Decreasing Species Richness with Increase in Elevation and Positive Rapoport Effects of Crambidae (Lepidoptera) on Mount Taibai
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Species Identification
2.3. Alpha Diversity Analysis
2.4. Rapoport’s Rule Analysis
2.5. Statistical Analysis
3. Results
3.1. Species Delimitation
3.2. Alpha Diversity along Altitude
3.3. Elevational Distribution Ranges and Rapoport’s Rule Test
4. Discussion
4.1. Efficiency of Species Recognition
4.2. Alpha Diversity with Increasing Altitude
4.3. Rapoport’s Rule Test and Factors Influencing Elevational Species Range Patterns
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, Y.; Sang, W.; Zhou, H.; Huang, L.; Axmacher, J.C. Altitudinal Diversity Patterns of Ground Beetles (Coleoptera: Carabidae) in the Forests of Changbai Mountain, Northeast China. Insect Conserv. Divers. 2014, 7, 161–171. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Colwell, R.K.; Dalsgaard, B.; Holt, B.G.; Morueta-Holme, N.; Nogues-Bravo, D.; Whittaker, R.J.; Fjeldså, J. Humboldt’s Enigma: What Causes Global Patterns of Mountain Biodiversity? Science 2019, 365, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.; Liedtke, H.C.; Widler, S.; Altermatt, F.; Loader, S.P.; Hagmann, R.; Lang, S.; Fiedler, K. Patterns or Mechanisms? Bergmann’s and Rapoport’s Rule in Moths along an Elevational Gradient. Community Ecol. 2016, 17, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Beck, J.; McCain, C.M.; Axmacher, J.C.; Ashton, L.A.; Bärtschi, F.; Brehm, G.; Choi, S.-W.; Cizek, O.; Colwell, R.K.; Fiedler, K.; et al. Elevational Species Richness Gradients in a Hyperdiverse Insect Taxon: A Global Meta-Study on Geometrid Moths. Glob. Ecol. Biogeogr. 2016, 26, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.H.; Gong, Z.D.; Lian, H.Y.; Bian, C.L.; Ju, J.K.; Li, D.; Yue, R.P.; Zhang, L.Y.; Zhou, H.N. The Mosquitoes Diversity Space Distribution Characteristics and Relationship with Environmental Factors of Lake Wetland in Yunnan Plateau. Acta Parasitol. Med. Entomol. Sin. 2015, 22, 217–232. [Google Scholar] [CrossRef]
- Wagner, D.L. Insect Declines in the Anthropocene. Annu. Rev. Entomol. 2020, 65, 457–480. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Li, J.; Qi, G.; Wang, S. Species Spatial Distributions in a Warm-Temperate Deciduous Broad-Leaved Forest in China. J. For. Res. 2020, 31, 1187–1194. [Google Scholar] [CrossRef]
- Moritz, C.; Patton, J.L.; Conroy, C.J.; Parra, J.L.; White, G.C.; Beissinger, S.R. Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA. Science 2008, 322, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Quintero, I.; Jetz, W. Global Elevational Diversity and Diversification of Birds. Nature 2018, 555, 246–250. [Google Scholar] [CrossRef]
- Rahbek, C. The Role of Spatial Scale and the Perception of Large-Scale Species-Richness Patterns. Ecol. Lett. 2005, 8, 224–239. [Google Scholar] [CrossRef]
- McCain, C.M.; Bracy Knight, K. Elevational Rapoport’s Rule Is Not Pervasive on Mountains. Glob. Ecol. Biogeogr. 2013, 22, 750–759. [Google Scholar] [CrossRef]
