Exogenous Calcium Suppresses the Oviposition Choices of Frankliniella occidentalis (Thysanoptera: Thripidae) and Promotes the Attraction of Orius similis (Hemiptera: Anthocoridae) by Altering Volatile Blend Emissions in Kidney Bean Plants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plants
2.2. Test Insects
2.3. Plant Treatment Settings
2.4. Y-Tube Olfactometer Bioassays
2.5. Free Choice Test for Oviposition Preference of F. occidentalis
2.6. Analysis of Plant Volatiles
2.7. Volatiles Identified with Test Chemicals
2.8. Olfactory Assay with Synthetic Standards
2.9. Statistical Analyses
3. Results
3.1. Y-Tube Olfactometer Bioassays
3.2. Free Choice Test for Oviposition Preference of F. occidentalis
3.3. Component Analysis of Volatile from Kidney Bean Plant
3.4. Six-Arm Olfactometer Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, G.J.; Chu, S.P.; Harrington, C.L.; Schumacher, K.; Hoffmann, T.; Tang, Y.Y.; Grill, E.; Schroeder, J.I. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 2001, 411, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.J.; Wang, C.; Li, K.; Luan, S. The CBL–CIPK calcium signaling network: Unified paradigm from 20 years of discoveries. Trends Plant Sci. 2020, 25, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Wang, C.; Gao, Q.; Li, L.; Luan, S. Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat. Plants 2020, 6, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Vincent, T.R.; Avramova, M.; Canham, J.; Higgins, P.; Bilkey, N.; Mugford, S.T.; Pitino, M.; Toyota, M.; Gilroy, S.; Miller, A.J.; et al. Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell 2017, 29, 1460–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debona, D.; Cruz, M.F.A.; Rodrigues, F.A. Calcium-triggered accumulation of defense-related transcripts enhances wheat resistance to leaf blast. Trop. Plant Pathol. 2017, 42, 309–314. [Google Scholar] [CrossRef]
- Larkindale, J.; Knight, M.R. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 2002, 128, 682–695. [Google Scholar] [CrossRef]
- Rahman, A.; Mostofa, M.G.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Braz. J. Bot. 2016, 39, 393–407. [Google Scholar] [CrossRef]
- Khan, A.; Anwar, Y.; Hasan, M.M.; Iqbal, A.; Ali, M.; Alharby, H.F.; Hakeem, K.R.; Hasanuzzaman, M. Attenuation of drought stress in Brassica seedlings with exogenous application of Ca and H2O2. Plants 2017, 6, 20. [Google Scholar] [CrossRef]
- Tahjib-Ul-Arif, M.; Roy, P.R.; Al Mamun Sohag, A.; Afrin, S.; Rady, M.M.; Hossain, M.A. Exogenous calcium supplementation improves salinity tolerance in BRRI dhan28; a salt-susceptible high-yielding Oryza sativa cultivar. J. Crop. Sci. Biotechnol. 2018, 21, 383–394. [Google Scholar] [CrossRef]
- Silveira, N.M.; Ribeiro, R.V.; Prataviera, P.J.; Pissolato, M.D.; Pieretti, J.C.; Seabra, A.B.; Machado, E.C. Germination and initial growth of common bean plants under water deficit as affected by seed treatment with S-nitrosoglutathione and calcium chloride. Theor. Exp. Plant Physiol. 2020, 32, 49–62. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Wu, X.B.; Deng, Q.Q.; Zhu, Z.Y.; Ren, M.J.; Zeng, R.S. Seed priming with calcium chloride enhances wheat resistance against wheat aphid Schizaphis graminum Rondani. Pest Manag. Sci. 2021, 77, 4709–4718. [Google Scholar] [CrossRef]
