potato plant on aphids. Eur. J. Plant Pathol. 2011, 129, 507–510. [Google Scholar] [CrossRef]
- Prado, E.; Tjallingii, W.F. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomol. Exp. Appl. 1997, 82, 189–200. [Google Scholar] [CrossRef]
- Guo, J.F.; Zhang, M.D.; Gao, Z.P.; Wang, D.J.; He, K.L.; Wang, Z.Y. Comparison of larval performance and oviposition preference of Spodoptera frugiperda among three host plants: Potential risks to potato and tobacco crops. Insect Sci. 2020, 28, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Jiu, M.; Zhou, X.P.; Tong, L.; Xu, J.; Yang, X.; Wan, F.H.; Liu, S.S. Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE 2007, 2, e182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancewicz, K.; Sznajder, K.; Załuski, D.; Kordan, B.; Gabryś, B. Behavioral sensitivity of Myzus persicae to volatile isoprenoids in plant tissues. Entomol. Exp. Appl. 2016, 160, 229–240. [Google Scholar] [CrossRef]
- Mauck, K.E.; De-Moraes, C.M.; Mescher, M.C. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant Cell Environ. 2014, 37, 1427–1439. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.J.; Song, X.R.; Yang, X.M.; Tang, Z.Q.; Reni, G.W.; Lu, Y.H. A novel single-stranded RNA virus in Nesidiocoris tenuis. Arch. Virol. 2017, 162, 1125–1128. [Google Scholar] [CrossRef]
- Douglas, A. Phloem-sap feeding by animals: Problems and solutions. J. Exp. Bot. 2006, 57, 747–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.H.; Liu, H.R.; Zhang, Z.F.; Liu, T.X. The green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Sci. Rep. 2016, 6, 21954. [Google Scholar] [CrossRef] [Green Version]
- Mittler, T.E. Effect of amino acid and sugar concentrations on the food uptake of the aphid Myzus persicae. Entomol. Exp. Appl. 1967, 10, 39–51. [Google Scholar] [CrossRef]
- Abisgold, J.D.; Simpson, S.J.; Douglas, A.E. Nutrient regulation in the pea aphid Acyrthosiphon pisum: Application of a novel geometric framework to sugar and amino acid consumption. Physiol. Entomol. 1994, 19, 95–102. [Google Scholar] [CrossRef]
- Wang, J.; Bing, X.L.; Li, M.; Ye, G.Y.; Liu, S.S. Infection of tobacco plants by a begomovirus improves nutritional assimilation by a whitefly. Entomol. Exp. Appl. 2012, 144, 191–201. [Google Scholar] [CrossRef]
Variables/Per Insect | No. | EPG Parameter | Uninfected Tobacco | PVY-Infected Tobacco |
---|---|---|---|---|
Probing, pathway, and cell puncture | 1 | Number of probes | 9.87 ± 1.60 | 5.27 ± 0.69 * |
2 | Overall duration of np (min) | 95.24 ± 19.02 | 46.31 ± 13.86 * | |
3 | Time to first probe from start of EPG (min) | 16.07 ± 8.03 | 14.24 ± 5.14 | |
4 | Duration of first probe (min) | 27.37 ± 9.19 | 62.02 ± 12.59 * | |
5 | Number of probes to the first E1 | 4.33 ± 1.20 | 4.25 ± 0.75 | |
6 | Number of pd | 96.13 ± 12.97 | 91.20 ± 18.10 | |
7 | Mean duration of pd (s) | 5.37 ± 0.19 | 5.70 ± 0.28 | |
8 | Number of short probes(C < 3 min) | 5.87 ± 0.97 | 3.27 ± 0.76 * | |
9 | Total duration of C (min) | 103.56 ± 20.34 | 100.20 ± 22.19 | |