- Rapoport, E.H. Areography: Geographical Strategies of Species; Pergamon Press: Oxford, UK, 1982; pp. 45–241. [Google Scholar]
- Stevens, G.C. The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics. Am. Nat. 1989, 133, 240–256. [Google Scholar] [CrossRef]
- Stevens, G. Extending Rapoport’s Rule to Pacific Marine Fishes. J. Biogeogr. 1996, 23, 149–154. [Google Scholar] [CrossRef]
- Morin, X.; Chuine, I. Niche Breadth, Competitive Strength and Range Size of Tree Species: A Trade-off Based Framework to Understand Species Distribution. Ecol. Lett. 2006, 9, 185–195. [Google Scholar] [CrossRef]
- Fleishman, E.; Austin, G.T.; Weiss, A.D. An Empirical Test of Rapoport’s Rule: Elevational Gradients in Montane Butterfly Communities. Ecology 1998, 79, 2482–2493. [Google Scholar] [CrossRef]
- Aguirre, H.; Shaw, S.R.; Rodríguez-Jiménez, A. Contrasting Patterns of Altitudinal Distribution between Parasitoid Wasps of the Subfamilies Braconinae and Doryctinae (Hymenoptera: Braconidae). Insect Conserv. Divers. 2018, 11, 219–229. [Google Scholar] [CrossRef]
- Rahbek, C. The Relationship among Area, Elevation, and Regional Species Richness in Neotropical Birds. Am. Nat. 1997, 149, 875–902. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, K.R.; Vetaas, O.R. Can Rapoport’s Rule Explain Tree Species Richness along the Himalayan Elevation Gradient, Nepal? Divers. Distrib. 2006, 12, 373–378. [Google Scholar] [CrossRef]
- Ruggiero, A.; Werenkraut, V. One-Dimensional Analyses of Rapoport’s Rule Reviewed through Meta-Analysis. Glob. Ecol. Biogeogr. 2007, 16, 401–414. [Google Scholar] [CrossRef]
- Shen, Z.H.; Lu, Q.L. The Rapoport’s Rule for the Geographic Patterns of Species Range Size. Biodivers. Sci. 2009, 17, 560. [Google Scholar] [CrossRef]
- Choi, S.-W. Diversity and Composition of Larger Moths in Three Different Forest Types of Southern Korea. Ecol. Res. 2007, 23, 503–509. [Google Scholar] [CrossRef]
- Beck, J.; Kitching, I.; Haxaire, J. The Latitudinal Distribution of Sphingid Species Richness in Continental Southeast Asia: What Causes the Biodiversity “hot Spot” in Northern Thailand? Raffles Bull. Zool. 2007, 55, 179–185. [Google Scholar]
- Zheng, T.Y.; Wang, D.; Ji, L.T.; Kang, B. Classification, Ordination and Diversity Pattern of Typical Forest Communities in Mount Taibai Nature Reserve. Acta Ecol. Sin. 2020, 40, 7353–7361. [Google Scholar]
- Li, H.H.; You, P.; Xiao, Y.L.; Bai, H.X.Y.; Wang, S.X.; Zhu, Y.M.; Zhen, H.; Zhang, Z.W.; Zhang, J.; Hu, B.B.; et al. Microlepidoptera of Mount Taibais (Insecta: Lepidoptera); Han, X.Z., Ed.; Science Press: Beijing, China, 2012. [Google Scholar]
- Zhang, Y.J.; Yu, Y.C.; Niu, J.J.; Gong, L.L. The Elevational Patterns of Soil Organic Carbon Storage on the Northern Slope of Mount Taibai of Qinling. Acta Ecol. Sin. 2020, 40, 629–639. [Google Scholar]
- Léger, T.; Mally, R.; Neinhuis, C.; Nuss, M. Refining the Phylogeny of Crambidae with Complete Sampling of Subfamilies (Lepidoptera, Pyraloidea). Zool. Scr. 2021, 50, 84–99. [Google Scholar] [CrossRef]
- Global Information System on Pyraloidea. Available online: www.pyraloidea.org (accessed on 15 August 2022).