- Zeng, G.; Zhi, J.R.; Ye, M.; Yue, W.B.; Song, J. Inductive effects of exogenous calcium on the defense of kidney bean plants against Frankliniella occidentalis (Thysanoptera: Thripidae). Arthropod-Plant Interact. 2020, 14, 473–480. [Google Scholar] [CrossRef]
- Wu, X.B.; Deng, Q.Q.; Song, J.; Wang, J.; Ye, M. Effects of seed soaking with different concentrations of calcium chloride on rice defense enzyme activities and resistance to Nilaparvata lugens (Hemiptera; Delphacidae). Acta Entomol. Sin. 2022, 65, 84–93. [Google Scholar]
- Huang, J.; Zhang, J.; Yu, Y.M.; Liu, J.X.; Li, M.J.; Zhu, K.Y. Effects of calcium fertilizer on the development, survival, and feeding of B-biotype Bemisia tabaci on Euphorbia pulcherrima. Chin. J. Appl. Ecol. 2012, 23, 2521–2528. [Google Scholar]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.G.; Hu, L.F.; Li, J.C. Herbivore-induced defenses in rice and their potential application in rice planthopper management. In Rice Planthoppers; Zhejiang University Press: Hangzhou, China, 2015; pp. 91–115. [Google Scholar]
- Schuman, M.C.; Baldwin, I.T. The layers of plant responses to insect herbivores. Annu. Rev. Entomol. 2016, 61, 373–394. [Google Scholar] [CrossRef]
- Conchou, L.; Lucas, P.; Meslin, C.; Proffit, M.; Staudt, M.; Renou, M. Insect odor scapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 2019, 10, 972. [Google Scholar] [CrossRef]
- Lin, T.T.; Vrieling, K.; Laplanche, D.; Klinkhamer, P.G.; Lou, Y.G.; Bekooy, L.; Degen, T.; Bustos, S.C.; Turlings, T.C.J.; Desurmont, G.A. Evolutionary changes in an invasive plant support the defensive role of plant volatiles. Curr. Biol. 2021, 31, 3450–3456.e5. [Google Scholar] [CrossRef]
- Becker, C.; Desneux, N.; Monticelli, L.; Fernandez, X.; Michel, T.; Lavoir, A.V. Effects of abiotic factors on HIPV-mediated interactions between plants and parasitoids. BioMed Res. Int. 2015, 2015, 342982. [Google Scholar] [CrossRef] [Green Version]
- Patt, J.M.; Robbins, P.S.; Niedz, R.; McCollum, G.; Alessandro, R. Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri), vector of Huang long Bing. PLoS ONE 2018, 13, e0193724. [Google Scholar] [CrossRef] [Green Version]
- Turlings, T.C.; Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, R.; Lee, S.M.; Ryu, C.M. Microbe-induced plant volatiles. New Phytol. 2018, 220, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zhu, G.Q.; He, W.C.; Xie, J.L.; Li, S.J.; Han, S.; Li, S.Y.; Yang, C.L.; Liu, Y.G.; Zhu, T.H. Soil cadmium stress reduced host plant odor selection and oviposition preference of leaf herbivores through the changes in leaf volatile emissions. Sci. Total Environ. 2022, 814, 152728. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Moore, B.D.; Johnson, S.N. Silicon suppresses a ubiquitous mite herbivore and promotes natural enemy attraction by altering plant volatile blends. J. Pest Sci. 2022, 95, 423–434. [Google Scholar] [CrossRef]
- Colazza, S.; McElfresh, J.S.; Millar, J.G. Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp., that attract the egg parasitoid Trissolcus basalis. J. Chem. Ecol. 2004, 30, 945–964. [Google Scholar] [CrossRef]
- Dicke, M. Behavioural and community ecology of plants that cry for help. Plant Cell Environ. 2009, 32, 654–665. [Google Scholar] [CrossRef]
- Gols, R. Direct and indirect chemical defences against insects in a multitrophic framework. Plant Cell Environ. 2014, 37, 1741–1752. [Google Scholar] [CrossRef] [Green Version]