Derailed stylet mechanics | 10 | Number of F | 0.53 ± 0.34 | 0.47 ± 0.13 |
11 | Duration of F (min) | 10.50 ± 6.33 | 16.85 ± 6.65 | |
Xylem ingestion | 12 | Number of G | 0.40 ± 0.24 | 0.60 ± 0.38 |
13 | Duration of G (min) | 4.04 ± 2.97 | 3.04 ± 1.81 | |
Phloem salivation and ingestion | 14 | Number of E1 | 3.73 ± 0.61 | 2.00 ± 0.50 * |
15 | Duration of first E (min) | 42.24 ± 14.46 | 110.51 ± 27.93 * | |
16 | Total duration of E1 (min) | 32.38 ± 6.73 | 15.15 ± 4.50 * | |
17 | Contribution of E1 to phloem phase (%) | 29.84 ± 6.09 | 13.23 ± 4.34 * | |
18 | Number of E2 | 1.60 ± 0.38 | 2.00 ± 0.56 | |
19 | Time from first probe to first E2 (min) | 77.82 ± 18.06 | 78.07 ± 9.24 | |
20 | Number of sustained E2(> 10 min) | 0.67 ± 0.19 | 1.60 ± 0.39 * | |
21 | Total duration of E2 (min) | 114.28 ± 20.87 | 180.47 ± 24.27 * |
Basic Statistic | Uninfected Tobacco | PVY-Infected Tobacco | ||
---|---|---|---|---|
n | Development Time (d) | n | Development Time (d) | |
First instar (N1) | 100 | 1.07 ± 0.04 | 100 | 0.93 ± 0.03 * |
Second instar (N2) | 98 | 1.20 ± 0.04 | 98 | 1.05 ± 0.03 * |
Third instar (N3) | 96 | 1.27 ± 0.05 | 96 | 1.29 ± 0.04 |
Fourth instar (N4) | 94 | 1.61 ± 0.05 | 96 | 1.57 ± 0.04 |
Preadult duration | 94 | 5.18 ± 0.07 | 96 | 4.84 ± 0.07 * |
Adult longevity | 94 | 13.05 ± 0.72 | 96 | 10.89 ± 0.45 * |
Adult preoviposition period (APOP) | 94 | 0.58 ± 0.05 | 96 | 0.70 ± 0.06 |
Total preoviposition (TPOP) | 94 | 5.31 ± 0.06 | 96 | 5.99 ± 0.10 * |
Fecundity | 94 | 42.38 ± 3.40 | 96 | 27.17 ± 2.28 * |
Parameter | Original | Bootstrap | ||
---|---|---|---|---|
Uninfected Tobacco | PVY-Infected Tobacco | Uninfected Tobacco | PVY-Infected Tobacco | |
Intrinsic rate of increase (r) (d−1) | 0.4421 | 0.4168 | 0.4418 ± 0.0088 | 0.4164 ± 0.0090 * |
Finite rate of increase (λ) (d−1) | 1.5560 | 1.5171 | 1.5556 ± 0.0136 | 1.5166 ± 0.0136 * |
Net reproductive rate (R0) | 39.8400 | 26.0800 | 39.8032 ± 3.4882 | 26.0907 ± 2.2779 * |
Mean generation time (T) (d) | 8.3350 | 7.8240 | 8.3310 ± 0.1383 | 7.8240 ± 0.1787 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Jiang, W.; Ding, W.; Chen, W.; Zhao, D. Effects of PVY-Infected Tobacco Plants on the Adaptation of Myzus persicae (Hemiptera: Aphididae). Insects 2022, 13, 1120. https://doi.org/10.3390/insects13121120
He Y, Jiang W, Ding W, Chen W, Zhao D. Effects of PVY-Infected Tobacco Plants on the Adaptation of Myzus persicae (Hemiptera: Aphididae). Insects. 2022; 13(12):1120. https://doi.org/10.3390/insects13121120
Chicago/Turabian StyleHe, Yingqin, Wenbin Jiang, Wei Ding, Wenlong Chen, and Degang Zhao. 2022. "Effects of PVY-Infected Tobacco Plants on the Adaptation of Myzus persicae (Hemiptera: Aphididae)" Insects 13, no. 12: 1120. https://doi.org/10.3390/insects13121120
APA StyleHe, Y., Jiang, W., Ding, W., Chen, W., & Zhao, D. (2022). Effects of PVY-Infected Tobacco Plants on the Adaptation of Myzus persicae (Hemiptera: Aphididae). Insects, 13(12), 1120. https://doi.org/10.3390/insects13121120