- Sinev, S.Y.; Korb, S.K. What Species of Mecyna subsequalis (Herrich-Schäffer, 1854)-Group Occurs in Highlands of Central Asia? (Lepidoptera: Crambidae, Spilomelinae). SHILAP Rev. De Lepidopterol. 2022, 50, 257–263. [Google Scholar] [CrossRef]
- Sinev, S.Y.; Korb, S.K. New Data on the Little-Known Snout Moth Species Pyrausta pionalis Toll, 1948 (Lepidoptera: Crambidae). Cauc. Entomol. Bull. 2022, 18, 201–206. [Google Scholar] [CrossRef]
- Munroe, E.G.; Solis, M.A. The Pyraloidea. In Lepidoptera, Moths and Butterflies. Volume 1: Evolution, Systematics, and Biogeography; Kristensen, N.P., Ed.; Walter de Gruyter: Berlin, Germany, 1998; pp. 233–256. [Google Scholar]
- Matsui, Y.; Mally, R.; Kohama, S.; Aoki, I.; Azuma, M.; Naka, H. Molecular Phylogenetics and Tribal Classification of Japanese Pyraustinae and Spilomelinae (Lepidoptera: Crambidae). Insect Syst. Evol. 2022, 1, 1–30. [Google Scholar] [CrossRef]
- Burns, J.H.; Strauss, S.Y. More Closely Related Species Are More Ecologically Similar in an Experimental Test. Proc. Natl. Acad. Sci. USA 2011, 108, 5302–5307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.F.; Ullah, M.; Landry, J.-F.; Miller, S.E.; Rosati, M.E.; Zhang, Y. Reassessment of the Moth Genus Bacotoma, with a New Species from Hainan Island (Lepidoptera: Crambidae: Spilomelinae). Insect Syst. Evol. 2020, 51, 384–407. [Google Scholar] [CrossRef]
- Yang, Z.F.; Plotkin, D.; Landry, J.-F.; Storer, C.; Kawahara, A.Y. Revisiting the Evolution of Ostrinia Moths with Phylogenomics (Pyraloidea: Crambidae: Pyraustinae). Syst. Entomol. 2021, 46, 827–838. [Google Scholar] [CrossRef]
- Pagel, M.D.; May, R.M.; Collie, A.R. Ecological Aspects of the Geographical Distribution and Diversity of Mammalian Species. Am. Nat. 1991, 137, 791–815. [Google Scholar] [CrossRef]
- Rohde, K.; Heap, M.; Heap, D. Rapoport’s Rule Does Not Apply to Marine Teleosts and Cannot Explain Latitudinal Gradients in Species Richness. Am. Nat. 1993, 142, 1–16. [Google Scholar] [CrossRef]
- Letcher, A.J.; Harvey, P.H. Variation in Geographical Range Size among Mammals of the Palearctic. Am. Nat. 1994, 144, 30–42. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, Y.X.; Yi, J.J.; Yue, M. Species Richness and Altitudinal Gradient Distribution Pattern of Climbing Plants in the Taibai Mountain. J. Northwest For. Univ. 2020, 35, 60–65. [Google Scholar]
- Meng, Q. Spatio-Temporal Variation and Acquisition of Raster Dataset of Precipitation in the Qinling Mountains. Ph.D. Thesis, Northwest University, Xi’an, China, 2021. [Google Scholar]
- Zhu, Z.C. Characteristics and Distribution of Main Forest Types in Taibai Mountain of Qinling Mountains. Shaanxi For. Sci. Technol. 1981, 5, 29–39. [Google Scholar]
- Fu, Z.J.; Zhang, X.Y.; Liu, S.Y.; Tao, M. The Summarize of Research on the Flora and Vegetation of the Qinling Mountain Range. Acta Bot. Boreali-Occident. Sin. 1996, 5, 93–106. [Google Scholar]
- Wang, J.S.; Song, S.M.; Wu, Y.Y.; Chen, T.M. Insects of Pyralidae in Wuyishan Nature Reserve; Science and Technology of China Press: Beijing, China, 2003. [Google Scholar]
- Hebert, P.D.N.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten Species in One: DNA Barcoding Reveals Cryptic Species in the Neotropical Skipper Butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Hill, M. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.; Chiu, C.-H.; Jost, L. Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures through Hill Numbers. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 297–324. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.C.; Ma, K.H.; Chao, A. INEXT: An R Package for Rarefaction and Extrapolation of Species Diversity (Hill Numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication, by CE Shannon (and Recent Contributions to the Mathematical Theory of Communication); University of Illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and Extrapolation with Hill Numbers: A Framework for Sampling and Estimation in Species Diversity Studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Chao, A.; Kubota, Y.; Zelený, D.; Chiu, C.-H.; Li, C.-F.; Kusumoto, B.; Yasuhara, M.; Thorn, S.; Wei, C.-L.; Costello, M.J.; et al. Quantifying Sample Completeness and Comparing Diversities among Assemblages. Ecol. Res. 2020, 35, 292–314. [Google Scholar] [CrossRef]
- Böhm, M.; Kemp, R.; Williams, R.; Davidson, A.D.; Garcia, A.; McMillan, K.M.; Bramhall, H.R.; Collen, B. Rapoport’s Rule and Determinants of Species Range Size in Snakes. Divers. Distrib. 2017, 23, 1472–1481. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yu, R.; Huang, J.; Liu, Y.; Zang, R.; Guo, Z.; Ding, Y.; Lu, X.; Li, Q.; Chen, H.Y.H. Latitudinal Diversity Gradients and Rapoport Effects in Chinese Endemic Woody Seed Plants. Forests 2020, 11, 1029. [Google Scholar] [CrossRef]
- Armstrong, K.F.; Ball, S.L. DNA Barcodes for Biosecurity: Invasive Species Identification. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1813–1823. [Google Scholar] [CrossRef] [Green Version]
- Hebert, P.D.N.; Ratnasingham, S.; de Waard, J.R. Barcoding Animal Life: Cytochrome c Oxidase Subunit 1 Divergences among Closely Related Species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, S96–S99. [Google Scholar] [CrossRef] [Green Version]
- Hajibabaei, M.; Janzen, D.H.; Burns, J.M.; Hallwachs, W.; Hebert, P.D.N. DNA Barcodes Distinguish Species of Tropical Lepidoptera. Proc. Natl. Acad. Sci. USA 2006, 103, 968–971. [Google Scholar] [CrossRef] [Green Version]
- Batovska, J.; Blacket, M.J.; Brown, K.; Lynch, S.E. Molecular Identification of Mosquitoes (Diptera: Culicidae) in Southeastern Australia. Ecol. Evol. 2016, 6, 3001–3011. [Google Scholar] [CrossRef] [Green Version]
- Elías-Gutiérrez, M.; León-Regagnon, V. DNA Barcoding in Mexico: An Introduction. Mol. Ecol. Resour. 2013, 13, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.Q.; Yang, X.M. Alpha Diversity of Communities and Their Variety along Altitude Gradient on Northern Slope of Changbai Mountain. Chin. J. Appl. Ecol. 2002, 13, 786–789. [Google Scholar]
- Chen, Y.B.; Hou, G.Z.; Meng, Q.L.; Ai, G.; Meng, G.; Gao, W.T. On Vertical Distribution and Fauna of the Geometrid Moth in Changbai Mountain. J. Beihua Univ. Nat. Sci. 2007, 8, 73–79. [Google Scholar]
- Olson, D. The Distribution of Leaf Litter Invertebrates along a Neotropical Altitudinal Gradient. J. Trop. Ecol. 1994, 10, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, K.; Brehm, G.; Hilt, N.; Süßenbach, D.; Häuser, C.L. Fauna: Composition and Function. In Gradients in a Tropical Mountain Ecosystem of Ecuador; Beck, E., Bendix, J., Kottke, I., Makeschin, F., Mosandl, R., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2008; pp. 167–179. [Google Scholar]
- Thormann, B.; Ahrens, D.; Espinosa, C.I.; Armijos, D.M.; Wagner, T.; Wägele, J.W.; Peters, M.K. Small-Scale Topography Modulates Elevational α-, β- and γ-Diversity of Andean Leaf Beetles. Oecologia 2018, 187, 181–189. [Google Scholar] [CrossRef]
- Mally, R.; Nuss, M. Molecular and Morphological Phylogeny of European Udea Moths (Insecta: Lepidoptera: Pyraloidea). Arthropod Syst. Phylogeny 2011, 69, 55–71. [Google Scholar]
- Murase, M. On the Hostplants of Goniorhynchus clausalis (Christoph) and Nine Other Species of the Pyraustinae (Crambidae). Jpn. Het 2003, 224, 451–453. [Google Scholar]
- A Database of the World’s Lepidopteran Hostplants. Available online: https://www.nhm.ac.uk/our-science/data/hostplants (accessed on 5 March 2022).