- Aljbory, Z.; Chen, M.S. Indirect plant defense against insect herbivores: A review. Insect Sci. 2018, 25, 2–23. [Google Scholar] [CrossRef]
- Paudel Timilsena, B.; Seidl-Adams, I.; Tumlinson, J.H. Herbivore-specific plant volatiles prime neighboring plants for nonspecific defense responses. Plant Cell Environ. 2020, 43, 787–800. [Google Scholar] [CrossRef]
- Winter, T.R.; Borkowski, L.; Zeier, J.; Rostás, M. Heavy metal stress can prime for herbivore-induced plant volatile emission. Plant Cell Environ. 2012, 35, 1287–1298. [Google Scholar] [CrossRef]
- Yang, F.B.; Zhang, Q.H.; Yao, Q.X.; Chen, G.; Tong, H.; Zhang, J.M.; Li, C.R.; Su, Q.; Zhang, Y.J. Direct and indirect plant defenses induced by (Z)-3-hexenol in tomato against whitefly attack. J. Pest Sci. 2020, 93, 1243–1254. [Google Scholar] [CrossRef]
- Kirk, W.D.J.; Terry, L.I. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric. For. Entomol. 2003, 5, 301–310. [Google Scholar] [CrossRef]
- Reitz, S.R. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Fla. Entomol. 2009, 92, 7–13. [Google Scholar] [CrossRef]
- Zhang, B.; Qian, W.Q.; Qiao, X.; Xi, Y.; Wan, F.H. Invasion biology, ecology, and management of Frankliniella occidentalis in China. Arch. Insect Biochem. Physiol. 2019, 102, e21613. [Google Scholar] [CrossRef]
- Gao, Y.L.; Lei, Z.R.; Reitz, S.R. Western flower thrips resistance to insecticides: Detection, mechanisms and management strategies. Pest Manag. Sci. 2012, 68, 1111–1121. [Google Scholar] [CrossRef]
- Steenbergen, M.; Abd-el-Haliem, A.; Bleeker, P.; Dicke, M.; Escobar-Bravo, R.; Cheng, G.; Haring, M.A.; Kant, M.R.; Kappers, I.; Kilinkhamer, P.G.L.; et al. Thrips advisor: Exploiting thrips-induced defences to combat pests on crops. J. Exp. Bot. 2018, 69, 1837–1848. [Google Scholar] [CrossRef]
- Mouden, S.; Sarmiento, K.F.; Klinkhamer, P.G.; Leiss, K.A. Integrated pest management in western flower thrips: Past, present and future. Pest Manag. Sci. 2017, 73, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Mouden, S.; Leiss, K.A. Host plant resistance to thrips (Thysanoptera: Thripidae)–current state of art and future research avenues. Curr. Opin. Insect Sci. 2021, 45, 28–34. [Google Scholar] [CrossRef]
- Sun, M.; Zhi, J.R.; Mo, L.F. Control effect of Orius similis on Frankliniella occidentalis of cut rose. J. Henan Agric. Sci. 2012, 41, 95–98. [Google Scholar]
- Traczyk, E.; Funderburk, J.; Martini, X. Foraging behavior responses of Orius insidiosus to thrips cues. Entomol. Exp. Appl. 2020, 168, 716–722. [Google Scholar] [CrossRef]
- Zeng, G.; Zhi, J.R.; Zhang, C.R.; Zhang, T.; Ye, J.Q.; Zhou, L.; Ye, M. Orius similis (Hemiptera: Anthocoridae): A promising candidate predator of Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Econ. Entomol. 2021, 114, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl 2018, 63, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.L. Biological Control of Pectinophora Gossypiella (Saunders), 1st ed.; Science Publishing House Press: Beijing, China, 1997. [Google Scholar]
- Zhou, X.M.; Lei, C.L. Utilization efficiency and functional response of Orius similis Zheng (Hemiptera: Anthocoridae) to different preys. Acta Ecol. Sin. 2002, 22, 2085–2090. [Google Scholar]
- Tatemoto, S.; Shimoda, T. Olfactory responses of the predatory mites (Neoseiulus cucumeris) and insects (Orius strigicollis) to two different plant species infested with onion thrips (Thrips tabaci). J. Chem. Ecol. 2008, 34, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Zhi, J.R.; Zheng, S.S.; Zhang, C.R.; Liu, F.J. The predation of Orius similis to Frankliniella occidentalis and Aphis craccivora. Chin. J. Appl. Entomol. 2011, 48, 573–578. [Google Scholar]
- Li, S.X.; Zhi, J.R.; Zeng, G.; Wen, J.; Lü, Z.Y. Behavioral responses Frankliniella occidengalis and Orius similis to kidney bean vola-tiles induced by exogenous jasmonic acid. Chin. J. Appl. Entomol. 2016, 53, 1065–1076. [Google Scholar]
- Zeng, G.; Zhi, J.R.; Ye, M.; Xie, W.; Zhang, T.; Li, D.Y.; Liu, L.; Wu, X.B.; Cao, Y. Life table and preference choice of Frankliniella occidentalis (Thysanoptera: Thripidae) for kidney bean plants treated by exogenous calcium. Insects 2021, 12, 838. [Google Scholar] [CrossRef]
- Zhang, H.R.; Okajima, S.; Mound, L.A. Collecting and slide preparation methods of thrips. Chin. Bull. Entomol. 2006, 43, 725–728. [Google Scholar]
- Wang, Z.; Mound, L.A.; Tong, X.L. Frankliniella species from China, with nomenclatural changes and illustrated key (Thysanoptera, Thripidae). ZooKeys 2019, 873, 43–53. [Google Scholar] [CrossRef]
- Zhang, J.; Zhi, J.R.; Yang, C.Y.; Li, S.X. Investigation and identification of farmland Orius wolff in Guizhou Province. J. Mt. Agric. Biol. 2015, 34, 36–40. [Google Scholar]
- Cao, Y.; Li, C.; Yang, H.; Li, J.; Li, S.; Wang, Y.; Gao, Y. Laboratory and field investigation on the orientation of Frankliniella occidentalis (Thysanoptera: Thripidae) to more suitable host plants driven by volatiles and component analysis of volatiles. Pest Manag. Sci. 2019, 75, 598–606. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wang, Y.S.; Li, L.; Yang, C.; Zhang, J.P.; Chen, J. Selective and olfactory repones of Frankliniella occidentalis to different host plants. Plant Prot. 2021, 47, 122–126. [Google Scholar]
- Cao, Y.; Wang, J.; Germinara, G.S.; Wang, L.J.; Yang, H.; Gao, Y.L.; Li, C. Behavioral responses of Thrips hawaiiensis (Thysanoptera: Thripidae) to volatile compounds identified from Gardenia jasminoides Ellis (Gentianales: Rubiaceae). Insects 2020, 11, 408. [Google Scholar] [CrossRef]
- Bi, J.L.; Felton, G.W. Foliar oxidative stress and insect herbivory: Primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J. Chem. Ecol. 1995, 21, 1511–1530. [Google Scholar] [CrossRef]
- Jiao, Y.Y.; Hu, X.Y.; Peng, Y.F.; Wu, K.M.; Romeis, J.; Li, Y.H. Bt rice plants may protect neighbouring non-Bt rice plants against the striped stem borer, Chilo suppressalis. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181283. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, J.W.; Zhang, P.J.; Han, L.W.; Reynolds, O.L.; Zeng, R.; Wu, J.H.; Shao, Y.; Gurr, G.M. Silicon supplementation alters the composition of herbivore induced plant volatiles and enhances attraction of parasitoids to infested rice plants. Front. Plant Sci. 2017, 8, 1265. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.W.; Shi, X.B.; Zhao, L.C.; Yuan, G.G.; Zhao, W.W.; Huang, G.H.; Chen, G. Chinese cabbage changes its release of volatiles to defend against Spodoptera litura. Insects 2022, 13, 73. [Google Scholar] [CrossRef]