- Li, D.X.; Shi, J.D.; Li, H.J.; Wang, D. Diversity and Vertical Distribution of Lepidoptera Insect Communities in the Hualong Mountain National Nature Reserve, Shaanxi. J. Northwest For. Univ. 2022, 37, 177–182. [Google Scholar] [CrossRef]
- Roslin, T.; Hardwick, B.; Novotny, V.; Petry, W.K.; Andrew, N.R.; Asmus, A.; Barrio, I.C.; Basset, Y.; Boesing, A.L.; Bonebrake, T.C.; et al. Higher Predation Risk for Insect Prey at Low Latitudes and Elevations. Science 2017, 356, 742–744. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.-J.; Xing, D.-H.; Gong, Z.-X.; Hu, J.-M. Projecting Suitability and Climate Vulnerability of Bhutanitis thaidina (Blanchard) (Lepidoptera: Papilionidae) with Conservation Implications. Sci. Rep. 2019, 9, 15384. [Google Scholar] [CrossRef]
- Wang, X.; Jing-yun, F.; Tang, Z. The Mid-Domain Effect Hypothesis: Models, Evidence and Limitations. Biodivers. Sci. 2009, 17, 568. [Google Scholar] [CrossRef]
- Colwell, R.K.; Rahbek, C.; Gotelli, N.J. The Mid-Domain Effect and Species Richness Patterns: What Have We Learned So Far? Am. Nat. 2004, 163, E1–E23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Tang, Z.; Jing-yun, F. The Species-Energy Hypothesis as a Mechanism for Species Richness Pattern. Biodivers. Sci. 2009, 17, 613. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Li, Z.; Zheng, Y.; Zhan, J.; Yang, B.; Yang, Z. Decreasing Species Richness with Increase in Elevation and Positive Rapoport Effects of Crambidae (Lepidoptera) on Mount Taibai. Insects 2022, 13, 1125. https://doi.org/10.3390/insects13121125
Chen A, Li Z, Zheng Y, Zhan J, Yang B, Yang Z. Decreasing Species Richness with Increase in Elevation and Positive Rapoport Effects of Crambidae (Lepidoptera) on Mount Taibai. Insects. 2022; 13(12):1125. https://doi.org/10.3390/insects13121125
Chicago/Turabian StyleChen, Anping, Zhijie Li, Yufeng Zheng, Jinyu Zhan, Bolan Yang, and Zhaofu Yang. 2022. "Decreasing Species Richness with Increase in Elevation and Positive Rapoport Effects of Crambidae (Lepidoptera) on Mount Taibai" Insects 13, no. 12: 1125. https://doi.org/10.3390/insects13121125
APA StyleChen, A., Li, Z., Zheng, Y., Zhan, J., Yang, B., & Yang, Z. (2022). Decreasing Species Richness with Increase in Elevation and Positive Rapoport Effects of Crambidae (Lepidoptera) on Mount Taibai. Insects, 13(12), 1125. https://doi.org/10.3390/insects13121125