- De Oliveira, R.S.; Peñaflor, M.F.G.; Gonçalves, F.G.; Sampaio, M.V.; Korndörfer, A.P.; Silva, W.D.; Bento, J.M.S. Silicon-induced changes in plant volatiles reduce attractiveness of wheat to the bird cherry-oat aphid Rhopalosiphum padi and attract the parasitoid Lysiphlebus testaceipes. PLoS ONE 2020, 15, e0231005. [Google Scholar] [CrossRef]
- Myers, S.W.; Gratton, C.; Wolkowski, R.P.; Hogg, D.B.; Wedberg, J.L. Effect of soil potassium availability on soybean aphid (Hemiptera: Aphididae) population dynamics and soybean yield. J. Econ. Entomol. 2005, 98, 113–120. [Google Scholar] [CrossRef]
- Kaplan, I. Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire? Biol. Control. 2012, 60, 77–89. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Wadhams, L.J.; Woodcock, C.M. Insect host location: A volatile situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Raza, S.A.K.; Wei, Z.Q.; Keesey, I.W.; Parker, A.L.; Feistel, F.; Chen, J.Y.; Cassau, S.; Fandino, R.A.; Grosse, W.E.; et al. Competing beetles attract egg laying in a hawkmoth. Curr. Biol. 2022, 32, 861–869.e8. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, G.S.; Ordung, K.M. Secondary metabolite variation affects the oviposition preference but has little effect on the performance of Boreioglycaspis melaleucae: A biological control agent of Melaleuca quinquenervia. Biol. Control. 2005, 35, 115–123. [Google Scholar] [CrossRef]
- Clark, K.E.; Hartley, S.E.; Brennan, R.M.; MacKenzie, K.; Johnson, S.N. Oviposition and feeding behaviour by the vine weevil Otiorhynchus sulcatus on red raspberry: Effects of cultivars and plant nutritional status. Agric. For. Entomol. 2012, 14, 157–163. [Google Scholar] [CrossRef]
- Mauch-Mani, B.; Baccelli, I.; Luna, E.; Flors, V. Defense priming: An adaptive part of induced resistance. Annu. Rev. Plant Biol. 2017, 68, 485–512. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Karmakar, A.; Das, S.; Barik, A. Attraction of the potential biocontrol agent Altica cyanea by volatile compounds of three species of Ludwigia weeds from rice fields. Entomol. Exp. Appl. 2020, 168, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Sendel, S.; Bocianowski, J.; Buszewski, B.; Piesik, M.; Mayhew, C.A.; Piesik, D. Volatile organic compounds released by wheat as a result of striped shield bug feeding and insect behaviour. J. Appl. Entomol. 2022, 146, 710–724. [Google Scholar] [CrossRef]
- Van Wijk, M.; De Bruijn, P.J.A.; Sabelis, M.W. Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles. J. Chem. Ecol. 2008, 34, 791–803. [Google Scholar] [CrossRef]
- Ozawa, R.; Arimura, G.I.; Takabayashi, J.; Shimoda, T.; Nishioka, T. Involvement of jasmonate-and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 2000, 41, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Matschi, S.; Hake, K.; Herde, M.; Hause, B.; Romeis, T. The calciumdependent protein kinase CPK28 regulates development by inducing growth phase-specific, spatially restricted alterations in jasmonic acid levels independent of defense responses in Arabidopsis. Plant Cell 2015, 27, 591–606. [Google Scholar] [CrossRef] [Green Version]
- Bruce, T.J.A.; Pickett, J.A. Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochem 2011, 72, 1605–1611. [Google Scholar] [CrossRef]
- Avellaneda, J.; Díaz, M.; Coy-Barrera, E.; Rodríguez, D.; Osorio, C. Rose volatile compounds allow the design of new control strategies for the western flower thrips (Frankliniella occidentalis). J. Pest Sci. 2021, 94, 129–142. [Google Scholar] [CrossRef]
- Būda, V.; Apšegaitė, V.; Blažytė-Čereškienė, L.; Butkienė, R.; Nedveckytė, I.; Pečiulytė, D. Response of moth Plodia interpunctella to volatiles of fungus-infected and uninfected wheat grain. J. Stored Prod. Res. 2016, 69, 152–158. [Google Scholar] [CrossRef]
- Deletre, E.; Schatz, B.; Bourguet, D.; Chandre, F.; Williams, L.; Ratnadass, A.; Martin, T. Prospects for repellent in pest control: Current developments and future challenges. Chemoecology 2016, 26, 127–142. [Google Scholar] [CrossRef]
- Najar-Rodriguez, A.J.; Galizia, C.G.; Stierle, J.; Dorn, S. Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. J. Exp. Biol. 2010, 213, 3388–3397. [Google Scholar] [CrossRef] [Green Version]
- Cha, D.H.; Linn, C.E.; Teal, P.E.A.; Zhang, A.; Roelofs, W.L.; Loeb, G.M. Eavesdropping on plant volatiles by a specialist moth: Significance of ratio and concentration. PLoS ONE 2011, 6, e17033. [Google Scholar] [CrossRef]
Sn Compounds | Content (%) | |||
---|---|---|---|---|
H2O | CaCl2 | H2O+WFT | CaCl2+WFT | |
1 3-hexen-1-ol | 28.79 ± 2.02 a | 19.24 ± 1.18 b | 27.50 ± 2.51 a | 23.51 ± 0.99 ab |
2 (E)-2-hexen-1-ol | 15.59 ± 0.89 a | 11.66 ± 1.16 b | 17.99 ± 0.54 a | 8.01 ± 0.35 c |
3 1-octen-3-ol | 12.74 ± 0.57 a | 8.01 ± 0.35 b | 12.31 ± 0.49 a | 7.86 ± 0.65 b |
4 (E)-2-hexenal | 11.40 ± 1.86 a | 13.58 ± 1.07 a | 13.07 ± 1.19 a | 12.63 ± 2.10 a |
5 1-hexanol | 6.16 ± 0.61 a | 4.90 ± 0.51 a | 4.95 ± 0.55 a | 4.90 ± 0.36 a |
6 β-lonone | 2.47 ± 0.90 c | 15.80 ± 0.82 a | 2.69 ± 0.66 c | 10.59 ± 0.64 b |
7 1-penten-3-ol | 1.19 ± 0.27 a | 0.36 ± 0.07 b | 1.25 ± 0.15 a | 0.32 ± 0.04 b |
8 Pentadecanal | – | 0.48 ± 0.18 b | 0.73 ± 0.14 b | 2.65 ± 0.63 a |
9 β-cyclocitral | 0.83 ± 0.03 c | 1.73 ± 0.03 a | 0.98 ± 0.26 bc | 1.63 ± 0.12 ab |
10 (Z)-3-hexenyl butanoate | 0.98 ± 0.56 a | 0.24 ± 0.04 a | 0.52 ± 0.06 a | 1.31 ± 0.43 a |
11 (E,E)-2,4-heptadienal | 0.98 ± 0.13 ab | 2.07 ± 0.31 a | 0.65 ± 0.13 b | 1.80 ± 0.34 a |
12 3-pentanone | 0.47 ± 0.12 a | 0.16 ± 0.01 b | 0.41 ± 0.01 ab | 0.13 ± 0.02 b |
13 1-pentanol | 0.33 ± 0.19 a | – | 0.30 ± 0.12 a | – |
14 (E)-2-hexen-1-ol, acetate | 0.64 ± 0.07 a | 0.30 ± 0.03 b | 0.38 ± 0.03 ab | 0.44 ± 0.10 ab |
15 Nonanal | 0.43 ± 0.10 a | 0.51 ± 0.01 a | 0.43 ± 0.04 a | 0.52 ± 0.02 a |
16 α-lonone | 0.37 ± 0.13 c | 1.79 ± 0.18 a | 0.83 ± 0.40 ab | 1.32 ± 0.15 ab |
17 2-ethyl-furan | 0.29 ± 0.09 a | 0.24 ± 0.03 a | 0.35 ± 0.05 a | 0.18 ± 0.02 a |
18 (E,E)-2,4-hexadienal | 0.78 ± 0.52 b | 3.95 ± 0.69 a | 0.44 ± 0.17 b | 3.33 ± 0.22 a |
19 3-octanone | 0.44 ± 0.06 a | 0.26 ± 0.03 a | 0.36 ± 0.03 a | 0.46 ± 0.12 a |
20 2,5-octanedione | 0.47 ± 0.25 a | 0.62 ± 0.14 a | 0.42 ± 0.20 a | 0.35 ± 0.15 a |
21 2-ethyl-1-hexanol | 0.31 ± 0.03 a | 0.11 ± 0.01 b | 0.24 ± 0.03 a | – |
22 Cis-3-hexenyl butyrate | 0.34 ± 0.11 b | 0.15 ± 0.01 b | 0.20 ± 0.01 b | 0.67 ± 0.03 a |
23 Pentadecane | – | – | 0.19 ± 0.04 b | 0.73 ± 0.06 a |
24 (E,E)-3,5-octadien-2-one | – | – | 0.23 ± 0.08 a | 0.22 ± 0.02 a |
25 Tetradecane | 0.13 ± 0.03 c | 0.44 ± 0.01 b | 0.26 ± 0.08 bc | 0.77 ± 0.06 a |
26 2-methyl-6-hepten-1-ol | 0.22 ± 0.03 a | – | 0.20 ± 0.01 a | – |
27 β-cyclohomocitral | 0.16 ± 0.01 b | 0.51 ± 0.03 a | 0.21 ± 0.05 b | 0.36 ± 0.04 a |
28 Benzeneacetaldehyde | 0.13 ± 0.02 b | 0.20 ± 0.01 ab | 0.13 ± 0.02 b | 0.27 ± 0.02 a |
29 Hexadecane | – | – | – | 0.10 ± 0.06 |
30 Cis-3-hexenyl Cis-3-hexenoate | – | – | 0.16 ± 0.03 b | 0.58 ± 0.10 a |
31 3-ethylbenzaldehyde | 0.12 ± 0.04 b | 0.62 ± 0.04 a | 0.13 ± 0.03 b | 0.47 ± 0.07 a |
32 (4H)-benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl-,(R)- | – | 0.66 ± 0.06 a | – | 0.42 ± 0.05 b |
33 2,2,6-trimethylcyclohexanone | 0.10 ± 0.02 a | – | 0.10 ± 0.02 a | – |
34 Benzaldehyde | 0.15 ± 0.02 b | 0.33 ± 0.02 a | – | 0.31 ± 0.02 a |
35 2,6-di-tert-butylbenzoquinone | 0.12 ± 0.04 b | 0.28 ± 0.02 a | – | 0.27 ± 0.02 a |
36 (E,E)-2,6-nonadienal | 0.13 ± 0.06 a | 0.15 ± 0.03 a | 0.10 ± 0.04 a | 0.18 ± 0.03 a |
37 Tridecane | – | 0.13 ± 0.02 ab | – | 0.21 ± 0.03 a |
38 Decanal | – | 0.26 ± 0.04 a | – | 0.19 ± 0.01 a |
39 (E)-geranylacetone | – | 0.24 ± 0.03 a | – | 0.21 ± 0.04 b |
40 Butanoic acid, hexyl ester | – | – | – | 0.13 ± 0.02 a |
41 Perhydrofarnesyl acetone | – | 0.13 ± 0.02 | – | – |
42 Hexadecanoic acid, methyl ester | – | 0.20 ± 0.04 a | – | 0.11 ± 0.02 a |
43 (Z)-3-hexen-1-ol, acetate | 4.37 ± 1.70 a | 0.68 ± 0.03 a | 1.22 ± 0.75 a | 2.64 ± 0.72 a |
44 Lauryl acetate | – | – | – | 0.24 ± 0.12 |
45 (E)-2-penten-1-ol | – | – | 0.24 ± 0.03 | – |
46 (Z)-2-penten-1-ol | – | – | 0.57 ± 0.17 | – |
47 Linalool | – | – | 0.11 ± 0.05 | – |
48 3-methyl-butanal | 0.19 ± 0.03 a | – | 0.21 ± 0.01a | – |
49 1-nonanol | 0.14 ± 0.01 a | 0.20 ± 0.03 a | 0.21 ± 0.04 a | – |
50 Hexanal | 0.14 ± 0.01 a | 0.20 ± 0.03 a | 0.21 ± 0.04 a | – |
51 1-heptanol | – | – | 0.13 ± 0.00 | – |
52 3-hexenal | – | 0.34 ± 0.01 a | – | 0.35 ± 0.06 a |
53 (E)-3-hexen-1-ol | – | – | – | 0.37 ± 0.02 |
54 1-tetradecene | – | 0.38 ± 0.01 | – | – |
55 (Z)-2-penten-1-ol | 0.74 ± 0.21 a | 0.46 ± 0.02 a | – | 0.34 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-Q.; Zeng, G.; Zhi, J.-R.; Qiu, X.-Y.; Yin, Z.-J. Exogenous Calcium Suppresses the Oviposition Choices of Frankliniella occidentalis (Thysanoptera: Thripidae) and Promotes the Attraction of Orius similis (Hemiptera: Anthocoridae) by Altering Volatile Blend Emissions in Kidney Bean Plants. Insects 2022, 13, 1127. https://doi.org/10.3390/insects13121127
Huang W-Q, Zeng G, Zhi J-R, Qiu X-Y, Yin Z-J. Exogenous Calcium Suppresses the Oviposition Choices of Frankliniella occidentalis (Thysanoptera: Thripidae) and Promotes the Attraction of Orius similis (Hemiptera: Anthocoridae) by Altering Volatile Blend Emissions in Kidney Bean Plants. Insects. 2022; 13(12):1127. https://doi.org/10.3390/insects13121127
Chicago/Turabian StyleHuang, Wan-Qing, Guang Zeng, Jun-Rui Zhi, Xin-Yue Qiu, and Zhen-Juan Yin. 2022. "Exogenous Calcium Suppresses the Oviposition Choices of Frankliniella occidentalis (Thysanoptera: Thripidae) and Promotes the Attraction of Orius similis (Hemiptera: Anthocoridae) by Altering Volatile Blend Emissions in Kidney Bean Plants" Insects 13, no. 12: 1127. https://doi.org/10.3390/insects13121127
APA StyleHuang, W. -Q., Zeng, G., Zhi, J. -R., Qiu, X. -Y., & Yin, Z. -J. (2022). Exogenous Calcium Suppresses the Oviposition Choices of Frankliniella occidentalis (Thysanoptera: Thripidae) and Promotes the Attraction of Orius similis (Hemiptera: Anthocoridae) by Altering Volatile Blend Emissions in Kidney Bean Plants. Insects, 13(12), 1127. https://doi.org/10.3390/insects13121127